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Power Series.
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It may not converge. It always converges when x = 0. If it converges for some value say
x = xg, then a,zyj — 0. Therefore |a,zj| < C. If |z| < |z¢| by comparison
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which converges. Either the series converges for all z, or only for x = 0 or for |z| < R and
not for |z| > R. If x = £R it is not clear.

Examples.

1. > %,L Converges for all z. Do ratio test. % =5 — 0

2. > a™ converges if |z| < 1 but not if x = +1 or |z| > 1.
3.5 %" converges if |z| < 1, diverges if |x| > 1. z = —1 is OK but not = = 1.

4. 3 27 converges if |z| < 1 and diverges if |z| > 1.
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5. >, nlz™ converges only if x = 0.
If
f(x) =ao+ a1z + agx® + -+ + apz" + - -

then f(0) = ao, f'(0) = a1, f(0) = 2as, ..., f(0) = nla,. One can start with a function
f with all derivatives and write the series

f) = im0

The series may converge for |z| < R and diverge for |z| > R. Even when the series converges
there is guarantee that that the sum is f(x). More terms give better approximations near
0 but not away from 0. If | f"(z)| < C,, on 0 < z < R, then
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We have to estimate the error and show it goes to zero.
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Examples.

L fla)=e" [ (z)=e" fO(0) = 1. |[f0)(z)| = P <B 0.
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2. f(x) = 1= Geometric series
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Integrate and differentiate term by term.
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Integrate. Constant term is equal to log(1 + 0) =log1 = 0.
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Repalce z by 2
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Integrate. Constant term is again arctan(0 = 0
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