
8. Stocahstic Di�erential Equations as limits of Markov Chains

Instead of a random walk which has increments or steps whose distributions are in-
dependent of their current position, we can have Markov Chains moving in R, that take
small steps, but the distribution of the steps depend on the current position of the Markov
Chain. We think of a small parameter h > 0 as the unit of time and the Markov Chain
from the position Xh

n at time nh moves to its next position Xh
n+1 with a step of or incre-

ment of Y h
n;n+1 = Xh

n+1�Xh
n . We anticipate that in the limit as h! 0 only the mean and

variance of the increment Y h
n;n+1 will matter. Assuming the transition probabilities to be

stationary in time, we denote by

bh(x) = E[Y h
n;n+1jXh

n = x]

ah(x) = E[(Y h
n;n+1)

2jXh
n = x]

�h(x) = E[jY h
n;n+1j3jXh

n = x]

We saw earlier that if bh(x) = o(h); ah(x) = h+ o(h) and �h(x) = o(h), then the distribu-
tion of Xh

n coverges to a Normal distribution with mean X0 = x and variance t, provided
nh! t. One can improve this to the convergence of Xh

n to the Brownian Motion x+�(t),
in the sense that the joint distributions of fXh

ni
: 1 � i � kg converges to the joint distri-

butions of fx+ �(ti) : 1 � i � kg provided nih! ti for i = 1; � � � ; k. We will now assume
that

bh(x) = hb(x) + o(h)

ah(x) = ha(x) + o(h)

�h(x) = o(h)

Although ah(x) is only the second moment and not the variance, the di�erence which is
the square of the mean is (bh(x))2 and is O(h2) = o(h) and can be ignored. One way to
model such a situation (by no means unique) is to assume

Xh
n+1 = Xh

n + hb(x) +
p
a(x)

p
h�n

where f�ng i.i.d. standard normals. Or one can replace
p
h�n by �((n + 1)h)� �(nh) to

get

Xh
n+1 = Xh

n + hb(Xh
n) +

q
a(Xh

n)�((n+ 1)h)� �(nh))

We can take a formal limit here to arrive at

dX(t) = b(X(t))dt+
p
a(X(t))d�(t)

This equation cannot be treated as a standard ODE. �(t) as we saw is not of bounded
variation and even in the integrated form

(1) X(t) = X(0) +

Z t

0

b(X(s))ds+

Z t

0

p
a(X(s))d�(s)

does not make sense at the �rst glance.
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There is a theory developed by K.Itô that treats this. The main ideas are the following
steps the details of whch we will not go into.

Step 1. Approximate inegrals of the form
R t
0
F (s)d�(s) by

In =
n�1X
j=0

F (tj)[�(tj+1)� �(tj)] : 0 = t0 < t1 < � � � < tn = t

sticking the increments always in the future. If F (s) only depends on the past history upto
time t then F (tj) is independent of �(tj+1)� �(tj) and a simple calculation yields

E[In] = 0

E[I2n] =
n�1X
j=0

E[F 2(tj)(tj+1 � tj)]

suggesting a de�nition of

I =

Z t

0

F (s)d�(s)

for random functions F (s) that depend only on past history such that

E[I] = 0

E[I2] = E[

Z t

0

F 2(s)ds]

Step 2. De�ne iteratively

Xn+1(t) = x+

Z t

0

b(Xn(s))ds+

Z t

0

p
a(Xn(s))d�(s)

Step 3. Using the above iteration, similar to Picard iteration for ODE, prove that Xn(�)
has a limitX(�), that satis�es the equation (1). Prove uniqueness. One makes the asummp-
tion that b(x) and

p
a(x) satisfy the Lipshitz condition

jb(x)� b(y)j � Ajx� yj
j
p
a(x)�

p
a(y)j � Ajx� yj
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Step 4. Develop a calculus. (Itô Calculus). If we expand

f(�(t))� f(�(0)) =
X

[f(�((j + 1)h)� f(�(jh))]

=
X
j

f 0(�(jh)[�(j + 1)h)� �(jh)]

+
X
j

1

2
f 00(�(jh))[�(j + 1)h)� �(jh)]2

+
X
j

O(j�(j + 1)h)� �(jh)j3)

=

Z t

0

f 0(�(s))d�(s) +
1

2

Z t

0

f 00(�(s))ds

We have used the properties that re�ning an interval [0; t] into �ner and �ner partitions
leads to X

[�(tj+1 � �(tj)]
2 ! t

and X
j�(tj+1 � �(tj)j3 = nO(n�

3

2 )! 0

Formally [d�(t)]2 = dt and [d�(t)]k = 0 for k � 3. In Taylor expansion we always keep
two terms. Any mixed term d�dt is equal to 0. With this rule one can start with

dX(t) = b(X(t))dt+
p
a(X(t))d�(t)

and get
[dX(t)]2 = a(X(t))dt

or

du(t;X(t)) = ut(t;X(t))dt+ ux(t;X(t))dX(t) +
1

2
a(X(t))uxx(t;X(t))dt

= ut(t;X(t))dt+ ux(t;X(t))[
p
a(X(t))d�(t) + b(X(t))dt]

+
1

2
a(X(t))uxx(t;X(t))dt

This is to be interpreted as the identity

u(t;X(t))� u(0; x) =

Z t

0

ux(s;X(s))
p
a(X(s))d�(s)

+

Z t

0

g(s;X(s))ds

with g(t; x) = ut(t; x) + b(x)ux(t; x) +
1
2a(x)uxx(t; x).
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Examples.

1. Let f(x) = x2. Then

�(t)2 � �(0)2 = 2

Z t

0

�(s)d�(s) + t

This can be directly veri�ed by approximation and using the relation

X
j

[�(tj+1)� �(tj)]
2 ! t

2*. Show that the solution of dX(t) = X(t)d�(t) is X(t) = X(0) exp[�(t) � t
2 ] and not

X(0) exp[�(t)].

3*. If u(t; x) satis�es the PDE

ut(t; x) + b(x)ux(t; x) +
a(x)

2
uxx(t; x) � 0 for 0 � s � T and u(T; x) = f(x)

and X(t) satisies

X(t) = x+

Z t

0

b(X(s))ds+

Z t

0

p
a(X(s))d�(s)

then use Itô calculus and the fact that E[
R T
0 F (s)d�(s)] = 0, to show that

u(0; x) = E[f(X(T ))]

Remark: Technically one needs to know that

E[

Z T

0

[F (s)]2ds] <1

to de�ne the integral
R T
0 F (s)d�(s) and show that it has mean 0 and its variance is equal to

E[
R T
0
[F (s)]2ds]. Although this can be relaxed somewhat in order to de�ne the stochastic

integral, the mean of the integral may cease to exist or may exist and be di�erent from 0

if E[
R T
0 [F (s)]2ds] =1
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