

Homework Set 6. Due March 29, 2004.

1. Consider the Brownian Motion $x(t) = x + \beta(t)$ starting from $x > 0$ at time 0. Show by two different methods that

$$P\left[\inf_{0 \leq s \leq t} x(s) \geq 0\right] = \frac{\sqrt{2}}{\sqrt{\pi t}} \int_0^x e^{-\frac{y^2}{2t}} dy$$

a) Consider

$$u(t, x) = \frac{1}{\sqrt{2\pi t}} \int_0^\infty [e^{-\frac{(x-y)^2 t}{2}} - e^{-\frac{(x+y)^2 t}{2}}] f(y) dy$$

Check that

$$u_t = \frac{1}{2} u_{xx}$$

with $u(t, 0) \equiv 0$ for $t > 0$ and $u(t, x) \rightarrow f(x)$ as $t \rightarrow 0$.

Check that for fixed T , by Itô's formula $u(T - t, x(t))$ is a martingale.

If $\tau = \inf\{t : x(t) \leq 0\}$ is the first time 0 is reached, then verify

$$u(0, x) = E[u(T - \tau \wedge T, x(\tau \wedge T))] = E[f(x(\tau), \tau > T)]$$

Take $f \equiv 1$.

b) Consider the function

$$u(t, x) = e^{-\lambda t - \sqrt{2\lambda} x}$$

Verify that

$$u_t + \frac{1}{2} u_{xx} = 0$$

and that $u(t, x(t))$ is a martingale. Deduce

$$e^{-\sqrt{2\lambda} x} = u(0, x) = E[e^{-\lambda \tau} | x(0) = x]$$

Complete the proof by verifying that the Laplace Transform

$$\begin{aligned} \int_0^\infty e^{-\lambda t} d \left[1 - \frac{\sqrt{2}}{\sqrt{\pi t}} \int_0^x e^{-\frac{y^2}{2t}} dy \right] \\ = \int_0^\infty e^{-\lambda t} dP[\tau \leq t] \\ = e^{-\sqrt{2\lambda} x} \end{aligned}$$