13. Hamilton-Jacobi equations, Viscosity solutions

We want to consider the variational problem

ult,z) = ?g[¢@any—ATh«f@»@]

a(t)=e

with a convex h and show that for ¢ < T, u(t, z) satisfies the Hamilton-Jacobi equation
us +g(Vu) =0

with boundary condition u(T,z) = ¢(x), where g is the conjugate function

g(r) = Sl;p[< z,y > —h(y)]

If h is convex the infimum

inf /t h(x’(s))ds:(T—t)h(y_x)

o(t)== T—t
z(T)=y
so that
y—
u(t,z) = sup[o(y) — (T~ b (%)
y
It is easy to see that
u(t — 6, z) = suplu(t,y) — 5h(y ; x)]
y

or

u(t —0,x) —u(t,z) = sgp[u(t,y) —u(t,x) — 5h(y ; x)]

= suplu(t,x + dz) — u(t,z) — oh(z)]

z

If we divide by ¢ and let § — 0,

—u(t, z) = sgp[< z,Vu(t,z) > —h(2)] = g(Vu(t,z))
' us + g(Vu) =0

The question is, in what sense is the equation satisfied and is the solution uniquely de-
termined by the equation ? The problem is that u may not be very smooth. In fact it

may not even be be continuously differentiable. Let us look at some examples. Suppose

h(z) = 12% and ¢(z) = z. Then g(z) = 22% and

2

u(t,z) = suply — k)

1
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is smooth and satisfies )
with (T, x) = x.

But there are other spurious solutions as well. If ¢(z) = 0 clearly u(t,z) = 0 is the
natural solution. But there are others. For instance

0 if —0o<x< —C(TQ—_t)
B caj+@ if —C(TQ—_t) <zx<0
u(t, z) = E(T—t) - o(T—1)
—cx + —5— if 0<z< =5~
0 it ST < < oo

is a solution for every ¢ > 0. The spurious solution, while it is not continuously differen-
tiable, is continuous and piecewise smooth.

Theorem. Let u(t,z) be a smooth solution of
ug +g(Vu) =0

in [0,7] x R%. Then

u(0,2) = sgp [u(T, y) — Th(y ;x)}

Proof: Consider
F(t) =u(t,z + at) — th(a)

for a € RY.
F'(t) = u(t,x + at)+ < a, Vu(t,z + at) > —h(a)
= —g(Vu(t,z +t))+ < a, Vu(t,x + at) > —h(a)
<0

Therefore,
u(0,2) = F(0) > F(T) = u(T,z + aT) — Th(a)

Since this is true for every a € R?,

u(0,2) 2 suplu(T, + aT) = Th(a)) = suplu(T,y) = Th(*7)

To prove the other half of the relation, note that
g(Vu(t,x)) =< p(t,x), Vu(t,z) > —h(p(t,z))
for the choice of p(t,z) = (Vh)(Vu(t,z)). Consider a solution of the ODE
a'(t) = p(t, x(t) ;2(0) =
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and the function .
Gt) = u(t, (1)) — /0 h(z'())ds

Then,
G'(t) = u(t, z(t))+ < p(t,z(t)), Vu(t,z(t)) > —h(z'(t)) =0

Therefore

T y—x
u(0, ) = u(T, z(T)) —/O h(z'(s))ds < SEP[U(T, y) = Th(=—)]

The only regularity we needed was the continuity of p(¢,x). It is enough if u is C1.

Remark. It is easy to construct examples where

u(t, ) = sup[o(y) = (T = h(—)

is not C!. Then there cannot be any C! solution. Consider the case where ¢(y) = cosy
and h(x) = % For (T —t) = k large enough we have to consider a maximization of the

form )
(y — )

u(T — k,x) = suplcosy — ]
. 2k

The maximizing y*(x) as a function of x, will avoid the valleys of cosy. It can always get
to a y that is a multiple of 27 with a small cost if k is large. On the other hand y*(z)
cannot be too far away from z. It must jump from one peak of cosy to the next one as x
varies. These jumps introduce discontinuities in wu,.

s = —[siny* (@) (@) + L 1)~ 1)

From the equation

C _0
siny™(z) + ’
Therefore ‘()
_y(z) -z
Uy = —

and the discontinuities of y* show up in w,.

The question then is how to characterize the real solution?



Viscosity Solutions.
Given a bounded continuous function u(t,z) on [0,7] x R% we say that it is a viscosity

solution of

if at any (to,zo) € (0,T) x R, the following hold:

1. If v is any smooth function such that v — u has a local maximum at (¢, xq) then

ve(0, o) + g(Vo(to, z0)) <0

2. If v is any smooth function such that v — u has a local minimum at (¢g, z¢) then

ve(to, zo) + g(Vo(to, z0)) > 0.

Theorem. The Lax-Oleinik solution

u(t,2) = suplo(y) = (T — Oh(7—)

is the unique viscosity solution of
satisfying the boundary condition

u(T,z) = ¢(x).

Proof: First let us prove that if a viscosity solution u is differentiable at some point
(to, z0) € (0,T) x R4 then u(to, xo) + g(Vu(te, zo)) = 0 at that point.

To see this, if u is differentiable at (¢, xq), we will first construct C! function v such
that v — u has a strict local minimum at (¢g,z¢). Then we will approximate v by smooth
functions v, in the C; topology. Since v — u has a strict local minimium at (tg,zo) and
ve — v, v — u will have a local minimum near (to,xo) say (te,z.) — (to,x0) as € — 0.
Since u is a viscosity solution, v, is smooth and v, — v has a minimum at (¢, z.) we have

Ue,t(tEa we) + Q(V’Ue(te, xe)) Z 0

Letting € — 0 we get
vi(to, z0) + g(Vo(to, z0)) = 0

the other half is similar so that we get
Ut(t0,1'0> + g(VU(t(),xo)) =0
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Lax-Oleinik solution is a viscosity solution. This requires us to establish 1. and 2.
Let us start with 1. Assume that tg = 2o = 0. We have

(0,0) = u(0,0) = suplu(d, y) — 5h(D)] = suplv(5, ) — ()

Replacing y by da, we get

sup[v(d,0a) — v(0,0) — dh(a)] <0

a

dividing by 0 and taking limits, we get

sup[v(0,0)+ < a, Vv(0,0) > —h(a)] = v:(0,0) + g(Vv(0,0)) <0

Now to 2.

v(0,0) = u(0,0) = sgp[u(d, y) — oh(

SRS

) < suplo(8.y) = oh( )]

Replacing y by da, we get

sgp[v(é, da) —v(0,0) — dh(a)] >0

dividing by ¢ and taking limits, we get

sup[v(0,0)+ < a, Vv(0,0) > —h(a)] = v:(0,0) + g(Vv(0,0)) >0

Viscosity solution is unique.
We will not prove it. But refer to the text by Craig Evans for instance.

Some Comments on piecewie smooth solutions of the Hamilton-Jacobi equation
in one dimension.

Suppose we have a continuosly differentiable curve x = x(t) defined for tg—6 <t < t+46
(passing through (to, z¢) where xg = z(tg)) and a piecewise smooth function

u(t LL’) — u*(t,x) for :L'(t) <z < .CI?(t) + 0, ‘t—to‘ <0
U \u (tx) for x—0<ax<ax(t), |[t—to] <§

with both u® (¢, z) being smooth functions (continuously differentiable) on its side of the
curve satisfying the equation
U+ g (um) =0

for x # x(t). We will assume that w is continuos across the curve, i.e.
ut(t,z(t) = u”(t,2(t))
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for [t—to| < 6. The derivatives uZ (t, z(t)) do not necessarily match. We want to investigate
the realtionship between u} (tg,zo) and u (to, o)

Remark 1.
Since ut (t,z(t)) = u~ (¢, z(t)) it follows that

d d

_— + = —u_

U (ta(t)) = —u (8, 2(t))
at t = tg. In other words

uf (to, z(to)) + ' (0)uf (o, x(to)) = uy (to, z(to)) + 2’ (0)uy (to, z(to))

—g(uf (to, z(to))) + ' (to)uy (to, x(to)) = —g(uy (to, z(to))) + =’ (to)uy (to, z(to))
g(uf (to, z(to))) — g(uy (to, (to))) = 2’ (to)[uz (to, z(to)) — uy (to, z(to))]
Remark 2.

We hope to have the variational formula

]_ _
[ <
T— 1, "T — 1,

)]

u(to, ) = Sup [9(y) —

and if the supremum for z = ¢ is attained at some point y*.

1 y* — xo

u(t0,$0) :¢(y*) - T —t T —tg

)

If x # x(, from the variational formula we get

1 Yyt —x
T—ty "T—t

u(to, z) = ¢(y*) — ) = k(x)

for some smooth k(x) so that
u(to, x) — u(to, xo) > k(x) — k(xo)

This tells us that
uf (to, x0) > k' (z0) > uy (to, 7o)

or u) (to, o) > u; (to,xo)-



Remark 3.

A piecewise smooth solution u is a viscosity solution at (g, z¢) if and only if
ug (to, zo) > ug (to, o)

To see the sufficiency, suppose, for some smooth v, v — u has a local minimum at (¢g, xg).
Then v(to,z) — ut (to,x) > v(to, o) — ut (to, zo) for z > zo. In particular

vy (to, o) > u) (to, o)

and in a similar fashion
vz (to, zo) < uy (to, 7o)

implying that v, (to,xo) = u} (to,z0) = uj (to,z0). From the equation it follows that
wt (to, z0) = —g(uE(to, o)) = —g(va(to,x0)). From the fact that v > u* and the first
derivatives of u* match at (to, o) we conclude that in fact

’Ut(to,xo) + g(’l)m(to,xo)) =0

On the other hand, if v — u has a local maximum at (¢, z¢), we can conclude only that
uj(to,xo) > vy (to, o) > uy (to, o)
and
ve(to, o) + 2 (0)vy (to, o) = uf (to, wo) + o' (0)uf (to, o) = u; (to, o) + 2’ (0)u; (to, zo)
Hence

(vz(to, %0)) + uf (to, o) + 2 (0)uf (to, zo) — ' (0)vs (to, z0)

v¢(to, T0) + g(vz(to, v0)) = g(v :
= g(va(to, x0)) — g(uf (to, z0)) + 2’ (0)[uF (to, zo) — va(to, zo)]

We know from Remark 1, that the convex function
g(e) — g(u™ (to, x0)) + 2’ (0)[ug (to, z0)) — ]
vanishes when ¢ = u® (ty, 2¢) and is therefore nonpositive when ¢ = v, (to, zo).
Now we turn to necessity. Suppose u; (to, o) < uy (to, o). Pick ¢ such that
ul (to, z0) < ¢ < uj (to, zo)

Consider the function
v(t,z) = uE(t, 2(t)) + c(z — z(t)).
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The function v — u to has a local minimum at (¢g,zg). At (to,x0),
v+ g(ve) = ui + 2’ (0)ug — ca’(0) + g(c) = g(e) — gluz) +2"(0)[uz — ] <0
providing us with a contradiction.

More general variational problems.

Suppose we have the optimization problem
T
uto) = sup [o(a(T) ~ [ h(s.a(s).a'(5)ds
z(-):z(t)=z t

where h(s,z,y) is a convex function of y for each s,z. The conjugate convex function
g(s,x,p) is defined as

9(s,x,p) = sup[< p,y > —h(s, z,y)]
y
and the Hamilton-Jacobi equation takes the form
wn(t, @) + g(t, 7, Vu(t, z)) = 0

with the boundary condition u(T,z) = ¢(x). The notion of viscosity solution and the
results are analogous. One essential difference is that the minimizing paths are no longer
staright lines, and the problem cannot be reduced to a simpler variational form.

Remark. We can think of the problem as a control problem with
dx(t) = u(t)dt
and a payoff function .
FaT) = [ hita(t) u(o)d

Her there is no noise. But we could add noise and then we get the type of equations we
discussed earlier. If the noise is degnerate the solutions may turnout to be nonsmooth.
The notion of viscosity solution still applies. If the control parameter is only in the drift
term, and not in the noise term, the second order term is linear and the solutions are
generally smooth in this case. There is then the possibility of recovering the true solution
in the first order case by adding a small noise and then letting it go to zero. We recover
u(t,z) = lime_o u®(t, z) where

1
ug(t,x) + g(t,x, Vu(t,z)) + §Au€(t, z)=0

This is the origin of the term viscosity solution.



