

Linear Algebra

Homework Set 1. Due Sept 22

Q1. Show that a scalar field K is vector space of dimension 1 over K and any nonzero element of K is a basis for this vector space.

Q2. Show that the set of real numbers R is a vector space over the field Q of rational numbers. Is R finite dimensional over Q ? Prove your answer.

Q3. If X is the space of all polynomials $p(t)$ in one real variable t , of degree at most 10, and Y is the sub-space of polynomials that vanish at the points 1,2 and 3 provide a subspace complementary to Y in X . Is it unique? Is its dimension uniquely determined? Can you show that the space of polynomials of degree at most 2, is one such complementary subspace.