
6. Transition to Continuous Space. Random Walks and the Heat equation.

Consider the following Markov Process on the integers Z = {i : −∞ < i < ∞}. The
process xn starts from 0 at time n = 0 and at each step moves one unit to the right with
probability p or one unit to the left with probability q = 1− p. The choices at successive
steps are made independently, but always with the same probabilities p and q for moving
right or left. This clearly defines a Markov Process on Z with

πi,i+1 = p; πi,i−1 = q; and πi,j = 0 for |i− j| 6= 1

the n step transition probabilities are easy to calculate.

π
(n)
i,j = 0 unless |j − i| ≤ n and j − i = n (mod 2)

π
(n)
i,j =

(
n

r

)
prqn−r where 2r − n = j − i

One can obtain this formula by noting that out of the n steps r were to the right and
the reamaining n − r were to the left xn = i + r − (n − r) = i + 2r − n and xn = j if
j − i = 2r − n. this is possible only if j − i = n (mod 2), and the probability is given by
the binomial distribution. The law of large numbers for the binomial says that for large n
the probability is nearly 1 that r

n is close to p. More precisely, for any ε > 0,

lim
n→∞

∑
r:| r

n−p|≤ε

(
n

r

)
prqn−r = 1

This means that for any bounded continuous function f on R

lim
n→∞

E[f(
xn

n
)|x0 = 0] = f(p− q)

If we denote by P the operator

(Pu)(i) = pu(i + 1) + (1− p)u(i− 1)

Our statement concerns the function un(i) = f( i
n ) and the claim is

lim
n→∞

(Pnun)(0) = p− q

Let us see if we can figure out why this is true. Let us rescale sapce and time by a step
size of h = 1

n . Then
(Pu)(x) = pu(x + h) + qu(x− h)
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Let us define u(kh, x) = (P ku)(x). We see that

u((k + 1)h, x) = pu(kh, x + h) + qu(kh, x− h)

Or

1
h

[u((k + 1)h, x)− u(kh, x)] =
1
h

p[u(kh, x + h)− u(kh, x)] +
1
h

q[u(kh, x− h)− u(kh, x)]

Passing to the limit as h → 0 we get

ut = (p− q)ux

The solution with u(0, x) = f(x) is given by

u(t, x) = f(x + (p− q)t)

We are interested in u(1, 0) which is f(p− q). The law of large numbers for the binomial
is just the approximation of a first order PDE by difference equations.

Let us now consider the case where p = q = 1
2 . Now Pnun(x) → f(x), so nothing much

happens. The space scale has to be 1√
n

to get something significant. In the probabilistic
setting we are looking at xn√

n
which satisfies the central limit theorem and the correct

behavior is with u(x) = f( x√
n
)

(Pnun)(0) →
∫

1√
2π

f(y)e−
y2

2 dy

This is just as before except we get

1
h

[u((k+1)h, x)−u(kh, x)] =
1
2h

[u(kh, x+
√

h)−u(kh, x)]+
1
2h

q[u(kh, x−
√

h)−u(kh, x)]

and passing to the limit as h → 0, we get the heat equation

(1) ut =
1
2
uxx

with u(0, x) = f(x). The solution is given by

u(t, x) =
∫

1√
2πt

f(y)e−
(y−x)2

2t dy

and u(1, 0) is then ∫
1√
2π

f(y)e−
y2

2 dy
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In other words, the central limit theorem for the binomial (with p = q = 1
2 ) can be

interpreted as the convergence of the solution of

u(t + h, x) =
1
2
[u(t, x +

√
h) + u(t, x−

√
h)]

to the corresponding solution of the heat equation (1).

We can have time varying continuously, and consider a Markov process on Z with transition
rates

ai,i+1 = ai,i−1 =
1
2
; ai,i = −1; and ai,j = 0 otherwise.

The expectation
u(t, i) = E[f(x(t)|x(0) = i]

will satisfy

du(t, i)
dt

=
1
2
[u(t, i + 1) + u(t, i− 1)− 2u(t, i)]; u(0, i) = f(i)

If we rescale space by
√

h and time by h, the equations become

du(t, x)
dt

=
1
2h

[u(t, x +
√

h) + u(t, x−
√

h)− 2u(t, x)]; u(0, x) = f(x)

which again converges to the solution of the heat equation. What we have is again a central
limit theorem for the distribution of x(t)√

t
as t →∞.

Examples.

1. We will show that the distribution of x(t) is the distribution of the diffrence X1−X2 of
two independent Poisson random variables with parameters t

2 . Let us try f(i) = eλi. The
solution u(t, i) can be obtained by separation of variables. Set u(t, i) = eλig(λ, t). Then,

dg

dt
=

1
2
[eλ + e−λ − 2]g; g(λ, 0) = 1

will do it. This gives

g(λ, t) = exp[
t

2
[(eλ − 1) + (e−λ − 1)]] = E[eλ(X1−X2)]

with X1, X2 having independent Poisson distributions with parameter t
2 .
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Suppose πh(x, y)dy is the transition density of a Markov chain, with h representing the
time step. Let us make the following assumptions:

sup
x
|
∫

(y − x)πh(x, y)dy| = o(h)

sup
x
|
∫

(y − x)2πh(x, y)dy − h| = o(h)

sup
x

∫
(y − x)4πh(x, y)dy = o(h)

Then the function
uh(n, x) = E[f(xn)|x0 = x]

converges to the solution u of the heat equation (1) provided nh → t.

Proof: Let us start with the solution u(t, x) of the heat equation which we will assume is
a smooth function of t and x. Let

∆k = E[u(t− (k + 1)h, xk+1)|x0 = x]− E[u(t− kh, xk)|x0 = x]

Assuming nh = t , this is a telescoping sum and

n−1∑
k=0

∆k = uh(n, x)− u(t, x)

It is therefore sufficient to prove that each

∆k = o(h)

If we expand by Taylor’s formula

u(t− (k + 1)h, y)− u(t− kh, x) = −hut(t− kh, x) + ux(t− kh, x)(y − x)

+
1
2
uxx(t− kh, x)(y − x)2 + Remainder

We can estimate
E[u(t− (k + 1)h, xk+1)− u(t− kh, xk)|xk = x]

by o(h), because upon integrating with πh(x, y), with errors that are o(h), we get h(ut −
1
2uxx) = 0. The remainder term can be estimated by∫

|y − x|3πh(x, y)dy ≤ (
∫
|y − x|2πh(x, y)dy)

1
2 (

∫
|y − x|4πh(x, y)dy)

1
2

≤ o(h)

To go from E[Q|xk] to E[Q|x0] is easy because the conditional expectation of anything
that is o(h) is still o(h).
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Remarks:

1. We have assumed that πh(x, y)dy is given by a density only for convenience. In principle
πh(x, ·) is just the probability distribution of x1 given x(0) = x, and does not have to be
given by a density. It can be a discrete distribution as well.

2. The first two assumptions say that to with in o(h) the infinitesimal ‘mean’ is 0 and the
infinitesimal ‘variance’ is h.

3. The third condition is important and needs to be understood. A random variable X
with mean 0 and variance h can come in different shapes. For example X can be ±

√
h

with probability 1
2 each. Or X can be 0 with probability 1 − h and ±1 with probability

h
2 each. In both cases the mean and variance check out. However E[X4] = h2 in the first
case and h in the second. The clue is in the calculation of

lim
h→0

1
h

E[f(X)− f(0)] =
1
2
fxx(0)

in the first case and

lim
h→0

1
h

E[f(X)− f(0)] =
1
2
[f(1) + f(−1)− 2f(0)]

in the second.

Examples:

2*. (Compare with Ex 3* of section 2). Suppose πh(x, y) satisfies

sup
x
|
∫

(y − x)πh(x, y)dy − hb(x)| = o(h)

and
sup

x
|
∫

(y − x)2πh(x, y)dy| = o(h)

for some nice smooth bounded function b(x), prove the ‘law of large numbers’

lim
h→0

n→∞
nh→t

P [|xn − g(t)| ≥ ε|x0 = x] → 0

where g(t) is the value of the solution at time t of

dg

ds
= b(g(s)); g(0) = x

Note that it is sufficient to prove

lim
h→0

n→∞
nh→t

uh(n, x) = lim
h→0

n→∞
nh→t

E[f(xn)|x0 = x] = u(t, x) = f(g(t))

where u solves ut = b(x)ux with u(0, x) = f(x).
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