
9. Second order Linear Partial di�erential equations.

If we model a stochastic process by

dx(t) =
p
a(x(t))d�(t) + b(x(t))dt ; x(0) = x

then we saw that x(t) is a random process with continuous trajectories. If we have some
path dependent payo� functional of the type

F (T; x(�)) =
Z T

0

e��sV (x(s)) + e��T f(x(T ))

the payo� is random, and one is often interested in calculating the expected value of the
payo�. More generally the model and the payo� could be explicitly time dependent

dx(t) =
p
a(t; x(t))d�(t) + b(t; x(t))dt ; x(s) = x

F (s; T; x(�)) =
Z T

s

exp[�
Z t

s

�(�; x(�))d�]V (t; x(t))dt+ exp[�
Z T

s

�(�; x(�))d�]f(x(T ))

and we wish to calculate

u(s; x) = E

�
F (s; T; x(�))jx(s) = x

�

as a function of (s; x). From the Markov property it is clear that for times s1 < s2,

u(s1; x) =

E

�Z s2

s1

e
�

R
t

s1
�(�;x(�))d�

V (t; x(t))dt+ e
�

R
s2

s1
�(�;x(�))d�

u(s2; x(s2))jx(s1) = x

�

We think of s1 = s and s2 = s+ �. Then

u(s; x)� u(s+ �; x)

' E

�
�V (s; x(s)) + (1� ��(s; x(s)))u(s+ �; x(s+ �))jx(s) = x

�

' �[V (s; x)� �(s; x)u(s; x)] + E

�
u(s+ �; x(s+ �))� u(s+ �; x)jx(s) = x

�
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Note that for any smooth function u

E

�
u(x(s+ �)� u(x(s))jx(s) = x

�

' E

�
ux(x)(x(s+ �)� x(s)) +

1

2
uxx(x)(x(s+ �)� x(s))2jx(s) = x

�

' �[b(s; x)ux(x) +
a(s; x)

2
uxx(x)]

Therefore

u(s; x)� u(s+ �; x) = �[V (s; x)� �(s; x)u(s; x) + b(s; x)ux(s; x) +
a(s; x)

2
uxx(s; x)]

Or

(1) us(s; x)+b(s; x)ux(s; x)+
a(s; x)

2
uxx(s; x)��(s; x)u(s; x)+V (s; x) = 0 ;u(T; x) = f(x)

Equations of the above type are called backward parabolic equations. The MAXIMUM

PRINCIPLE states that if

1. u; ux; uxx are bounded and continuous and u satis�es equation (1) in [0; T ]�R,

2. b and a are bounded and continuous and a � 0,

3. V (s; x) � 0 for all (s; x) and f(x) � 0 for all x,

then u(s; x) � 0 for all (s; x) 2 [0; T ]� R.

Proof of the maximum principle. The basic idea is to show that solutions of (1) cannot
achieve their minimum except when s = T . Since u(T; x) = f(x) � 0 this will imply that
minu(s; x) � 0 and we are done. If the minimum is attained at some (s0; x0) with s0 < T ,
then at that point us(s0; x0) � 0 and ux(s0; x0) = 0. Moreover uxx(s0; x0) � 0. If only
the inequality �(s0; x0) � 1 was true, we would be done. All the terms in the equation are
nonnegative and they add up to 0. Since �(s0; x0) � 1, we must have u(s0; x0) � 0. It is
easy to achieve �(s; x) � 1 with out changing the problem. Instead of u we consider the
function v(s; x) = u(s; x)eC(s�T ) with a constant C to be chosen later. Then v will satisfy

vs(s; x) + b(s; x)vx(s; x) +
a(s; x)

2
vxx(s; x)� [C + �(s; x)]v(s; x) + V (s; x)eC(s�T ) = 0

v(T; x) = f(x)
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If we pick C large enough, the new � which is C+�, can be assumed to be larger than
1. The new V which is V (s; x)eC(s�T ) is nonnegative since the old one was. Now we will
be able to conclude that at the new (s0; x0) where v achieves the minimum we must have
v(s0; x0) � 0 and therefore v(s; x) � 0 for all (s; x). This will imply that u(s; x) � 0 as
well. This proof still needs to be �xed. Since x varies over an unbounded set the in�mum
may not be attained. We replace u(t; x) by a new v(t; x) where

v(t; x) = u(t; x)e��h(x)+C(s�T )

Think of h(x) as
p
1 + x2. The function v vanishes as jxj ! 1 and if it is not nonengative

must now necessarily achieve its negative minimum at some point (s0; x0) with s0 < T . At
this point u(s0; x0) < 0, v(s0; x0) < 0, vs(s0; x0) � 0, vx(s0; x0) = 0 and vxx(s0; x0) � 0.
Since

u(t; x) = v(t; x)e�h(x)�C(s�T )

us(s0; x0) = [vs(s0; x0)� Cv(s0; x0)]e
�h(x0)�C(s0�T ) � �Cu(s0; x0)

ux(s0; x0) = [vx(s0; x0) + �h0(x)v(s0; x0)]e
�h(x0)�C(s0�T ) = �h0(x)u(s0; x0)

� B�u(s0; x0)

uxx(s0; x0) = [vxx(s0; x0) + 2�h0(x0)vx(s0; x0) + �h00(x0)v(s0; x0) + �2[h0(x0)]
2v(s0; x0)]

� e�h(x0)�C(s0�T )

� B[�+ �2]u(s0; x0)

where B is an upper bound on jh0(x)j and jh00(x)j. Finally substituting in equation (1)

0 = us(s; x) + b(s; x)ux(s; x) +
a(s; x)

2
uxx(s; x)� �(s; x)u(s; x) + V (s; x)

� �[C + �(s0; x0)]u(s0; x0) +K[B�+
B

2
�2]u(s0; x0)

where K is an upper bound on jb(s; x)j and a(s; x). If C + �(s; x) � 1, for � small enough
K[B�+ B

2 �
2] � 1

2 . Proving that u(s0; x0) � 0. This implis that v(s0; x0) � 0 which in turn
implies v(s; x) � 0 for all (s; x) and u(s; x) � 0 for all (s; x)

The maximum principle in particular implies uniqueness. If for given a; b; �; V and f we
have two solutions u and v, the di�erence w = u � v will be a solution for the same a; b
and � but with V � f � 0. It now follows from the maximum principle that w and �w
are nonnegative. Hence w � 0 or u � v.

Actually one can use the theory of stochastic di�erential equations to provide a more
direct proof of the maximum principle. Let us suppose that u is a bounded continuous
function, on [0; T ]� R with enough derivatives (two in x and one in s), that satis�es

us + b(s; x)ux +
a(s; x)

2
uxx � �(s; x)u+ V (s; x) = 0

Then the function

F (t) = u(t; x(t))e
�

R
t

0
�(s;x(s))ds
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where x(t) is a solution of

dx(t) =
p
a(t; x(t))d�(t) + b(t; x(t))dt

will satisfy

dF (t) = [��(t; x(t))u(t; x(t))dt+ uxdx(t) + utdt+
1

2
uxx(dx(t))

2]e
�

R
t

0
�(s;x(s))ds

= [��udt+ buxdt+
p
ad�(t) + utdt+

a

2
uxxdt]e

�

R
t

0
�(s;x(s))ds

= �V (t; x(t))e�
R
t

0
�(s;x(s))ds

dt+ e
�

R
t

0
�(s;x(s))ds

p
a(t; x(t))d�(t)

Or

F (T )� F (0) +

Z T

0

V (t; x(t))e
�

R
t

0
�(s;x(s))ds

dt+

Z T

0

e(s)d�(s)

for some e. In particular this has mean zero. F (0) is a constant and equals u(0; x). Hence

u(0; x) = E

�
F (T ) +

Z T

0

V (t; x(t))e
�

R
t

0
�(s;x(s))ds

dtjx(0) = x

�

= E

�
f(x(T ))e

�

R
T

0
�(s;x(s))ds

+

Z T

0

V (t; x(t))e
�

R
t

0
�(s;x(s))ds

dtjx(0) = x

�

The above relationship between the solution u of a PDE and expectations of certain path
dependent functions of solutions x(�) of an SDE is a crucial link between the two. We
provided a proof based essentially on Itô's formula that computed

dF (t) = h(t)dt+H(t)d�(t)

and because any integral
R t2
t1
H(s)d�(s) had expectation 0, we concluded that

E

�
F (t2)� F (t1)�

Z t2

t1

h(s)ds
��x(t1) = x

�
= 0

for any t1 < t2 and x. By the Markov property this implies that

E

�
F (t2)� F (t1)�

Z t2

t1

h(s)ds
��x(t) = x

�
= 0

so long as t � t1 < t2. We can avoid the explicit use of Itô's formula if we want. Consider
the quantity

k(t) = E

�
u(t; x(t))e

�

R
t

0
�(s;x(s))ds

+

Z t

0

V (s; x(s))e
�

R
s

0
�(�;x(�))d���x(0) = x

�
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We will show that k(t) is a constant as a function of t. In particular

u(0; x) = k(0) = k(T )

= E

�
f(x(T ))e

�

R
T

0
�(s;x(s))ds

+

Z T

0

V (s; x(s))e
�

R
s

0
�(�;x(�))d�

ds
��x(0) = x

�

It is clearly suÆcient to calculate k0(t) and show that it is identically 0. We will estimate
k(t+ h)� k(t) and see why this is o(h) due to cancellations and not O(h). It is enough to
show

E

�
(u(t+ h; x(t+ h))� u(t; x(t)))e

�

R
t

0
�(s;x(s))ds��x(0) = x

�

+E

�
u(t; x(t))e

�

R
t

0
�(s;x(s))ds

(e
�

R
t+h

t
�(s;x(s))ds � 1)

��x(0) = x

�

+ E

�Z t+h

t

V (s; x(s))e
�

R
s

0
�(�;x(�))d�

ds
��x(0) = x

�
= o(h)

We �rst condition the path x(s) upto time t. This gives a common factor of e
�

R
t

0
�(s;x(s))ds

that can be pulled out leaving for us to show that

E

�
(u(t+ h; x(t+ h))� u(t; x(t)))

��x(t) = x

�

+E

�
u(t; x(t))(e

�

R
t+h

t
�(s;x(s))ds � 1)

��x(t) = x

�

+ E

�Z t+h

t

V (s; x(s))e
�

R
s

t
�(�;x(�))d�

ds
��x(t) = x

�
= o(h)

The second and third term are easy. They yield

[�u(t; x(t))�(t; x(t)) + V (t; x(t))]h+ o(h)

The �rst term has to be expanded by Taylor's formula

u(t+ h; x(t+ h))� u(t; x(t)) = ut(t; x)h+ ux(t; x)E[(x(t+ h)� x(t))jx(t) = x]

+
1

2
uxx(t; x)E[(x(t+ h)� x(t))2jx(t) = x]

= h[ut(t; x)) + b(t; x)ux(t; x) +
1

2
a(t; x)uxx(t; x)] + o(h)

Since u satis�es the equation

ut(t; x) + b(t; x)ux(t; x) +
1

2
a(t; x)uxx(t; x)� �(t; x)u(t; x) + V (t; x) = 0

all the O(h) terms cancel out to give k0(t) � 0.
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The representation of the solution as an expectation shows that u is nonnegative if f
and V are. It also proves uniqueness. In particular if we pick V � � � 0, then the solution
of

dx(t) =
p
a(t; x(t))d�(t) + b(t; x(t))dt : x(s) = x

and

(2) us(s; x) + b(s; x)ux(s; x) +
a(s; x)

2
uxx(s; x) = 0 ;u(T; x) = f(x)

are related by
u(s; x) = E

�
f(x(T ))jx(s) = x

�
If we denote by p(s; x; t; y)dy the transition probability density P [x(t) 2 dyjx(s) = x] then

(3) u(s; x) =

Z
f(y)p(s; x; T; y)dy

One can use results from PDE that tell us that the equation (2) has a nice solution and
in fact the solution is given by a formula of the type (3). The densities p(s; x; t; y) satisfy

p(s; x; t; y) � 0 ;

Z
p(s; x; t; y)dy = 1

and for s < � < t Z
p(s; x; �; z)p(�; z; t; y)dz = p(s; x; t; y)

One can then construct directly a Markov process with transition probabilities fp(s; x; t; y)g
This will be statistically the same as the solution of the stocahstic di�erential equation.

Examples:

1. Consider the SDE
dx(t) = dt+ d�(t) ;x(s) = x

with a solution x(t) = x+ �(t)� �(s) + t� s. The probability density of x(t) is Gaussian
with mean x+ t� s and variance t� s and is given by

p(s; x; t; y) =
1p

2�(t� s)
e
�

(y�x�t+s)2

2(t�s)

One can check that for �xed t and y, p satis�es

ps +
1

2
pxx + px = 0

2*. For the linear stochastic di�erential equation

dx(t) = bx(t)dt+ �x(t)d�(t)
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calculate explicitly the probability density p(s; x; t; y) = p(t�s; x; y) by solving the stochas-
tic di�erential equation. For any � 2 R calculate the integral

u�(t; x) =

Z
1

0

y�p(t; x; y)dy

Verify that u� satis�es the equation

ut = bxux +
�2x2

2
uxx

3*. Solve explicitly the stochastic di�erential equation

dx(t) = �cx(t)dt+ d�(t);x(0) = x

Find p(t; x; y). Show that for each �xed y, p(t; x; y) satis�es the equation

pt = �cxpx + 1

2
pxx

The functions p(s; x; t; y) or in the time homogeneous case, p(t�s; x; y) satis�y the equation

ps(s; x) + b(s; x)px(s; x) +
a(s; x)

2
pxx(s; x) = 0

In particular any integral
R
p(s; x; t; y)f(y)dy will satisfy

us(s; x) + b(s; x)ux +
a(s; x)

2
uxx(s; x) = 0

with Z
f(y)p(s; x; t; y)dy! f(x)

as s ! t. In PDE they are called fundamental solutions and yield directly the transition
probabilities.
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