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An infinite series is an attempt to add an infinite number of terms. For example
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It is interpreted in the following manner. We sum the first n terms.
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Then we take the limit as n → ∞. In this case the limit exists and equals 2. We then say
that the infinite series converges and the sum of the series is 2. Not all series converge.

1 + 1 + 1 + 1 + · · ·

does not converge. S1 = 1, S2 = 2, . . . , Sn = n and Sn does not converge. It diverges to
+∞. Series can oscillate too.

1 − 1 + 1 − 1 + · · · ± 1±

S1 = 1, S2 = 0, S3 = 1, S4 = 0, . . .

The odd terms S2n+1 = 1 and the even terms Sn = 0. Sn does not converge. For Sn tp
oscillate the individual terms an must change sign, i.e be both positive and negative. A
series of positive terms will have partial sums Sn that will form an increasing sequence.
If bounded it will converge to a finite limit. Otherwise it will diverge to +∞. A series
of negative terms is no different. The partial sums now decrease and if bounded below
will converge to a limit. Otherwise will diverge to −∞. A series with both positive and
negative terms may converge, diverge to ±∞ or oscillate with no limit.

Examples.
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The series converges. This leads to the comparison test. If an, bn ≥ 0 and an ≤ Cbn and∑
n bn converges then so does

∑
n an.
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Comparing with integrals. Consider
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We can always compare a sum to an integral. If f(x) ≥ 0 is a monotone decreasing
function, then
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Homework. Examine the following series and see if it converges or diverges.
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