

Nov 9 and 11, 2009.

Conic Sections

Conic sections consist of three classes of curves. Ellipses, Hyperbolas and Parabolas.

The equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

represents an ellipse. It is like an oval, with an axis along the x axis of length $2a$ and an axis along the y axis of length $2b$. If $a = b$ it is a circle with radius a . Its total area is $\pi a b$. The circumference is hard to calculate.

If P Q are two points in the plane and a point moves keeping the sum of the distances from P and Q a constant, then it describes an ellipse. To see this, Take the points as $(-a, 0)$ and $(a, 0)$. If (x, y) is the moving point, and the sum of the distances for P and Q of the moving point is $2\ell > 2a$, then

$$\sqrt{(x + a)^2 + y^2} + \sqrt{(x - a)^2 + y^2} = 2\ell$$

After squaring

$$(x + a)^2 + (x - a)^2 + 2y^2 + 2\sqrt{(x + a)^2 + y^2}2\sqrt{(x - a)^2 + y^2} = 4\ell^2$$

Bringing the square root term to one side and the rest to the other side

$$(x + a)^2 + (x - a)^2 + 2y^2 - 4\ell^2 = -2\sqrt{(x + a)^2 + y^2}2\sqrt{(x - a)^2 + y^2}$$

After squaring both sides

$$[(x + a)^2 + (x - a)^2 + 2y^2 - 4\ell^2]^2 = 4[(x + a)^2 + y^2][(x - a)^2 + y^2]$$

or

$$[2x^2 + 2y^2 + 2a^2 - 4\ell^2]^2 = 4[x^2 + y^2 + a^2]^2 - 16a^2x^2$$

After dividing by 4,

$$[x^2 + y^2 + a^2 - 2\ell^2]^2 = [x^2 + y^2 + a^2]^2 - 4a^2x^2$$

Expanding the squares, rearranging the terms and dividing by 4,

$$\ell^4 - \ell^2(x^2 + y^2 + a^2) = -a^2x^2$$

or

$$(\ell^2 - a^2)x^2 + \ell^2y^2 = \ell^2(\ell^2 - a^2)$$

or

$$(\ell^2 - a^2)x^2 + \ell^2 y^2 = \ell^2(\ell^2 - a^2)$$

or

$$\frac{x^2}{\ell^2} + \frac{y^2}{\ell^2 - a^2} = 1$$

It is an ellipse. $(0, 0)$ is the center. $(\pm a, 0)$ are called the foci. The major axis has length 2ℓ and the minor axis length $2\sqrt{\ell^2 - a^2}$

Now if P, Q are two points in the plane and a point moves keeping the *difference* of the distances from P and Q equal a constant $2\ell < 2a$, then it describes a hyperbola. To see this, Take the points as $(-a, 0)$ and $(a, 0)$. If (x, y) is the moving point, and the sum of the distances for P and Q of the moving point is $2\ell > 2a$, then

$$\sqrt{(x + a)^2 + y^2} - \sqrt{(x - a)^2 + y^2} = 2\ell$$

After squaring

$$(x + a)^2 + (x - a)^2 + 2y^2 - 2\sqrt{(x + a)^2 + y^2}2\sqrt{(x - a)^2 + y^2} = 4\ell^2$$

Bringing the square root term to one side and the rest to the other side

$$(x + a)^2 + (x - a)^2 + 2y^2 - 4\ell^2 = +2\sqrt{(x + a)^2 + y^2}2\sqrt{(x - a)^2 + y^2}$$

After squaring both sides

$$[(x + a)^2 + (x - a)^2 + 2y^2 - 4\ell^2]^2 = 4[(x + a)^2 + y^2][(x - a)^2 + y^2]$$

Now it is no different from the previous case. End up with the same equation.

$$\frac{x^2}{\ell^2} + \frac{y^2}{\ell^2 - a^2} = 1$$

Except now $\ell < a$ and so we need to write it as

$$\frac{x^2}{\ell^2} - \frac{y^2}{a^2 - \ell^2} = 1$$

which makes it a hyperbola.

A point P moves so that its distance from a line is proportional to the distance from a point. Take the point to be the origin $(0, 0)$ the line to be $x = a$. Then

$$x^2 + y^2 = c^2(x - a)^2$$

or

$$x^2(1 - c^2) + y^2 + 2ac^2x = c^2a^2$$

or

$$(1 - c^2)(x - a \frac{c^2}{1 - c^2})^2 + y^2 = c^2 a^2 + \frac{c^4}{1 - c^2} = \frac{c^2}{1 - c^2} [c^2 + a^2 - a^2 c^2]$$

We rewrite it as

$$\frac{(x - x_0)^2}{A^2} + \frac{y^2}{B^2} = 1$$

with $x_0 = \frac{ac^2}{1 - c^2}$, $A^2 = \frac{c^2}{(1 - c^2)^2} [c^2 + a^2 - a^2 c^2]$ and $B^2 = \frac{c^2}{(1 - c^2)} [c^2 + a^2 - a^2 c^2]$ It is an ellipse if $c < 1$, a hyperbola if $c > 1$ and a parabola if $c = 1$. The line is called the directrix and the point a focus. c is called the eccentricity and is usually denoted by e . The circle is the limiting case when $c = 0$ and $a = \infty$. The center of the ellipse is located at $(\frac{ac^2}{1 - c^2}, 0)$. Its major i.e the larger axis is

$$\frac{c}{1 - c^2} \sqrt{c^2 + a^2(1 - c^2)}$$

and the minor axis is

$$c \sqrt{\frac{c^2}{1 - c^2} + a^2}$$

If $a \rightarrow \infty$ and $c \rightarrow 0$ with $ac \rightarrow r$ we get a circle with radius r .

To determine the focus and directrix of an ellipse, we want to write

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

with $a > b$ in the form

$$(x - x_0)^2 + y^2 = e^2(x - d)^2$$

$$\frac{b^2 x^2}{a^2} + y^2 = b^2$$

identify terms.

$$e^2 d^2 - x_0^2 = b^2, \quad 1 - e^2 = \frac{b^2}{a^2}, \quad e^2 d = x_0$$

then $(x_0, 0)$ will be the focus, e the eccentricity and $x = d$ the directrix. Solve for x_0, e and d .

$$e = \sqrt{1 - \frac{b^2}{a^2}}$$

$$e^2 d^2 - e^4 d^2 = b^2, \quad d^2 = \frac{b^2}{e^2(1 - e^2)} = \frac{a^2}{e^2}, \quad d = \frac{a}{e}$$

$$x_0 = e^2 d = ae$$

The equation is rewritten as

$$(x - ae)^2 + y^2 = e^2(x - \frac{a}{e})^2$$

which is the same as

$$(x + ae)^2 + y^2 = e^2(x + \frac{a}{e})^2$$

showing that there is another pair of focus-directrix on the other side.

Let us look at some examples.

$$\frac{x^2}{4} + y^2 = 1$$

$a = 2, b = 1, e^2 = 1 - \frac{1}{4} = \frac{3}{4}, e = \frac{\sqrt{3}}{2}$. Focus is $(ae, 0) = (\sqrt{3}, 0)$ Directrix is $x = \frac{4}{\sqrt{3}}$.

Rewrite the equation as

$$(x - \sqrt{3})^2 + y^2 = \frac{3}{4}(x - \frac{4}{\sqrt{3}})^2$$

In polar coordinates with origin as focus

$$r = \sqrt{3}((\frac{4}{\sqrt{3}} - \sqrt{3}) - (x - \sqrt{3})) = \frac{\sqrt{3}}{2}(\frac{1}{\sqrt{3}} - (x - \sqrt{3})) = \frac{\sqrt{3}}{2}(\frac{1}{\sqrt{3}} - r \cos \theta)$$

$$r = \frac{\frac{1}{2}}{1 + \frac{\sqrt{3}}{2} \cos \theta}$$

The case of the hyperbola is almost the same. b^2 gets replaced by $-b^2$. So the only change is $e = \sqrt{1 + \frac{b^2}{a^2}}$.

A hyperbola has asymptotes. The lines $x \pm y = 0$ are the asymptotes for $x^2 - y^2 = 1$. Comes from the fact that

$$\lim_{x \rightarrow \infty} [\sqrt{x^2 - 1} - x] = 0$$

$$\lim_{x \rightarrow \infty} \sqrt{x^2 - 1} - x = \lim_{x \rightarrow \infty} x \left[\sqrt{1 - \frac{1}{x^2}} - 1 \right] = \lim_{y \rightarrow 0} \frac{\sqrt{1 - y^2} - 1}{y} = 0$$

by L'Hospital's rule. The pair of asymptotes to

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

is

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0; \quad \text{i.e.} \quad \frac{x}{a} \pm \frac{y}{b} = 0$$

For the parabola with focus at $(0, 0)$ and directrix $x = a$, the eccentricity $c = 1$ and the equation is

$$x^2 + y^2 = (x - a)^2$$

or

$$y^2 = a^2 - 2ax = 2a\left(\frac{a}{2} - x\right)$$

The parabola $x = -y^2$, is rewritten as

$$y^2 = 2 \cdot \frac{1}{2} \left(\frac{1}{4} - (x + \frac{1}{4}) \right)$$

making the directrix $x = \frac{1}{2}$ and the focus $(-\frac{1}{4}, 0)$.

The equations of conic sections are just as easy to write in polar coordinates. If the origin is the focus and the directrix is the line $r \sin \alpha \cos \theta + r \cos \alpha \sin \theta = p$, and the eccentricity is e , the polar equation becomes

$$r = e|r \sin \alpha \cos \theta + r \cos \alpha \sin \theta - p|$$

or

$$r = \frac{c}{1 - a \sin \theta - b \cos \theta} = \frac{c}{1 - e \cos(\theta - \alpha)}$$

c determines the size, α the orientation and e is the eccentricity, After rotation

$$r = \frac{c}{1 - e \cos \theta}$$

$c = ep$ where p is the distance from the focus. $e = 0$ is the circle. $e > 1$ hyperbola. What about $e = 1$?

$$r(1 - \cos \theta) = c; \quad r = (x + c); \quad x^2 + y^2 = x^2 + 2cx + c^2; \quad y^2 = 2c(x + \frac{c}{2})$$

parabola with directrix $x = -c$ and focus at $(0, 0)$ and vertex at $(-\frac{c}{2}, 0)$.

Examples. 1. $r = \frac{2}{3 - \sin \theta}$

$$r = \frac{\frac{2}{3}}{1 - \frac{1}{3} \sin \theta}$$

$e = \frac{1}{3}$. Ellipse.

$$r = \frac{2}{3} + \frac{1}{3}r + 3 \sin \theta = \frac{1}{3}(y + 3)$$

Directrix is $y = -\frac{1}{3}$. Focus at $(0, 0)$. $e = \frac{1}{3}$. The major axis is along the y axis.

2. $r = \frac{2}{3 - \cos \theta}$

$$r = \frac{\frac{2}{3}}{1 - \frac{1}{3} \cos \theta}$$

$e = \frac{1}{3}$. Ellipse.

$$r = \frac{2}{3} + \frac{1}{3}r + 3 \cos \theta = \frac{1}{3}(x + 3)$$

Directrix is $x = \frac{-1}{3}$. Focus at $(0, 0)$. $e = \frac{1}{3}$. The major axis is along the x axis.

3. $r = \frac{2}{2-3 \cos \theta}$

$$\frac{2}{2-3 \cos \theta} = \frac{1}{1-\frac{3}{2} \cos \theta}$$

$e = \frac{3}{2} > 1$. Hyperbola. Focus at $(0, 0)$.

$$r = 1 + \frac{3}{2}r \cos \theta = \frac{3}{2}\left(\frac{2}{3} + x\right)$$

Directrix is $x = -\frac{2}{3}$. The asymptotes are determined by $r = \infty$. $\cos \theta = \frac{2}{3}$.

Homework.

For the following conic sections in cartesian coordinates determine if it is an ellipse, parabola or a hyperbola. Determine the eccentricity, identify a focus and the corresponding directrix and write the equation in polar coordinates shifting the origin to the focus.

Q1. $x^2 - y^2 = 1$

Q2. $y^2 - x^2 = 1$

Q3. $(3x + 2y)^2 = (2x + 3y)^2 + 5$

For the following conic sections in polar coordinates determine if it is an ellipse, parabola or a hyperbola. Determine its eccentricity, Describe it in Cartesian coordinates in the form

$$\frac{(x - x_0)^2}{a^2} + \frac{(y - y_0)^2}{b^2} = \pm 1$$

or

$$\frac{(x - x_0)^2}{a^2} - \frac{(y - y_0)^2}{b^2} = \pm 1$$

or

$$\frac{(y - y_0)^2}{b^2} - \frac{(x - x_0)^2}{a^2} = \pm 1$$

Q4. $r = \frac{3}{4-\sin \theta}$

Q5. $r = \frac{3}{1-4 \cos \theta}$