6. Transition to Continuous Space. Random Walks and the Heat equation.

Consider the following Markov Process on the integers Z = {i : —oo < i < oo}. The
process x,, starts from 0 at time n = 0 and at each step moves one unit to the right with
probability p or one unit to the left with probability ¢ = 1 — p. The choices at successive
steps are made independently, but always with the same probabilities p and ¢ for moving
right or left. This clearly defines a Markov Process on Z with

Tiit1 =P; Tii—1=¢; and m;; =0 for |t —j|#1
the n step transition probabilities are easy to calculate.

ngg) =0 unless [j—i7 <n and j—i=n (mod 2)
7'('2(3) = (:L)prq”’" where 2r —n=7—1

One can obtain this formula by noting that out of the n steps r were to the right and
the reamaining n — r were to the left z, =i+r—(n—7r) =i+ 2r —n and z, = j if
j — 1 = 2r —n. this is possible only if j —i = n (mod 2), and the probability is given by
the binomial distribution. The law of large numbers for the binomial says that for large n
the probability is nearly 1 that = is close to p. More precisely, for any € > 0,

3 n T n—r __
fm 3 ()=
7| —pl<e

This means that for any bounded continuous function f on R

lim E[f(%”)m =0]=f(p—2q)

n—oo

If we denote by P the operator
(Pu)(i) = pu(i + 1) + (1 = pJu(i - 1)
Our statement concerns the function u, (i) = f(%) and the claim is

lim (P"u,)(0) = p — g

n—oo

Let us see if we can figure out why this is true. Let us rescale sapce and time by a step
size of h = % Then
(Pu)(x) = pu(w + h) + qu(z — h)



Let us define u(kh, z) = (P*u)(z). We see that
u((k+ 1)h,x) = pu(kh,x + h) + qu(kh,x — h)
Or
1 1 1
E[u((k + Dh,z) —u(kh,x)] = Ep[u(k:h, x4+ h) —u(kh,x)] + Eq[u(kh, x —h) —u(kh, x)]
Passing to the limit as h — 0 we get

ur = (p— @)Uy

The solution with u(0,x) = f(x) is given by

u(t,z) = f(z + (p — q)t)

We are interested in u(1,0) which is f(p — ¢). The law of large numbers for the binomial
is just the approximation of a first order PDE by difference equations.

Let us now consider the case where p = ¢ = 1. Now P"u,(z) — f(z), so nothing much
happens. The space scale has to be \/Lﬁ to get something significant. In the probabilistic

setting we are looking at %Which satisfies the central limit theorem and the correct

behavior is with u(z) = f(\/iﬁ)

y2

1
P"u,)(0) — / — e 2d
(Pru)0) = [ = fwe % dy
This is just as before except we get

1 1 1
7 [u((k+1)h,x) —u(kh,z)] = o [u(kh, z+Vh) —u(kh,z)]+ ﬁq[u(lﬁh, x—V'h) —u(kh,z)]

and passing to the limit as A — 0, we get the heat equation

1
(1) Up = §um

with u(0,z) = f(z). The solution is given by

1 _ (y—=)>
ult, z) = / I Ty

and u(1,0) is then
1 _y?
[ =t ay



) can be

N[ —=

In other words, the central limit theorem for the binomial (with p = ¢ =
interpreted as the convergence of the solution of

u(t+ h,x) = %[u(t,x +Vh) 4+ u(t,z — Vh)]

to the corresponding solution of the heat equation (1).

We can have time varying continuously, and consider a Markov process on Z with transition

rates
1

Wit = Qi1 = 5; a;; = —1; and a;; =0 otherwise.

The expectation

u(t,i) = E[f (x(t)|z(0) = i]

will satisfy

du(t,q)
dt

— %[u(t,@' + 1)+ u(t,i — 1) — 2u(t, i)]; u(0,9) = f(3)

If we rescale space by vk and time by h, the equations become

du(t, x)
dt

= i[u(t,x +Vh) +ult,z — Vh) = 2u(t,2)]; u(0,z) = f(x)

which again converges to the solution of the heat equation. What we have is again a central

limit theorem for the distribution of i\/? as t — oo.

Examples.

1. We will show that the distribution of x(t) is the distribution of the diffrence X; — X5 of
two independent Poisson random variables with parameters % Let us try f(i) = e*. The
solution u(t,7) can be obtained by separation of variables. Set u(t,i) = e g(\,t). Then,

dg 1., _)\
8y = _ 9lg: _1
g ol T lg; g(X,0)
will do it. This gives
t - J—
g()\,t) = exp[i[(g‘ — 1) + (6 A 1)]] — E[e’\(Xl Xz)]

with X7, Xo having independent Poisson distributions with parameter %



Suppose 7, (x,y)dy is the transition density of a Markov chain, with h representing the
time step. Let us make the following assumptions:

sup | / (y — 2)ma (2, y)dy| = o(h)

sup| / (y — 2)*my(,y)dy — h| = o(h)

T

sup / (y — @) mn (2, y)dy = o(h)

Then the function
up(n,r) = E[f(xn)|z0 = ]

converges to the solution u of the heat equation (1) provided nh — t.

Proof: Let us start with the solution u(¢,z) of the heat equation which we will assume is
a smooth function of ¢t and z. Let

A = Elu(t — (k+ 1)h,zk41)|z0 = 2] — Elu(t — kh, xp)|z0 = ]

Assuming nh =t , this is a telescoping sum and

n—1
Z Ay = up(n,x) — u(t, x)
k=0

It is therefore sufficient to prove that each

If we expand by Taylor’s formula
u(t — (k+ Dh,y) —u(t — kh,z) = —hu(t — kh,x) + uy(t — kh,z)(y — x)

1
+ o Uas (t — kh,z)(y — x)* + Remainder

We can estimate
Elu(t — (k4 1)h,xky1) — u(t — kh, zg)|zK = 2]

by o(h), because upon integrating with 7, (x,y), with errors that are o(h), we get h(u; —

%um) = 0. The remainder term can be estimated by

/ ly — 2[3mn (2, y)dy < ( / ly — 2Pz, y)dy) / ly — 2l (2, y)dy) b
< o(h)

To go from E[Q|zk] to E[Q|xo] is easy because the conditional expectation of anything
that is o(h) is still o(h).



Remarks:

1. We have assumed that 7, (z, y)dy is given by a density only for convenience. In principle
7 (x, ) is just the probability distribution of x; given 2(0) = z, and does not have to be
given by a density. It can be a discrete distribution as well.

2. The first two assumptions say that to with in o(h) the infinitesimal ‘mean’ is 0 and the
infinitesimal ‘variance’ is h.

3. The third condition is important and needs to be understood. A random variable X
with mean 0 and variance h can come in different shapes. For example X can be +vh
with probability % each. Or X can be 0 with probability 1 — h and £1 with probability

% each. In both cases the mean and variance check out. However E[X*] = h? in the first
case and h in the second. The clue is in the calculation of

lim 5 BF(X) = f(0)] = 5 fua(0)

in the first case and

lim %E[f(X) — f(0)] = %[f(l) + f(—=1) — 2f(0)]

h—0

in the second.
Examples:

2*. (Compare with Ex 3* of section 2). Suppose 7 (x,y) satisfies

sup| / (y — @) (e y)dy — hb(@)| = ofh)

and
sup| / (y — )2 (2, y)dy| = o(h)

for some nice smooth bounded function b(x), prove the ‘law of large numbers’

lim Pllzy, —g(t)| > €lzg = 2] — 0

n— o0
nh—t

where g(t) is the value of the solution at time t of

dg _

T = b)) 9(0) =

Note that it is sufficient to prove

limy wy(n,2) = limy B[f(ea)lao = 2] = u(t,2) = £(g(2)

n— oo n— oo
nh—t nh—t

where u solves u; = b(z)u, with u(0,z) = f(x).
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