
10. Connections between PDE’s and Diffusions.

Let us now take a step back and look at the types of differential equations that we have
seen.

1. First order linear differential equations of the form

b(x) · ∇u = 0

for x ∈ G ⊂ Rd, with u(y) = f(y) for y ∈ Γ ⊂ ∂G. The solution was given by solving the
ODEs

x′(t) = b(x(t))

and assuming that each trajectory meets Γ exactly once the value of u at any point on
the trajectory was given by the value f(y) of f at the point y on the boundary where the
trajectory meets Γ. The rationale is that

d

dt
u(x(t)) = x′(t) · ∇u(x(t)) = b(x(t)) · ∇u(x(t)) = 0

and so u must be constant on characteristics i.e. solutions of x′(t) = b(x(t)).

2. A special case where one is always sure that every trajectory meets Γ exactly once is
when b1(x) ≡ 1 and G = {x : x1 ≤ T} and Γ = {x : x1 = T}. Now x1(t) = x1(0) + t
and if x1 < T , meets x1 = T exactly once at t = T − x1(0). We prefer to call x1 = t and
x = (x2, · · · , xd). Then the equation becomes

∂u

∂t
+ < b(t, x),∇xu(t, x) >= 0

with u(T, y) = f(y). To find the solution u(s, x) for some s < T we solve x′(t) = b(t, x(t))
with x(s) = x and Γ is met at x(T ) so that u(s, x) = f(x(T )). Of course the valus of x(T )
depends on s and x.

3. The heat equation in R.

∂u

∂t
+ b(t, x)ux(t, x) +

a(t, x)
2

uxx(t, x) = 0

with u(T, y) = f(y). Now there is no single trajectory emanating from (s, x). Instead
there is a whole bunch of them depending on a random Brownian path β(·). The random
characteristic corresponding to a random Brownian path β(·) is obtained by solving

dx(t) = b(t, x(t))dt +
√

a(t, x(t))dβ(t) ; x(s) = x
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The random trajectory (t, x(t)) meets Γ, which is t = T , at the point x(T ) which is again
random. The value u(s, x) of the solution is again similar to the first order case in that it
is the average value of f(x(T )) given by

u(s, x) = E[f(x(T ))|x(s) = x]

3. Now we can generalize to the higher dimensional case, where the equation is

∂u

∂t
+

d∑
i=1

bi(t, x)
∂u

∂xi
+

1
2

d∑
i,j=1

ai,j(t, x)
∂2u

∂xi∂xj
= 0

with u(T, y) = f(y) for y ∈ Rd. The condition that a(s, x) ≥ 0 is replaced by the condition
that the matrix {ai,j(s, x)} be symmetric and positive semidefinite for each (s, x). The role
of

√
a(s, x) is now played by a matrix σ(s, x) with the property σ(s, x)σ∗(s, x) = a(s, x)

for each (s, x). Here ∗ represents taking tanspose, and the relation really is

ai,j(s, x) =
∑

k

σi,k(s, x)σj,k(s, x)

for all i, j, s and x. The interpretation is that if ξ is a standard d-dimensional Gaussian
random vector with mean 0 and covariance I = {δi,j}, then η = σ(s, x)ξ given by ηi =∑d

j=1 σi,j(s, x)ξj will be a d-dimensional Gaussian vector with mean 0 and covariance
ai,j(s, x). The equation we need to solve is the system

dxi(t) = bi(t, x(t))dt +
d∑

j=1

σi,j(t, x(t))dβj(t) ; xi(s) = xi

where β(·) = {βi(·)} are d independent Brownian motions and x = (x1, · · · , xd) is the initial
condition at time s. There is not much difference in proving existence and uniqueness under
Lipschitz condition between the one dimensional and multidimensional case. The value
f(x(T )) of f at the random point where Γ is met is averaged over all β(·) to get

u(s, x) = E[f(x(T ))|x(s) = x]

Itô’s formula is still nearly the same with one modification. (dβi)2 = dt as before. But the
independence makes dβidβj = 0 for i 6= j.
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For instance

du(β1(t), · · · , dβd(t))

=
∑

j

uj(β1(t), · · · , βd(t))dβj(t) +
1
2

∑
ui,j(β1(t), · · · , βd(t))dβi(t)dβj(t)

=
∑

j

uj(β1(t), · · · , βd(t))dβj(t) +
1
2

∑
i

ui,i(β1(t), · · · , βd(t))dt

=
∑

j

uj(β1(t), · · · , βd(t))dβj(t) +
1
2
(∆u)(β1(t), · · · , βd(t))dt

The random solution x(t) at time t, starting from x at time s will have a probability
distribution computed from the Brownian motion that supplies all the randomness in
the model. This distribution µs,x,t(dy) is denoted by p(s, x, t, dy) and is the transition
probability of the diffusion process that corresponds to the coefficients b(s, x) and a(s, x).
If a(s, x) is strictly positive definite, i.e. of full rank, then p(s, x, t, dy) will have a density
p(s, x, t, y) which is called the fundamental solution. It will satisfy, under some mild
regularity conditions the PDE

∂p

∂s
+

d∑
i=1

bi(t, x)
∂u

∂xi
+

1
2

d∑
i,j=1

ai,j(t, x)
∂2p

∂xi∂xj
= 0

for every (t, y) so long as s < t. Therefore any integral

u(s, x) = E[f(x(T )|x(s) = x] =
∫

Rd

f(y)p(s, x, T, y)dy

will automatically be a solution of

∂u

∂t
+

d∑
i=1

bi(t, x)
∂u

∂xi
+

1
2

d∑
i,j=1

ai,j(t, x)
∂2u

∂xi∂xj
= 0

with u(T, y) = f(y). One essential difference between the first order case and the second
order case is that the random trajectories go only forward in time. In the first order
equation there is no qualitative difference between b and −b. But now because of the
positive definiteness condition there is a world of difference between a and −a.
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4. We can unify to some extent equations of the form

∂u

∂t
+

d∑
i=1

bi(t, x)
∂u

∂xi
+

1
2

d∑
i,j=1

ai,j(t, x)
∂2u

∂xi∂xj
+ V (t, x)u(t, x) + g(t, x) = 0

In addition to x = (x1, · · · , xd) let us introduce two extra coordinates xd+1 and xd+2. They
will evolve by

dxd+1 = V (t, x)xd+1dt

and
dxd+2 = g(t, x)dt

We now need to look at the equation

∂w

∂t
+

d∑
i=1

bi(t, x)
∂w

∂xi
+

1
2

d∑
i,j=1

ai,j(t, x)
∂2w

∂xi∂xj
+V (t, x)xd+1

∂w

∂xd+1
+g(t, x)xd+1

∂w

∂xd+2
= 0

If we look for a solution of the form

w(t, x, xd+1, xd+2) = u(t, x)xd+1 + xd+2

Then substituting w in the equation above we get

xd+1

[
∂u

∂t
+

d∑
i=1

bi(t, x)
∂u

∂xi
+

1
2

d∑
i,j=1

ai,j(t, x)
∂2u

∂xi∂xj
+ V (t, x)u(t, x) + g(t, x)

]
= 0

We can recover u(s, x) as w(s, x, 1, 0). f(y, yd+1, yd+2) = yd+1f(y) + yd+2. Finally we
conclude that

u(s, x) = E
[
xd+1(T )f(x(T ))) + xd+2(T )|x(s) = x, xd+1(s) = 1, xd+2(s) = 0

]
Note that

xd+1(T ) = exp[
∫ T

s

V (t, (x(t))dt]

and

xd+2(T ) =
∫ T

s

g(t, x(t)) exp[
∫ t

s

V (z, x(z))dz]dt

So we finally get the Feynman-Kac formula

u(T, x) =

E

[
exp[

∫ T

s

V (z, x(z))dz]f(x(T )) +
∫ T

s

exp[
∫ t

s

V (z, x(z))dz]g(t, x(t))dt|x(s) = x

]
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5. Seperation of variables. If d = d1 + d2 and the operator

Lt =
d∑

i=1

bi(t, x)
∂u

∂xi
+

1
2

d∑
i,j=1

ai,j(t, x)
∂2u

∂xi∂xj

is the sum of two operators
Lt = L1

t + L2
t

with x1 = (x1, · · · , xd1)

L1
t =

d1∑
i=1

bi(t, x1)
∂u

∂xi
+

1
2

d1∑
i,j=1

ai,j(t, x1)
∂2u

∂xi∂xj

x2 = (xd1+1, · · · , xd2), and

L2
t =

d2∑
i=d1+1

bi(t, x2)
∂u

∂xi
+

1
2

d2∑
i,j=d1+1

ai,j(t, x2)
∂2u

∂xi∂xj

The fundamental solution factors into a product

p(s, x, t, y) = p1(s, x1, t, y1)p2(s, x2, t, y2)

and we have two seperate problems in d1 and d2 dimensions. In terms of the solution x(t)
of the SDE it is the solution x1(t), x2(t) of two sets of equations one involving the first d1

Brownian motions and the other the second set. Thr random processes x1(·) and x2(·) are
statistically independent.

Examples:

1. For instance
ut +

1
2
∆u = 0

decomposes into d one-dimensional problems of the form

ut +
1
2
uxixi

= 0

giving the fundamental solution

p(s, x, t, y) = Πd
i=1

1√
2πt

e−
(yi−xi)

2

2t
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2. Ornstein-Uhlenbeck process with mean reversal.

dxi(t) =
∑

j

ai,jxj(t) + dβ(t) ; xi(0) = xi

on Rd. If we denote by A the matrix {ai,j}, then

x(t) = eAtx +
∫ t

0

eA(t−s)dβ(s)

solves the SDE. The distribution of x(t) is Gaussian with mean eAtx and covariance

C(t) =
∫ t

0

eA(t−s)eA∗(t−s)ds =
∫ t

0

eAseA∗sds

If A has eigenvalues with negative real parts, then

eAtx → 0

as t →∞ and
C =

∫ ∞

0

eAseA∗sds

exists as a positive definite matrix, and after a long time x(t) forgets its starting point and
has a limiting distribution with mean 0 and covariance C. If A is symmetric

C = (−2A)−1

3*. What happens if the mean reversal is not about zero, but about some b = (b1, · · · , bd)?

dxi(t) =
∑

j

ai,j(xj(t)− bj) + dβ(t) ; xi(0) = xi

4. Consider the geometric Brownian motion

dx(t) = ax(t)dt +
√

θ(t)x(t)dβ1(t) x(0) = x

on R, where the volatility θ(t) is random and evolves as

dθ(t) = b(θ(t))dt + β2(t) ; θ(0) = θ

on R+. Assume β1, β2 are independent Brownian motions. How would you calculate

E

[
[x(t)]α|x(0) = x, θ(0) = θ

]
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First pretending that we know θ(t)

x(t) = x exp[
∫ t

0

√
θ(s)dβ(s)− 1

2

∫ t

0

θ(s)ds + at]

Therefore

E[[x(t)]α] = xαE

[
exp[α

∫ t

0

√
θ(s)dβ(s)− α

2

∫ t

0

θ(s)ds + aαt]|θ(0) = θ

]
= xαE

[
exp[

α2 − α

2

∫ t

0

θ(s)ds + aαt]|θ(0) = θ

]
= xαeaαtF (t, θ)

with F given by Feynaman-Kac formula as the solution of

(F −K)
∂F

∂t
=

1
2
Fθθ + b(θ)Fθ +

α(α− 1)
2

θF ; F (0, θ) = 1.

5*. Can you relate directly the solution u(t, x, θ) of

∂u

∂t
= axux +

θx2

2
uxx + b(θ)uθ +

1
2
uθθ ; u(0, x, θ) = xα

to the solution of (F −K)?
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