
3. Recurrence Relations With Noise: Markov Chains.

There are many situations where we lack the complete information needed to predict the
future. One might model such things by

xn = f(xn�1; �n)

Here the function f is known. We know the current state xn�1, but in order to say what
xn is, we need to know the value of �n. If we lack that knowledge we cannot say what xn
will be. If we iterate as before we get

xn = fn(x0 : �1; : : : ; �n)

where xn depends on the initial state and the unknown variables �1; : : : ; �n. The variables
� are often termed "Noise".

Examples:

1. The price of a stock from one period to the next is related by

xn = xn�1(1 +Rn)

where Rn is the return for the n-th period.

2. A gambler's cash on hand after n games of poker is given by

xn = xn�1 + �n

where �n are his winnings (or loss) in the n-th game.

While it may not be possible to predict the value of the noise term ahead of time it may
often be possible to say some thing of a statistical nature about it.

3. In Example 2, suppose that the gambling game is much simpler than poker and consists
of tossing a coin with the gambler winning a dollar on heads and losing a dollar on tails.
Then each �n is �1. Assuming the coin is fair and the successive tosses are "independent"
each � takes the value �1 with probability 1

2 . While it is not possible to make deterministic
statements about the winnings xn it is possible to say that

P [xn = xn�1 + 1] = P [xn = xn�1 � 1] =
1

2

or that the winnings go up ot down with probability 1
2 . Independence here is in the

statistical sense, i.e.

P [�j = �j : 1 � j � n] =
1

2n

for every choice of �j = �1. In such models it is possible to make staistical or probabilistic
statements and we can calculate

P [xn � yjx0 = x] = Fn(x; y) = P [�1 + : : :+ �n � y � x]
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4*. Obtain an explicit formula (in terms of binomial coeÆcients) for the probability in
Example 3. Can you compute E[xnjx0] and V ar[xnjx0] as functions of x0 and n?

The statistical independence of the successive noise terms �1; : : : ; �n results in the Markov
property for the observed sequence x1; : : : ; xn. There are di�erent ways of describing the
Markov property. If we have a �nite sequence of quantities x0; : : : ; xn that are possibly
random, then such a sequence is said to have the Markov Property if

P [xk+1 � yjx0; : : : ; xk] = P [xk+1 � yjxk]
for all y and 1 � k � n� 1. In words to make a probabilistic statement about xk+1 from
a knowledge of x1; : : : ; xk we need to know only xk. The conditional probabilities depend
only on xk the value at the last time k. There is a lack of memory. The probabilities of
future evolution given the history so far, depend only on the current state. To see why the
independence of the noise leads to the Markov property let us make a calculation. Assume
that all values are discrete so that the conditional probabilities can be calculated as ratios

(1) P [xk+1 = ak+1jx0 = a0; : : : ; xk = ak] =
P [x0 = a0; : : : ; xk+1 = ak+1]

P [x0 = a0; : : : ; xk = ak]

We use the realtion xk+1 = f(xk; �k+1) to de�ne the set

Eak;ak+1 = [� : f(ak; �) = ak+1]

Because �k+1 is independent of �1 : : : ; �k, and x0; : : : ; xk depend only on �1; : : : ; �k,

P [x0 = a0; : : : ; xk+1 = ak+1] = P [fx0 = a0; : : : ; xk = akg \Eak;ak+1 ]

= P [x0 = a0; : : : ; xk = ak]P [Eak;ak+1 ]

and the conditional probability (1) reduces to

P [�k+1 2 Eak;ak+1 ] = P [xk+1 = ak+1jxk = ak]

which is the Markov property.

The statistical independence of the successive noise terms is crucial for the Markov prop-
erty. For instance if have a model like xk+1 = xk + �k+1 with �k � � so that the noise is
chosen once and �xed, then if we know x0 and xi, then x2 = x1+(x1�x0) = 2x1�x0. This
means, given xi a knowledge of x0 is still helpful in predicting x2. The Markov property
is not valid in this case.

Examples:

5. Consider an urn containing 10 white and 10 red balls. A ball is drwan at random and is
returned to the urn after a second ball is drawn, which is returned after drawing the third
ball and so on. Each xk = W or R depending on the color of the ball. Cleraly in this case

P [xk+1 = W jx0; : : : ; xk] = 9

19
if xk = W

P [xk+1 = W jx0; : : : ; xk] = 10

19
if xk = B

and the Markov property holds. We can easily construct independent random variables
f�jg such that xk+1 = f(xk; �k+1).
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Let us de�ne f�jg to be random variables that take the values 1; 2: : : : ; 19 with equal
probabilities of 1

19 . We can de�ne

f(W; r) = W if r = 1; : : : ; 9

f(W; r) = B if r = 10; : : : ; 19

f(B; r) = B if r = 1; : : : ; 9

f(B; r) = W if r = 10; : : : ; 19

This clearly works as will many other represntations. The model cannot be veri�ed by
observing fxjg.

Example:

6.* If the joint probability density of x1; x2 : : : ; xn given x0 is given by

�n�1
i=0 f(xi; xi+1)

where

f(x; y) =
1p

2�a(x)
exp[� (y � b(x))2

2a(x)
]

show that the sequence has the Markov property and �nd a representation in terms of
independent random variables f�jg. Here a(x) and b(x) are nice functions of x with
a(x) > 0.

7. A special case is when xk+1 = xke
Rj , used in �nancial modeling. Here fRjg are single

period log-returns that are usually assumed to be mutually independent and Gaussian
with some common mean � and variance �2. This leads to a joint density involving the
log-normal densities.

f(x1; : : : ; xnjx0) = �n�1
i=0 f(xi; xi+1)

with

f(x; y) =
1

y

1p
2��

exp[� (log y
x
� �)2

2�2
]

While a representation of the form x1 = f(x0; �1) does not allow us to say anything de�nite
about x1 from a knowledge of the model and the starting position x0, as we saw before we
can make probabilistic statements concerning x1 if we know the probability distribution of
�1. We can compute expecations E[g(x1)jx0] by averaging with respect to the distribution
of �1. This will turn out to be important.

Examples:

8. Suppose an asset has a random income stream as well as a random growth rate. If we
denote by �n the income during the n-th period and rn the random rate of return for the
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n-th period then the asset An+1 at time n+1 is given by An+1 = An rn + �n. We need to
know both �n and rn to compute An+1 from An. So the "noise" here has two components.
In a general model there is of course no restriction on the number di�erent sources of the
noise that determine the change in the sysytem.

9. In an intersting question is to go from a discrete time model (recurrence relation) with
noise to a an ODE with noise. While it is possible to de�ne a continuous analog of the
random return model by

dA(t) = A(t)r(t)dt

where r(t) is the instantaneous random rate of return, it is not so easy to determine what
the distribution of r(t) should be. In the discrete world it is natural to assume that r = eR

with R having a Gaussian distribution with mean � and variance �2. If the duration of

time is h units, it is natural to suppose that R(h) =
R t+h
t

r(s)ds is Gaussian with mean
�h and variance �2h. If we now wish to guess what the distribution of the instantaneous

noise r(t) is, since r(t) ' R(h)
h

, we end up with a Gaussian with mean � and variance �2

h
.

In other words r(t) wants to have an in�nite variance. This is a problem!

10. One way to solve the problem is not to talk about r(t) but only talk about z(t) =R t
0
r(s)ds. As we saw earlier it is natural to suppose that for t � s � 0, z(t) � z(s) is

Gaussian with mean (t� s)� and variance (t� s)�2 and that the increments z(tj)� z(sj)
are independent gaussians if the intervals [sj; tj] are disjoint, i.e. do not overlap. Such a
family of random variables z(t) can be represented as �t + ��(t), where �(t) is just like
the old z(t), but has been normalized to have � = 1 and �2 = 1. Now, may be our model
can be

(2) dA(t) = A(t)[�+ ��0(t)]dt = A(t)[�dt+ �d�(t)]

This unfortunately is not quite Kosher. The problem is � is not di�erentiable. After all
�0(t) = r(t) wants to have an in�nite variance. Well we could try to reperesent the ODE
in an integrated form. This does not help either, because to make sense out of

A(t) = A(0) + �

Z t

0

A(s)ds+ �

Z t

0

A(s)d�(s)

�(�) needs to be of bounded variation and it is not. To make progress one has to tackle
d�. This is in fact the Black-Scholes model and we will return to it later.
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