

Nov 4, 2009.

Areas and lengths in Polar Coordinates.

Given a little arc $r = f(\theta)$ between θ and $\theta + \delta\theta$, the area of the wedge from the origin to the arc is roughly $\frac{\pi r^2}{2\pi} \delta\theta$ so that of a wedge formed by $r = f(\theta)$ between θ_1 and θ_2 is

$$A = \frac{1}{2} \int_{\theta_1}^{\theta_2} [f(\theta)]^2 d\theta$$

The arc length on the other hand is computed by

$$x = f(\theta) \cos \theta, y = f(\theta) \sin \theta$$

and

$$x'(\theta) = f'(\theta) \cos \theta - f(\theta) \sin \theta, \quad y'(\theta) = f'(\theta) \sin \theta + f(\theta) \cos \theta, \quad y'(\theta)$$

$$[x'(\theta)]^2 + [y'(\theta)]^2 = [f'(\theta)]^2 + [f(\theta)]^2$$

so that the length of the segment $r = f(\theta)$ from $\theta = a$ to $\theta = b$ is

$$\int_a^b \sqrt{[f'(\theta)]^2 + [f(\theta)]^2} d\theta$$

Example: The semi-circle $(x - 1)^2 + y^2 = 1; y \geq 0$ is in polar coordinates $r = 2 \sin \theta, 0 \leq \theta, \frac{\pi}{2}$. Its area is

$$\frac{1}{2} \int_0^{\frac{\pi}{2}} 4 \sin^2 \theta d\theta = \int_0^{\frac{\pi}{2}} (1 - \cos 2\theta) d\theta = \frac{\pi}{2}$$

Its length is

$$\int_0^{\frac{\pi}{2}} \sqrt{4 \sin^2 \theta + 4 \cos^2 \theta} d\theta = 2 \int_0^{\frac{\pi}{2}} d\theta = \pi$$

The full circle is obtained by θ ranging over $[-\frac{\pi}{2}, \frac{\pi}{2}]$. This will give a length of 2π , and an area of π .

Homework.

Q1. Find the length and the Area of the Cardioid $r = 1 + \cos \theta$.

Q2. Sketch the curve $r = \sin 6\theta; 0 \leq \theta \leq \pi$. How many loops does it have? What is the area of each loop?

Monday's quiz will be on Areas and arc lengths in polar coordinates.