
Homework Set 6. Due March 29, 2004.

1. Consider the Brownian Motion x(t) = x + β(t) starting from x > 0 at time 0. Show by
two different methods that
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Check that
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with u(t, 0) ≡ 0 for t > 0 and u(t, x) → f(x) as t → 0.

Check that for fixed T , by Itô’s formula u(T − t, x(t)) is a martingale.

If τ = inf{t : x(t) ≤ 0} is the first time 0 is reached, then verify

u(0, x) = E[u(T − τ ∧ T, x(τ ∧ T ))] = E[f(x(τ), τ > T ]

Take f ≡ 1.

b) Consider the function
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Verify that
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and that u(t, x(t)) is a martingale. Deduce

e−
√

2λ x = u(0, x) = E[e−λτ |x(0) = x]

Complete the proof by verifying that the Laplace Transform
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