9. Second order Linear Partial differential equations.
If we model a stochastic process by

dz(t) = a(z(t))dp(t) + b(x(t))dt ; x(0) =z

then we saw that z(t) is a random process with continuous trajectories. If we have some
path dependent payoff functional of the type

F(T,2() = / eV ((s)) + e f (2(T))

the payoff is random, and one is often interested in calculating the expected value of the
payoftf. More generally the model and the payoff could be explicitly time dependent

dz(t) = al(t,z(t))dp(t) + b(t, z(t))dt ; x(s) ==

F(s,T,x(-)):/ exp[—/ )\(a,x(a))da]V(t,x(t))dt+exp[—/ Ao, z(0))do|f(x(T))

and we wish to calculate
o) = B[F(s. 7o) o(s) = 1

as a function of (s,z). From the Markov property it is clear that for times s; < so,

u(sy,x) =

52 _ [t y(g.z(c))do — 2 Xo,z(0))do
E[/ e f31 Me(o))d V(t,z(t))dt + e f51 Me(o))d u(s2, z(s2))|x(s1) :a:]

S1

We think of s; = s and sy = s + €. Then
u(s, ) —u(s+e,x)

~F [GV(S,:E(S)) + (1 —eX(s,z(s)u(s+ €, xz(s + €))|z(s) = az]

~elV(s,z) — A(s,z)u(s,z)| + E|u(s + €, 2(s +€)) —u(s +€,x)|z(s) = x]



Note that for any smooth function u
E {u(a:(s +€) —u(z(s))|z(s) = =

= E[“m<x><x<s 6 = () + Stan (@) (0(s + ) — 2(s))2fo(s) = @

2
~ e[b(s, #)ug (z) + “(52’ ™) g ()]
Therefore
u(s,x) —u(s+e€,x) =€[V(s,x) — A(s, x)u(s, x) + b(s, z)uy(s, ) + als,z) Uzy (S, T)]

2
Or

(1) us(s,$)+b(s,m)um(s,:v)—k@um(s,:U)—A(S,;U)U(S,;U)+V(s,m) =0;u(T,x) = f(x)

Equations of the above type are called backward parabolic equations. The MAXIMUM
PRINCIPLE states that if

1. u, Uy, Uz, are bounded and continuous and wu satisfies equation (1) in [0, T] X R,

2. b and a are bounded and continuous and a > 0,

3. V(s,z) >0 for all (s,z) and f(z) > 0 for all x,

then u(s,z) > 0 for all (s,z) € [0,T] X R.

Proof of the maximum principle. The basic idea is to show that solutions of (1) cannot
achieve their minimum except when s = T'. Since u(T,z) = f(x) > 0 this will imply that
minu(s,z) > 0 and we are done. If the minimum is attained at some (sg, zo) with so < T,
then at that point us(sg,xg) > 0 and uz(sg,x9) = 0. Moreover uy,(sg, xg) > 0. If only
the inequality A(sg,xo) > 1 was true, we would be done. All the terms in the equation are
nonnegative and they add up to 0. Since A(sp,z¢) > 1, we must have u(sg,zg) > 0. It is
easy to achieve A(s,z) > 1 with out changing the problem. Instead of u we consider the
function v(s, z) = u(s,z)e®~T) with a constant C' to be chosen later. Then v will satisfy

US(S?'T) + b(8?$)vm(8a$) + @’Um(s,@ — [C + )\(57 CE)]’U(S,.T) + V(S,l’)eC(S_T) =0

(T, z) = f(x)



If we pick C' large enough, the new A which is C'4+ A, can be assumed to be larger than
1. The new V which is V (s, 2)e®~T) is nonnegative since the old one was. Now we will
be able to conclude that at the new (sg, o) where v achieves the minimum we must have
v(s0,2p) > 0 and therefore v(s,z) > 0 for all (s,z). This will imply that u(s,z) > 0 as
well. This proof still needs to be fixed. Since x varies over an unbounded set the infimum
may not be attained. We replace u(t,z) by a new v(¢, ) where

U(t7 'T) = U/(t7 ,’lj)e_Eh(m)-f—C(s—T)

Think of h(z) as V1 + z2. The function v vanishes as |z| — oo and if it is not nonengative
must now necessarily achieve its negative minimum at some point (sg, z¢) with sg < T'. At
this point u(sg, o) < 0, v(so,20) < 0, vs(s0,x0) > 0, vz(S0,zo) = 0 and vy (S0, o) > 0.
Since

u(t, z) = v(t, z)eM@=C6E=T)

s (50, Z0) = [Vs(50,20) — Cv(s0, 20)]e @I =C0=T) > _Cuy(sg, z)
Uz (50, 20) = [V (50, T0) + €’ (z)v(s0, T0)] eI =CE=T) — ep/ (z)u(s0, o)
> Beu(sg, xo)
Uz (50, T0) = [Vax (50, T0) + 2€h’ (20)vz (50, T0) + €h” (z0)v (50, T0) + €[ (z0)]?v(50, T0)]

X eeh(mo)—C(So—T)

> Ble + €*Ju(sg, o)
where B is an upper bound on |h'(z)| and |h”(x)|. Finally substituting in equation (1)

Mum(s,fv) — As,2)u(s,z)+ V(s,x)

0=wus(s,z)+ b(s,x)uz(s,x) + 5

B
> —[C + A(s0,x0)]u(so, zo) + K[Be + Eez]u(so,:vo)

where K is an upper bound on |b(s,z)| and a(s,z). If C' + A(s,z) > 1, for € small enough
K[Be+ g@] < % Proving that u(sg,zo) > 0. This implis that v(sg,zo) > 0 which in turn
implies v(s,z) > 0 for all (s,z) and u(s,x) > 0 for all (s, )

The maximum principle in particular implies uniqueness. If for given a,b, A,V and f we
have two solutions u and v, the difference w = u — v will be a solution for the same a,b
and A but with V = f = 0. It now follows from the maximum principle that w and —w
are nonnegative. Hence w =0 or u = v.

Actually one can use the theory of stochastic differential equations to provide a more
direct proof of the maximum principle. Let us suppose that u is a bounded continuous
function, on [0, 7] x R with enough derivatives (two in z and one in s), that satisfies

a(s,x)

Uge — N(s,2)u+V(s,2) =0

Then the function t
F(t) - U’(tv .’If(t))e_ fo A(s,z(s))ds

3



where z(t) is a solution of

dz(t) = \a(t, z(t))dB(t) + b(t, z(t))dt

will satisfy

1 - ¢ S, xS S
dF(t) = [=A(t, z(t))u(t, x(t))dt + updz(t) + updt + 5“mw(d$(t))2]e Jo Asae)d
t
- [—)\udt + bugdt + \/adﬁ(t) + updt + %medt]e_ fo A(s,xz(s))ds

t t
= V(i a(t))e Jo MOEEDE gy o= Jo MemNds oG as )

F(T) — F(0) + /0 ' V(t,:c(t))e_fot}‘(S’w(s))dsdt+ / Te(s)dﬁ(s)

0

for some e. In particular this has mean zero. F'(0) is a constant and equals u(0, z). Hence
T B d
w(0,2) = B [F(T) + / V(t,2(t))e™ do X #EN® gy 0y — x]
0
T T t
_ E[f(a:(T))e_ fo A(s,z(s))ds +/ V(t,a(t))e fo A(S,w(S))dsdﬂm(O) _
0

The above relationship between the solution u of a PDE and expectations of certain path
dependent functions of solutions z(-) of an SDE is a crucial link between the two. We
provided a proof based essentially on It6’s formula that computed

dF(t) = h(t)dt + H(t)dB(t)

and because any integral fttf H(s)df(s) had expectation 0, we concluded that
to
E{F(tz) F(t) —/ h(s)ds|(t1) = a:] ~0
t1
for any t; < ty and z. By the Markov property this implies that
to
E[F(tQ) _ F(t) —/ h(s)ds|(t) = a:] —0
t1
so long as t <11 < ty. We can avoid the explicit use of It0’s formula if we want. Consider

the quantity

k() = E [u(t, p(t))e Jo MealeDds | /0 t V(s,(s))e” do X1 0) = 4

4



We will show that k(t) is a constant as a function of ¢. In particular
u(0,2) = k(0) = k(T)

T T s
_ E[f(x(T))e_fo Moso(o)ds / V(s,a(s))e” Jo X g0y = x]
0

It is clearly sufficient to calculate k'(t) and show that it is identically 0. We will estimate
k(t + h) — k(t) and see why this is o(h) due to cancellations and not O(h). It is enough to
show

v [(u(t bt ) —u(ta(0))e” Jo X |y () = ]
+E |:U(t, x(t))e_ fot A(s,x(s))ds (6_ Lt+h A(s,z(s))ds 1)‘.7;(0) _ $:|

+E { /t . V(s,z(s))e o MPeD 1) 2(0) = x} = o(h)

t
We first condition the path z(s) upto time ¢. This gives a common factor of e Jo Mes(ends

that can be pulled out leaving for us to show that
E {(u(t + hyx(t+ h)) — u(t,x(t)))|x(t) = x]
+E [u(t, w()) (e de AT gy = x]
+E [/Hh Vi(s,z(s))e I )‘(U’w(g))dads‘x(t) = x] = o(h)
t
The second and third term are easy. They yield
[—u(t, z(t))A(t, 2(t) + V(t,z(t))]h + o(h)
The first term has to be expanded by Taylor’s formula

w(t + h,x(t+h)) —u(t,z(t)) = utl(t, z)h + ug(t, ) E[(x(t + h) — z(t))|z(t) = z]
¥ Sttt ) Bl(a(t + h) — o(1))?a(t) = 2]
— Bug(t, 7)) + bt 7Y (t, ) + %a(t, P)taa(t, )] + o(h)
Since u satisfies the equation
wp(t, ) + b(t, 2y (£, ) + %a(t, Dtga(t, ) — M, 2)ult, ) + V(t,7) = 0
all the O(h) terms cancel out to give k'(£) = 0.
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The representation of the solution as an expectation shows that w is nonnegative if f
and V are. It also proves uniqueness. In particular if we pick V"= A = 0, then the solution

of
dz(t) = a(t,z(t))dB(t) + b(t, z(t))dt : x(s) = x
and
(2) us(s,x) + b(s, x)ug(s,z) + Mum(s,aa) =0;u(T,z) = f(x)

2

are related by
u(s,2) = B[ (@(T)o(s) = a]
If we denote by p(s, z,t,y)dy the transition probability density P[z(t) € dy|z(s) = z] then

3) u(s,z) = / F@)p(s,z, T, y)dy

One can use results from PDE that tell us that the equation (2) has a nice solution and
in fact the solution is given by a formula of the type (3). The densities p(s, x,t,y) satisfy

p(s,z,t,y) >0 ;/p(s,x,t,y)dy =1
and for s < o <t
p(s,z,0,2)p(o, z,t,y)dz = p(s,z,t,y)

One can then construct directly a Markov process with transition probabilities {p(s, z,t,y)}
This will be statistically the same as the solution of the stocahstic differential equation.

Examples:

1. Consider the SDE
dx(t) = dt +dp(t) ;z(s) = x

with a solution z(t) = = + ((t) — B(s) + t — s. The probability density of z(t) is Gaussian
with mean x 4+ ¢t — s and variance ¢ — s and is given by

(5,21, 9) L -lgppts?
p(s,x = —"¢ —s
9 b 7y 27r(t — S)

One can check that for fixed ¢ and y, p satisfies

1
Ps + prm + Pz = 0

2*. For the linear stochastic differential equation
dz(t) = bx(t)dt + oz (t)dp(t)
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calculate explicitly the probability density p(s, z,t,y) = p(t—s, z, y) by solving the stochas-
tic differential equation. For any o € R calculate the integral

U (t, z) = / yp(t, z, y)dy
0

Verify that u, satisfies the equation

o2x?

uy = brug, + Tum

3*. Solve explicitly the stochastic differential equation
dz(t) = —cx(t)dt + dp(t); z(0) = z

Find p(t, z,y). Show that for each fixed y, p(t,z,y) satisfies the equation
1
Pt = —CTPx + Qp:mc

The functions p(s, x,t, y) or in the time homogeneous case, p(t—s, =, y) satisfiy the equation

a(s,x)
2

p5(8?$)+b(8?$)p$(87$)+ pmw(sal') =0

In particular any integral [ p(s,z,t,y)f(y)dy will satisfy

a(s, )
2

us(s,x) + b(s, x)ug, + Uz (S, 2) =0

with
/ F@)p(s, 2.t y)dy — f(2)

as s — t. In PDE they are called fundamental solutions and yield directly the transition
probabilities.



