11. Boundary Conditions.

There are various contexts where a function satisfies a partial diferential equation only in
part of the space and some boundary conditions are used to detrmine the function. The
equations we considerd before of the form

1
we(t,z) + > bi(t, )ug, (¢, ) + 3 > aij(t, 2)ug, 0 (t2) =0
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for z € R4t < T is an example. The boundary is ¢t = T and the value of u(T,z) = f(x)
is provided to be able to determine wu.

The Dirichlet problem is one involving only spatial variables and seeks a function u(x) in
a boiunded set G C R?, that satisfies

Au = Zumm =0

with u(y) = f(y) specified on the boundary 0G of G. If d = 2, and G is the circle
{(z,y) : 2% +y* < 1} with 0G = {(z,y) : 2* + y? = 1}, we are seeking a harmonic function
with boundary values f on the circle. The answer is explicitly given by means the Poisson
kernel and in polar coordinates

U(T,Q)ZL/OW (1_T)f(90)
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where the point on the circle is represented as (1, ) in polar coordinates and = = (r,8).
While it is not possible to write an explicit answer in general, if the boundary 0G is smooth,
the Dirichlet problem has a nice answer and

(1) u(@) = | K(z,2)f(z)do(z)

oG

where do is the d — 1 dimensional surface area and K (z,z) is the analog of the Poisson
kernel. The Poisson kernel has the following additional properties:

1. K(z,2) >0
2. [K(z,z)do(z) =1forall z € G.
3. For each z, AK(-,z) =0 i.e. K is a harmonic function of z for each z.

4. For any continuous function f on G

lim K(z,2)f(2)do(2) = f(y)
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It is clear that the properties of K imply that u given by (1) solves the Dirichlet problem.
An easy consequence is the maximum principle

A harmonic function achieves its maximum and minimum at the bounadary. In particular
if f is nonnegative so is u. If f is bounded by C so is u. The value u(x) is an average of
the values of f(y) on the boundary, K(z, z) being the weight that determines the average
for x.

There is a probabilistic interpretation for this averaging. Let us start a d-dimensional
Brownian motion §(-) from z € G. We saw that the one dimensional Brownian motion
will eventually reach any value. In particular the d-dimensional Brownian motion will exit
G sooner or later. Its exit point will be some random point on the boundary 90G. let us
call the time of first exit 7 and the exit place 5(7) € OG. Then the solution to the Dirichlet
problem is

ute) = B|1(6r)15(0) =]

There is a quick way of seeing this connection. If x € G let us pick a small ball of radius
r such that B(z,r) C G. then the Brownian path has to exit from the small ball at some
time 7 at the point 3(71) and then start afresh from that point and make its way to the
boundary of G. So we can write

ute) = B[B |16 ]50) = 5] |500) = o
— a3} 5(0) = 2]

But Brownian motion is invariant under rotations. So the exit place on the Boundary
of B(z,r) is uniform on the surface of the sphere. In other words u has the mean value
property and is therefore harmonic and satisfies Au = 0. If z is close to the boundary it
will exit quickly and so the exit place 3(7) cannot be far from x. This guarantees that

u(z) — fy) as z — y.
There is different argument that is natural as well. Let us suppose that u(z) is a solution

of Au = 0 with u = f on the boundary. In fact let us suppose that u(x) is smooth and
defined everywhere but satisfies u = f on G and Au = 0 in G. By Ito’s formula

(36~ ule) = [ Tu(a(s)) - aps) + 5 [ (Bu(sts)ds

Since this is valid for each path we can repalce ¢t by 7 that is random.

(B~ uta) = [ Fu(a(e) - ds(s) + 5 [ (@u)(B(s)ds



Since [(t) € G for t < 7 it follows that (Au)(8(t)) = 0 for ¢t < 7. therefore

w(B(r)) — u(z) = / " Vu(B(s)) - di(s)

Because 7 is a stopping time (one can argue with a little bit of effort) that

5| [ Tu(po) - as(]50) = 2| =0
It now follows that
uta) = E[u(B(7))|3(0) 0| = B |£(5r)]5(0) =0

The averaging is then just the expected value of f(3(7)), the value of f at the random exit
place.

Warning. One has to a bit careful. If we look at one dimensional Brownian motion
starting from 0, and 7 is the first hitting time of x = 1, then

6(7)—ﬁ(0)=1—0=/Tdﬁ(8)

0

does not have mean zero although 7 is a stopping time. This is the gambler’s paradox!. If
the game is fair and there is probability one that the gambler will be ahead at some point,
why not wait till one is ahead and then quit? The answer lies in the fact that before one is
sure to reach 1 there is a chance that (t) will see very large negative values. The strategy
works only if there is an infinite credit line. If one wants to stop at a stopping time, to
be absolutely sure one hast to use a bounded stopping time. If 7 is not bounded then
T, = min(7,n) is a bounded stopping time. In both cases we can conclude respectively
that

u(z) = Eu(B(m))|8(0) = ] ; E[B(74))] = 0

In the first case we can let n — oo easily because u is bounded. In the second case, we
cannot because (7, ) can be arbitrarily large negative. We can only be sure that it belongs
to (—oo, 1]. Typically 8(7,) can be 1 with probability (1 — 1) and —n with probability L.
Each expectation is 0. But in the limit the expectation jumps to 1.



More generally we can replace Au = 0 by

1 0%u o
(2) 3 izjai,j (:”)—axiaxj + ; bi(z) 9z, 0 for z€@G
with
(3) lim u(z) = f(y) for z€dG
T—Y

If G is a bounded set with smooth bounadry and the coefficients are smooth and bounded
this has a solution provided the symmetric {a; ;(x)} is uniformly positive definite, i.e.

(4) Za” 2)&iE; >cZ§

for some ¢ > 0 and all £ € R? and = € G. The theory is no different than the case of the
Laplacian A. One takes the solution of the SDE

dzi(t) = bi(z dt—i—ZU” t))dB;(z(t))
and defines 7 = inf[t : z(t) ¢ G| the exit time. Then

(5) M@ZEP®WMd®=4
is the solution.

We can try to solve more general equations of the form

(6) %Za 3:6181133 Zb 8332 V(x)u(z) + g(z) =0 for z€G

ZL]

with the boundary condition (3). The solution exist provided V' (z) > 0 and is given by

(7)
u@=Ep@mmeA‘%ﬁWM+Ag@@NWPAV@®WWM@=x

which is the expected value of the sum of two discounted payoffs, a terminal payoff of
f(x(7)) that depends on the exit place and a running payoff g(z(s)) depending on the
location at time s, the discount factor exp[— fo ))dt] depending on the past history.

Examples:
1*. If w satisfies (2) with the boundary condition (3), use It6’s formula to prove (5).

The nondegeneracy condition (4), among other things will guarantee that 7 < oo and in
fact can even get bounds on E[7|x(0) = z|. But if the {a; ;j(z)} begin to degenerate near
the boundary, the boundary may never be reached. In such case the Dirichlet problem may
not have a good solution. For instance in one dimension the geometric Brownian motion

dz(t) = ax(t)dt + ox(t)dp(t) ;2(0) =2 >0

will never reach 0, as can be seen by explicit calculation.
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It is important to able to prove it without exact calculation. Consider the function x~¢

for some ¢ > 0. Then
d = o?z? d? c(c+1)o?

laz— + ————]27° = [—ac+ 5

dx 2 dx? J27 = k2™

We can pick ¢ > 0 such that £ > 0. It6’s formula now tells us that

£(t)Ce g = / 9(x(s))dB(s)

without any dt term. If we do not wait to hit 0 but stop when we hit € > 0, for the hitting
time 7. of € we get
El[e—ce—lm—6

z(0)=z]=a"¢
or

Ele™"|z(0) = z] = (
If we now let € — 0 we see that 7. — 0.

In general it is possible to estimate solutions of PDE’s with out actually solving them by
the use of maximum principle. Suppose we want to esitmate the solution of equation (6)
with boundary condition (3). If we find a w such that

1
®) 52 axam] Zb

1,7

V(z)w(x) +g(x) =—g(z) <0 for z€G

withlim,_,, w(z) = f(y) > f(y) on the boundary, then w satis fies the equation with g+ g

and f which are larger than g and f. By the representation formula (7) it is clear that w
provides an upper bound for u.

2. For instance suppose we want to estimate the solution u of

1 0%u
_ . 1 =
2 Z @:.5() Ox;0x; * 0

2¥)

on a ball of radius 1 with u = 0 on the boundary. Assuming
CZ€2>ZGZJ 515]20262

2
the function v(z) = (1;5 ) is concave and satisfies

gAv+1=0



Therefore

1 9%v c
- (@) ———— +1< Av+1=0
2 sz:a ’J(x)8xi8:1:j tis 2 vt

2 . —r?
and u(z) < 1=7-. By a similar argument u(z) > 1=~

3*. Let us suppose that |b(z)| < Cz and |o(z)| < Cx for some C' < oo and & > 0. Then
the solution of

dz(t) = b(x(t))dt + o(x(t))dp(t) ; z(0) =2 >0
will never reach 0, just like the geometric Brownian Motion.

Let us look at the general formula (7) for the solution of (6). Suppose G is an unbounded
set and or the coefficient matrix {a; j(z)} is degenerate. The worst thing to happen might
be that 7 may not be finite or even if it is finite may have a tail that is too fat. large
values are not too rare. So long as it is finite and V' > 0, there is no problem. the integral
is defined and the problem is solvable. If 7 can be infinite with some probability, then if
V > ¢ > 0, the discount kills all terms with 7 = co and we do not have to worry about it.
The trouble is only when 7 can be infinite and V' is not uniformly positive. The boundary
condition needs to be specified only on that part of the boundary that can be reached. If
there is explicit time dependence we can just treat as one extra coordinate. For instance

Ut = Ugg

is no different from
Uyy — Uy = 0

The SDE are trivial z(t) = x — ¢ and y(t) = y + 5(t). The solution is (z — ¢,y + 5(t)). If
we want to solve it in a square, since time moves to the left, the right boundary is never
reached. Either the path exits from the top or bottom boundary or from the left boundary.
In any case 7 cannot exceed the width of the square. So we can specify f on the three
sides that matter and the solution exists in this case no matter what V and g are. The
time dependent parabolic case is not conceptually different from equations that do not
explicitly depend on time.



The type of boundary conditions that we have considered are generally called Dirichlet
type conditions. In terms of the solution z(t) of the SDE, the game is over when the
boundary is reached and the boundary conditions determine the payoff that depends on
when and where the boundary is reached. Another type of boundary condition is called
the Neumann type boundary condition. This is best explained in the random walk model.
Imagine a fair gambling game or a random walk, where the current assets S, either increase
or decreases by 1 so that S, 11 =5, =1 with probability % Since a person with no assets
cannot play the game, if one starts initially with Sy = x, the game ends whenever S =0
for some k. Unless there is a dutch uncle who provides a dollar whenever S,, = 0, moving
the current assets to 1. In other words if it is the lost dollar that has to be paid, the uncle
will pay it instead. Now the game can go on for ever. Eventually a run of good luck might
make the assets grow providing a period of respite for the uncle. But only to be visited
again by misfortune and rescue by the uncle. The way to model is by two processes, the
random walk S,, and the current assets A,

A, =85,+C,

where C,, is increasing and is the samllest amount needed to maintain A,, > 0. If we scale
it and pass to the continuous limit

z(t) = B(t) + C(t)

where C(t) is an increasing function. It is used to keep z(t) > 0 and will increase only
when z(t) = 0. In fact
C(t) = — inf [(s)

0<s<t

It turns out that

will be now a solution of

e = gttar  wa(1,0) = 05 u(0,) = F()

and this is the Neumann boundary condition. 1t6’s formula is similar,

du(t,z(t)) = uwpdt +u,dr+ %umdt = [u+ %um(t, x(t))]dt +uy(t,0)dC (t) +ug (¢, x(t))dB ()

Example: 4. Show that the solution is explicitly given by

1 —(y—=)? —(y+=)?
2t

e 2 +e
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ult,x) = / ") \dy
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