

Homework Set 7

Due Nov 10

Q1. Consider the matrix

$$\mathbf{A} = \begin{pmatrix} \langle x_1, x_1 \rangle & \langle x_1, x_2 \rangle & \cdots & \langle x_1, x_n \rangle \\ \langle x_2, x_1 \rangle & \langle x_2, x_2 \rangle & \cdots & \langle x_2, x_n \rangle \\ \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \\ \langle x_n, x_1 \rangle & \langle x_n, x_2 \rangle & \cdots & \langle x_n, x_n \rangle \end{pmatrix}$$

where x_1, x_2, \dots, x_n are n vectors in a complex inner product space. Show that \mathbf{A} is Hermitian and positive semidefinite. It is positive definite if and only if the n vectors x_1, x_2, \dots, x_n are linearly independent.

Q2. \mathbf{A} is a Hermitian and positive definite linear transformation of a complex vector space $V \rightarrow V$. Show that $\langle\langle x, y \rangle\rangle = \langle x, \mathbf{A}y \rangle$ defines a new inner product on V . Can you express the new adjoint $\widehat{\mathbf{B}}$ of a transformation \mathbf{B} in terms of the old adjoint \mathbf{B}^* and \mathbf{A} . When is \mathbf{B} self adjoint with respect to the new inner product?