September 28, 09

An infinite series is an attempt to add an infinite number of terms. For example
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It is interpreted in the following manner. We sum the first n terms.
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Then we take the limit as n — oco. In this case the limit exists and equals 2. We then say
that the infinite series converges and the sum of the series is 2. Not all series converge.
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does not converge. S; = 1,5 = 2,...,5, = n and §,, does not converge. It diverges to
+00. Series can oscillate too.
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The odd terms S3,4+1 = 1 and the even terms S,, = 0. S,, does not converge. For S,, tp
oscillate the individual terms a,, must change sign, i.e be both positive and negative. A
series of positive terms will have partial sums S, that will form an increasing sequence.
If bounded it will converge to a finite limit. Otherwise it will diverge to +o0o. A series
of negative terms is no different. The partial sums now decrease and if bounded below
will converge to a limit. Otherwise will diverge to —oo. A series with both positive and
negative terms may converge, diverge to oo or oscillate with no limit.

Examples.
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The series converges. This leads to the comparison test. If a,,b, > 0 and a,, < Cb,, and
>, bn converges then so does > ay.

Examples. The series Y, L diverges.
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Comparing with integrals. Consider ) # Let p > 1.
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because nl—p is the smallest value of xip
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We can always compare a sum to an integral. If f(x) > 0 is a monotone decreasing
function, then ) f(n) converges if and only if floo f(x)dzx converges. Just note

in the interval [n — 1,n|. Summing over n, we have
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Homework. Examine the following series and see if it converges or diverges.
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