

### Homework Set 5. due Oct 20.

Q1. A subspace  $W \subset V$  is called an invariant subspace of a linear transformation  $A : V \rightarrow V$  if  $Ax \in W$  whenever  $x \in W$ , i.e.  $A$  maps  $W$  into itself. Show that any linear transformation  $A$  on a vector space  $V$  of dimension  $n$  over the real numbers has an invariant subspace of dimension 1 or 2. If  $n$  is odd, then it has at least one 1 dimensional invariant subspace, i.e an eigen-vector.

Q2. Let  $V$  be a vector space of dimension  $n$  and  $V'$  its dual. Let  $\{e_i : 1 \leq i \leq n\}$  be a basis of  $V'$ . For  $i < j$ ,  $f_{i,j} = e_i \wedge e_j$  are viewed as antisymmetric bilinear functionals

$$f_{i,j}(v_1, v_2) = \langle v_1, e_i \rangle \langle v_2, e_j \rangle - \langle v_1, e_j \rangle \langle v_2, e_i \rangle$$

on  $V \times V$ . Show that  $f_{i,j}$  are linearly independent and constitute a basis for the vector space of antisymmetric bilinear functionals on  $V \times V$ .