
1. Recurrence Relations, timesteps and differential equations.

Often the state of a system changes over time and the new state can be described as
a function of the old state. If S is the set of states (uasually the set of real numbers) then

xnew = f(xold)

where f : S → S is a function or map of S into itself. If the system goes through successive
changes under the same general circustances, then one defines successively

xk = f(xk−1)

for k ≥ 1 with x0 as the initial state. Then the state after k steps is given by

xk = f (k)(x0)

where f (k) is the k-th iterate of f , defined inductively by

f (k)(·) = f(f (k−1)(·))

Examples:

1. Suppose at each step we add a fixed amount a to the pot. Then clearly f(x) = x + a,
and xk = f (k)(x0) = x0 + ka.

2. Compound interest. f(x) = (1 + r)x. Then xk = (1 + r)k x0

3*. Compounding with consumption. From an initial capital of x0 an amount of a is
consumed each year and the rest invested to produce an annual rate of return of r so that
assets from the start one year to the next is related by f(x) = (x − a)(1 + r). What
is f (k)(x)?. How does it behave for large k? In particular when will it always remain
nonnegative? Express the condition in terms of a, x0 and r. If it turns negative find the
value of k = k(x0, a, r) when it turns negative for the first time.

Timesteps. Often, each step in the iteration represents passage of time. If the time step
is small, then one expects f(x) − x to be small. If the timestep is h in some time units
one might expect that for small values of h, f(x) = fh(x) = x + h b(x) + o(h) for some
function b(x). If we pretend that time is continuous and the state at time t is given by a
function x(t), then our approximation can be written as

x(t + h) = x(t) + h b(x(t)) + o(h)

Formally this leads to the differential equation

dx(t)
dt

= b(x(t)) ; x(0) = x0
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The theory of ordinary differential equations tells us that for any function b(x) satisfying
the Lipschitz condition |b(x)−b(y)| ≤ C|x−y| and for any initial value x0, the above ODE
has a unique solution x(t) = f(t, x0) for some f . Here f(t, ·) replaces the iterate f (k)(·).
Note that f(s, f(t, x)) = f(t, f(s, x)) = f(t + s, x) for all x, s > 0 and t > 0.

Proposition: Let b(x) satisfy the Lipschitz condition. Let fh(x) be any function satisfying

lim
h→0

1
h

sup
x
|fh(x)− x− h b(x)| = 0

Then for any t > 0 and x0,
lim
h→0
k→∞
kh→t

f
(k)
h (x0) = f(t, x0)

where f(t, x) is the solution at time t of the ODE

dx(t)
dt

= b(x(t)) ; x(0) = x0

Proof: Let us set yk = f
(k)
h (x0), xk = f(hk, x0) and compare the difference

|f (k)
h (x0)− f(hk, x0)| = |yk − xk| = |fh(yk−1)− f(h, xk−1)|

= |yk−1 + h b(yk−1) + o(h)− xk−1 − h b(xk−1)− o(h)|
≤ (1 + Ch)|yk−1 − xk−1|+ o(h)

We have used the Lipschitz condition |b(yk−1)− b(xk−1)| ≤ C|yk−1 − xk−1|. If we denote
by ∆k(h) = supx |f

(k)
h (x)− f(kh, x)|, then

∆k(h) ≤ (1 + Ch)∆k−1(h) + o(h)

Lemma: Let un ≥ 0 satisfy un ≤ aun−1 + b for n ≥ 1 with some positive a and b. Then,
by induction,

un ≤ anu0 + b(1 + a + a2 + · · ·+ an−1)

and therefore
un ≤ anu0 + nb max{1, an}

Since ∆0(h) = 0, it follows that

∆k(h) ≤ k o(h) (1 + Ch)k → 0 as h → 0, t →∞ and kh → t.
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Examples:

4. If fh(x) = x + ah + o(h), we get
dx(t)

dt
= a

and
x(t) = x0 + at

5. If fh(x) = x(1 + rh) we get
dx(t)

dt
= rx(t)

and we get
x(t) = x0e

r t

6*. Do the continuous time analog of 3*. fh(x) = (x − ah)(1 + rh) + o(h). Write
down the ODE. Solve it. When does the solution always remain nonnegative? If it does
become negative at what time T = T (x0, a, r) does it first reach 0?. Compare it to the
corresponding answer in 3*.

There are higher dimensional analogs of these. We can have fh(x) mapping Rd → Rd

satisfying
fh(x) = x + h b(x) + o(h)

where x = (x1, · · · , xd),

f(x) = (f1(x1, · · · , xd), · · · , fd(x1, · · · , xd))

and
b(x) = (b1(x1, · · · , xd), · · · , bd(x1, · · · , xd)).

We get a system of ODEs

dxi(t)
dt

= bi(x1(t), · · · , xd(t)) ;xi(0) = xi i = 1, · · · , d

and the corresponding solutions
x(t) = f(t,x)

mapping Rd → Rd. Of particular interest are the linear equations where

b(x) = bx =
∑

j

bi,jxj

for some matrix b = {bi,j}. One can show that in this case (which is Lipschitz) the solution
is given by

x(t) = F(t)x

3



with the matrix F(t) given by

F(t) = exp[tB] =
∞∑

k=0

tk

k!
Bk

Example:

7. Let d = 2 and the coordinates be x and y. Assume fh(x, y) = (x + hy, y − hx). We can
solve explicitly for F(t).

F11(t) = F22(t) = cos t and F12(t) = −F21(t) = sin t

We can replace the Lipschitz condition by a local Lipschitz condition and boundedness.
|b(x)| ≤ C for some C and for every A there is CA such that

|b(x)− b(y)| ≤ CA|x− y| for x, y ∈ [−A,A]

The boundedness gaurantees existence and the local Lipschitz condition the uniqueness.
Actually for existence linear growth is OK, which explains why gloabl Lipschitz works for
both existence and uniqueness. If we have faster than linear growth the solution can blow
up in a finite time. For instance if b(x) = x2 the solution of

dx(t)
dt

= x2(t) ; x(0) = 1

is x(t) = (1− t)−1 which blows up at t = 1.
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