
13. Hamilton-Jacobi equations, Viscosity solutions

We want to consider the variational problem

u(t, x) = sup
x(·)

x(t)=x

[
φ(x(T ))−

∫ T

t

h((x′(s))ds
]

with a convex h and show that for t ≤ T , u(t, x) satisfies the Hamilton-Jacobi equation

ut + g(∇u) = 0

with boundary condition u(T, x) = φ(x), where g is the conjugate function

g(x) = sup
y

[< x, y > −h(y)]

If h is convex the infimum

inf
x(t)=x
x(T )=y

∫ T

t

h(x′(s))ds = (T − t)h
(y − x

T − t

)
so that

u(t, x) = sup
y

[φ(y)− (T − t)h
(y − x

T − t

)
]

It is easy to see that

u(t− δ, x) = sup
y

[u(t, y)− δh
(y − x

δ

)
]

or
u(t− δ, x)− u(t, x) = sup

y
[u(t, y)− u(t, x)− δh

(y − x

δ

)
]

= sup
z

[u(t, x + δz)− u(t, x)− δh(z)]

If we divide by δ and let δ → 0,

−ut(t, x) = sup
z

[< z,∇u(t, x) > −h(z)] = g(∇u(t, x))

or
ut + g(∇u) = 0

The question is, in what sense is the equation satisfied and is the solution uniquely de-
termined by the equation ? The problem is that u may not be very smooth. In fact it
may not even be be continuously differentiable. Let us look at some examples. Suppose
h(x) = 1

2x2 and φ(x) = x. Then g(x) = 1
2x2 and

u(t, x) = sup
y

[y − (y − x)2

2(T − t)
] = x +

1
2
(T − t)
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is smooth and satisfies
ut +

1
2
u2

x = 0

with u(T, x) = x.
But there are other spurious solutions as well. If φ(x) = 0 clearly u(t, x) ≡ 0 is the

natural solution. But there are others. For instance

u(t, x) =


0 if −∞ < x ≤ − c(T−t)

2

cx + c2(T−t)
2 if − c(T−t)

2 ≤ x ≤ 0

−cx + c2(T−t)
2 if 0 ≤ x ≤ c(T−t)

2

0 if c(T−t)t
2 ≤ x < ∞

is a solution for every c > 0. The spurious solution, while it is not continuously differen-
tiable, is continuous and piecewise smooth.

Theorem. Let u(t, x) be a smooth solution of

ut + g(∇u) = 0

in [0, T ]×Rd. Then

u(0, x) = sup
y

[
u(T, y)− Th

(y − x

T

)]
Proof: Consider

F (t) = u(t, x + at)− th(a)

for a ∈ Rd.
F ′(t) = ut(t, x + at)+ < a,∇u(t, x + at) > −h(a)

= −g(∇u(t, x + t))+ < a,∇u(t, x + at) > −h(a)
≤ 0

Therefore,
u(0, x) = F (0) ≥ F (T ) = u(T, x + aT )− Th(a)

Since this is true for every a ∈ Rd,

u(0, x) ≥ sup
a

[u(T, x + aT )− Th(a)] = sup
y

[u(T, y)− Th(
y − x

T
)]

To prove the other half of the relation, note that

g(∇u(t, x)) =< p(t, x),∇u(t, x) > −h(p(t, x))

for the choice of p(t, x) = (∇h)(∇u(t, x)). Consider a solution of the ODE

x′(t) = p(t, x(t)) ;x(0) = x
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and the function

G(t) = u(t, x(t))−
∫ t

0

h(x′(s))ds

Then,
G′(t) = ut(t, x(t))+ < p(t, x(t)),∇u(t, x(t)) > −h(x′(t)) = 0

Therefore

u(0, x) = u(T, x(T ))−
∫ T

0

h(x′(s))ds ≤ sup
y

[u(T, y)− Th(
y − x

T
)]

The only regularity we needed was the continuity of p(t, x). It is enough if u is C1.

Remark. It is easy to construct examples where

u(t, x) = sup
y

[φ(y)− (T − t)h(
y − x

T − t
)]

is not C1. Then there cannot be any C1 solution. Consider the case where φ(y) = cos y

and h(x) = x2

2 . For (T − t) = k large enough we have to consider a maximization of the
form

u(T − k, x) = sup
y

[cos y − (y − x)2

2k
]

The maximizing y∗(x) as a function of x, will avoid the valleys of cos y. It can always get
to a y that is a multiple of 2π with a small cost if k is large. On the other hand y∗(x)
cannot be too far away from x. It must jump from one peak of cos y to the next one as x
varies. These jumps introduce discontinuities in ux.

ux = −[sin y∗(x) y∗x(x) +
y∗(x)− x

k
(y∗x(x)− 1)]

From the equation

sin y∗(x) +
(y∗(x)− x)

k
= 0

Therefore

ux =
y∗(x)− x

k

and the discontinuities of y∗ show up in ux.

The question then is how to characterize the real solution?
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Viscosity Solutions.

Given a bounded continuous function u(t, x) on [0, T ] × Rd we say that it is a viscosity
solution of

ut + g(∇u) = 0

if at any (t0, x0) ∈ (0, T )×Rd, the following hold:

1. If v is any smooth function such that v − u has a local maximum at (t0, x0) then

vt(0, x0) + g(∇v(t0, x0)) ≤ 0

2. If v is any smooth function such that v − u has a local minimum at (t0, x0) then

vt(t0, x0) + g(∇v(t0, x0)) ≥ 0.

Theorem. The Lax-Oleinik solution

u(t, x) = sup
y

[φ(y)− (T − t)h(
y − x

T − t
)]

is the unique viscosity solution of

ut + g(∇u) = 0

satisfying the boundary condition

u(T, x) = φ(x).

Proof: First let us prove that if a viscosity solution u is differentiable at some point
(t0, x0) ∈ (0, T )×Rd then ut(t0, x0) + g(∇u(t0, x0)) = 0 at that point.

To see this, if u is differentiable at (t0, x0), we will first construct C1 function v such
that v − u has a strict local minimum at (t0, x0). Then we will approximate v by smooth
functions vε in the C1 topology. Since v − u has a strict local minimium at (t0, x0) and
vε → v, vε − u will have a local minimum near (t0, x0) say (tε, xε) → (t0, x0) as ε → 0.
Since u is a viscosity solution, vε is smooth and vε − u has a minimum at (tε, xε) we have

vε,t(tε, xε) + g(∇vε(tε, xε)) ≥ 0

Letting ε → 0 we get
vt(t0, x0) + g(∇v(t0, x0)) ≥ 0

the other half is similar so that we get

vt(t0, x0) + g(∇v(t0, x0)) = 0
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Lax-Oleinik solution is a viscosity solution. This requires us to establish 1. and 2.
Let us start with 1. Assume that t0 = x0 = 0. We have

v(0, 0) = u(0, 0) = sup
y

[u(δ, y)− δh(
y

δ
)] ≥ sup

y
[v(δ, y)− δh(

y

δ
)]

Replacing y by δa, we get

sup
a

[v(δ, δa)− v(0, 0)− δh(a)] ≤ 0

dividing by δ and taking limits, we get

sup
a

[vt(0, 0)+ < a,∇v(0, 0) > −h(a)] = vt(0, 0) + g(∇v(0, 0)) ≤ 0

Now to 2.

v(0, 0) = u(0, 0) = sup
y

[u(δ, y)− δh(
y

δ
)] ≤ sup

y
[v(δ, y)− δh(

y

δ
)]

Replacing y by δa, we get

sup
a

[v(δ, δa)− v(0, 0)− δh(a)] ≥ 0

dividing by δ and taking limits, we get

sup
a

[vt(0, 0)+ < a,∇v(0, 0) > −h(a)] = vt(0, 0) + g(∇v(0, 0)) ≥ 0

Viscosity solution is unique.

We will not prove it. But refer to the text by Craig Evans for instance.

Some Comments on piecewie smooth solutions of the Hamilton-Jacobi equation
in one dimension.

Suppose we have a continuosly differentiable curve x = x(t) defined for t0−δ ≤ t ≤ t+δ
(passing through (t0, x0) where x0 = x(t0)) and a piecewise smooth function

u(t, x) =
{

u+(t, x) for x(t) ≤ x ≤ x(t) + δ, |t− t0| < δ
u−(t, x) for x− δ ≤ x ≤ x(t), |t− t0| < δ

with both u±(t, x) being smooth functions (continuously differentiable) on its side of the
curve satisfying the equation

ut + g(ux) = 0

for x 6= x(t). We will assume that u is continuos across the curve, i.e.

u+(t, x(t)) = u−(t, x(t))
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for |t−t0| < δ. The derivatives u±x (t, x(t)) do not necessarily match. We want to investigate
the realtionship between u+

x (t0, x0) and u−x (t0, x0)
Remark 1.

Since u+(t, x(t)) ≡ u−(t, x(t)) it follows that

d

dt
u+(t, x(t)) =

d

dt
u−(t, x(t))

at t = t0. In other words

u+
t (t0, x(t0)) + x′(0)u+

x (t0, x(t0)) = u−t (t0, x(t0)) + x′(0)u−x (t0, x(t0))

or

−g(u+
x (t0, x(t0))) + x′(t0)u+

x (t0, x(t0)) = −g(u−x (t0, x(t0))) + x′(t0)u−x (t0, x(t0))

or
g(u+

x (t0, x(t0)))− g(u−x (t0, x(t0))) = x′(t0)[u+
x (t0, x(t0))− u−x (t0, x(t0))]

Remark 2.

We hope to have the variational formula

u(t0, x) = sup
y

[φ(y)− 1
T − t0

h(
y − x

T − t0
)]

and if the supremum for x = x0 is attained at some point y∗.

u(t0, x0) = φ(y∗)− 1
T − t0

h(
y∗ − x0

T − t0
)

If x 6= x0, from the variational formula we get

u(t0, x) ≥ φ(y∗)− 1
T − t0

h(
y∗ − x

T − t0
) = k(x)

for some smooth k(x) so that

u(t0, x)− u(t0, x0) ≥ k(x)− k(x0)

This tells us that
u+

x (t0, x0) ≥ k′(x0) ≥ u−x (t0, x0)

or u+
x (t0, x0) ≥ u−x (t0, x0).
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Remark 3.

A piecewise smooth solution u is a viscosity solution at (t0, x0) if and only if

u+
x (t0, x0) ≥ u−x (t0, x0)

To see the sufficiency, suppose, for some smooth v, v − u has a local minimum at (t0, x0).
Then v(t0, x)− u+(t0, x) ≥ v(t0, x0)− u+(t0, x0) for x ≥ x0. In particular

vx(t0, x0) ≥ u+
x (t0, x0)

and in a similar fashion
vx(t0, x0) ≤ u−x (t0, x0)

implying that vx(t0, x0) = u+
x (t0, x0) = u−x (t0, x0). From the equation it follows that

u±t (t0, x0) = −g(u±x (t0, x0)) = −g(vx(t0, x0)). From the fact that v ≥ u± and the first
derivatives of u± match at (t0, x0) we conclude that in fact

vt(t0, x0) + g(vx(t0, x0)) = 0

On the other hand, if v − u has a local maximum at (t0, x0), we can conclude only that

u+
x (t0, x0) ≥ vx(t0, x0) ≥ u−x (t0, x0)

and

vt(t0, x0) + x′(0)vx(t0, x0) = u+
t (t0, x0) + x′(0)u+

x (t0, x0) = u−t (t0, x0) + x′(0)u−x (t0, x0)

Hence

vt(t0, x0) + g(vx(t0, x0)) = g(vx(t0, x0)) + u+
t (t0, x0) + x′(0)u+

x (t0, x0)− x′(0)vx(t0, x0)
= g(vx(t0, x0))− g(u+

x (t0, x0)) + x′(0)[u+
x (t0, x0)− vx(t0, x0)]

We know from Remark 1, that the convex function

g(c)− g(u+(t0, x0)) + x′(0)[u+
x (t0, x0))− c]

vanishes when c = u±(t0, x0) and is therefore nonpositive when c = vx(t0, x0).

Now we turn to necessity. Suppose u+
x (t0, x0) < u−x (t0, x0). Pick c such that

u+
x (t0, x0) < c < u−x (t0, x0)

Consider the function
v(t, x) = u±(t, x(t)) + c(x− x(t)).
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The function v − u to has a local minimum at (t0, x0). At (t0, x0),

vt + g(vx) = u±t + x′(0)u±x − cx′(0) + g(c) = g(c)− g(u±x ) + x′(0)[u±x − c] < 0

providing us with a contradiction.

More general variational problems.

Suppose we have the optimization problem

u(t, x) = sup
x(·):x(t)=x

[φ(x(T ))−
∫ T

t

h(s, x(s), x′(s))ds]

where h(s, x, y) is a convex function of y for each s, x. The conjugate convex function
g(s, x, p) is defined as

g(s, x, p) = sup
y

[< p, y > −h(s, x, y)]

and the Hamilton-Jacobi equation takes the form

ut(t, x) + g(t, x,∇u(t, x)) = 0

with the boundary condition u(T, x) = φ(x). The notion of viscosity solution and the
results are analogous. One essential difference is that the minimizing paths are no longer
staright lines, and the problem cannot be reduced to a simpler variational form.

Remark. We can think of the problem as a control problem with

dx(t) = u(t)dt

and a payoff function

f(x(T ))−
∫ T

s

h(t, x(t), u(t))dt

Her there is no noise. But we could add noise and then we get the type of equations we
discussed earlier. If the noise is degnerate the solutions may turnout to be nonsmooth.
The notion of viscosity solution still applies. If the control parameter is only in the drift
term, and not in the noise term, the second order term is linear and the solutions are
generally smooth in this case. There is then the possibility of recovering the true solution
in the first order case by adding a small noise and then letting it go to zero. We recover
u(t, x) = limε→0 uε(t, x) where

uε
t(t, x) + g(t, x,∇uε(t, x)) +

1
2
∆uε(t, x) = 0

This is the origin of the term viscosity solution.
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