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1 Introduction

The primitive form of the incompressible Euler equations is given by

du

dt
= ut + u · ∇u = −∇

(

P

ρ
+ gz

)

(1)

∇ · u = 0 (2)

representing conservation of momentum and mass respectively. Here u is the
velocity vector, P the pressure, ρ the constant density, g the acceleration of
gravity and z the vertical coordinate. In this form, the physical meaning of the
equations is very clear and intuitive. An alternative formulation may be written
in terms of the vorticity vector

ω = ∇× u , (3)

namely

dω

dt
= ωt + u · ∇ω = (ω · ∇)u (4)

where u is determined from ω nonlocally, through the solution of the elliptic
system given by (2) and (3). A similar formulation applies to smooth isentropic
compressible flows, if one replaces the vorticity ω in (4) by ω/ρ.

This formulation is very convenient for many theoretical purposes, as well
as for better understanding a variety of fluid phenomena. At an intuitive level,
it reflects the fact that rotation is a fundamental element of fluid flow, as exem-
plified by hurricanes, tornados and the swirling of water near a bathtub sink.
Its derivation from the primitive form of the equations, however, often relies
on complex vector identities, which render obscure the intuitive meaning of (4).
My purpose here is to present a more intuitive derivation, which follows the tra-
ditional physical wisdom of looking for integral principles first, and only then
deriving their corresponding differential form. The integral principles associ-
ated to (4) are conservation of mass, circulation–angular momentum (Kelvin’s
theorem) and vortex filaments (Helmholtz’ theorem). These principles imply a

1



“stretching” mechanism for the magnitude of ω and an advective mechanism
for its direction which have (4) as their differential expression.

Finally, we shall derive a scalar version of the vector identity (4), which
remains valid even for non isentropic compressible flows and incompressible flows
with nonconstant density. This is the conservation of the potential vorticity

q =
ω · ∇S

ρ
, (5)

first introduced by Ertel. Here S denotes any quantity convected by the flow;
the entropy is a good choice for compressible fluids, as is the density for incom-
pressible ones. Ertel’s theorem states that

dq

dt
= 0 , (6)

so the potential vorticity is convected by the flow.

2 Vortex Tubes and Circulation

Since ω is the curl of a vector field, its divergence is zero. Therefore, it is
natural to consider vortex tubes, analogous to the stream tubes of a divergence
free velocity field. We start with vortex lines which, analogous to stream lines,
are defined, at each fixed time, as integral lines of the vorticity field (that is,
lines which are everywhere tangent to the vorticity vector.) Next we consider
a closed contour in R3, and define as a vortex tube the set of all vortex lines
which intersect the contour.

Consider two cross-sections of a vortex tube. Since the vorticity is every-
where tangent to the surface of the tube, and has zero divergence, the divergence
theorem tells us that the normal flux of vorticity through the two cross-sections
must be equal. This normal flux is therefore a constant; it is called the strength
of the vortex tube.

Stokes’ theorem equates the normal flux of vorticity through a cross-section
of a vortex tube with the line integral of tangential velocity around it. Therefore
this quantity, called circulation and denoted Γ, is a constant along the tube,
equal to its strength. In symbols,

Γ =

∫

C

u · dr =

∫

S

ωn dS = constant along a vortex tube,

where S is an arbitrary cross-section of the tube and C its perimeter. A funda-
mental property of inviscid flows is that Γ does not change in time following a
contour C which moves with the fluid. This is the content of Kelvin’s theorem,
which we prove in the following section.

3 Kelvin’s Theorem

Kelvin’s theorem is equivalent to the statement of conservation of angular mo-
mentum for a closed fluid filament. Since, for inviscid flows, all forces acting on
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a filament are normal to it, no net torque is applied, and angular momentum is
preserved. The following is an alternative, more formal derivation:

Consider a closed contour C(t) which moves with the fluid. The position of
each of its constitutive points may be written as r(s, t), where s is any parameter
along the contour, and t is the time. The property of C moving with the fluid
takes the form

∂r(s, t)

∂t
= u(r(s, t), t) . (7)

The time derivative of the circulation Γ along C(t) is given by

dΓ

dt
=

d

dt

∫

u(r(s, t), t) ·
∂r(s, t)

∂s
ds =

∫

du

dt
· rs ds +

∫

u · rst ds (8)

In the first integral of the right hand side of (8),

du

dt
= ut + rt · ∇u = ut + u · ∇u = −∇

(

P

ρ
+ gz

)

Therefore
∫

du

dt
· rs ds = −

∫

∇

(

P

ρ
+ gz

)

· dr = −

∫

d

(

P

ρ
+ gz

)

= 0 ,

since we are integrating along a closed contour. As for the second integral in
the right hand side of (8), we have

∫

u · rst ds =

∫

u · us ds =

∫

u · du =

∫

d

(

u2

2

)

= 0 .

Therefore

dΓ

dt
= 0 (9)

which is the statement of Kelvin’s theorem. Before we can fully interpret this
theorem in physical terms, we need to show an important corollary, known as
Helmholtz’ theorem: Vortex tubes move with the fluid.

4 Helmholtz’ Theorem

Consider a surface which, at time t = t0, is a vortex tube. As time progresses,
the particles which constitute this surface will move, so the surface will deform.
Nevertheless, the surface remains a vortex tube throughout its deformation.
This is a simple corollary of Kelvin’s theorem. In order to prove it, consider the
surface at a later time, and pick any closed contour in it homotopic to a point
(that is, a contour which does not turn around the tube.) By Kelvin’s theorem,
the circulation around this contour has the same value it had at time t = t0,
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i.e. zero, since at that time the surface was tangent to the vorticity field. Since
this argument applies to an arbitrary contour on the surface, we conclude that
the vorticity field is still tangent to it; so the surface is still a vortex tube.

Helmholtz’ name is customarily associated with the application of this theo-
rem to vortex filaments, vortex tubes with negligible cross-sectional area which
we may identify with vortex lines: Vortex filaments move with the fluid. This
is a fundamental constraint on the evolution of the direction of vorticity.

5 The Vortex-Stretching Mechanism

Conservation of mass and Kelvin and Helmholtz’ theorems combined provide the
grounds for one of the most important mechanisms of fluid flow: the stretching
of vortex tubes. Consider a vortex tube immersed in a fluid. The circulation
around it (the tube’s strength) is a constant along the tube’s length, which
implies that the absolute value of vorticity is largest where the cross-sectional
area of the tube is smallest. This is analogous to the fluid’s acceleration at a
contraction in a stream tube, which follows from conservation of mass.

Consider now the time evolution of a vortex tube. According to Helmholtz’
theorem, tubes move with the fluid. Moreover, from Kelvin’s theorem, their
strength does not change with time. Therefore, if the area of a cross-section of
a tube should become very small, vorticity would have to amplify proportionally.
Since the fluid is incompressible, however, the volume between two sections of
the tube remains constant. Therefore any shrinking of the cross-sectional area
must be accompanied by a longitudinal stretching. We conclude that the local
stretching of a vortex tube gives rise to a proportional amplification of the
absolute value of vorticity. This is the so called vortex-stretching mechanism.

The principle of the previous paragraph applies to the mean value of the
vorticity normal to a cross-section of vortex tubes. When applied to a vortex
filament, however, it becomes a precise statement about the local magnitude of
the vorticity vector: When a vortex filament stretches, the intensity of vortic-
ity grows proportionally. Since, moreover, the vorticity vector remains always
tangent to the vortex filament, we may say that the vorticity vector is propor-
tional to the element of filament to which it is attached, with a proportionality
constant which does not depend on time. In symbols, if we describe a vortex
filament by specifying the position of each of its constitutive particles r(s, t),
where s is a parameter along the filament, the following relation holds:

w(r(s, t), t) = c(s)
∂

∂s
r(s, t) (10)

where c(s) is a scalar function of s which does not depend on time. Equation
(4) follows immediately from (10):

dω

dt
= c(s)

∂

∂s
u(r(s, t), t) = c(s)

∂

∂s
r(s, t) · ∇u(r(s, t), t) = (ω · ∇)u

This equation therefore is the differential expression of Kelvin and Helmholtz’
theorems for an incompressible fluid.
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6 Further Formalization

Here we shall provide a more formal derivation of equation (10) than the one
described above. For starters, we shall do a “semi-formal” derivation, using
“very thin” vortex tubes, which we will formalize further afterwards. Helmholtz’
theorem tells us that vortex filaments move with the fluid; therefore, for a vortex
filament described by its position r(s, t), the following identity holds:

w(r(s, t), t) = c(s, t)
∂

∂s
r(s, t) , (11)

where c(s, t) is a scalar. Equation (11) is merely a rewriting of the definition of
a vortex filament, which is a curve everywhere tangent to the vorticity field. If
we manage to show that c does not depend on t, we will obtain (10).

To this end, consider a very thin vortex tube, which we will “parametrize”
using one of its filaments r(s, t) and the cross-sectional area Ω(s, t). The strength
Γ of the tube, which is independent of s and t, due to Kelvin’s theorem, is given
approximately by

Γ = ω(r(s, t), t) · Ω(s, t) = c(s, t)
∂

∂s
r(s, t) · Ω(s, t) (12)

On the other hand, the volume of fluid between two sections of the tube, also a
constant, due to conservation of mass, is

V =

∫ s2

s1

∂

∂s
r(s, t) · Ω(s, t) ds (13)

which, using (12), may be written as

V = Γ

∫ s2

s1

ds

c(s, t)

Since V cannot depend on time, we conclude that c does not either, which ends
the proof.

To formalize this proof further, we need to get rid of the concept of “very
thin” tubes, and the corresponding approximate identities (12) and (13). To
this end, consider a vortex tube with finite size. The filaments within the tube
may be described by the function

r(s, α, t)

where α is a two-dimensional parameter which selects a filament. Then, from
Helmholtz’ theorem,

w(r(s, α, t), t) = c(s, α, t)
∂

∂s
r(s, α, t)

Next we shall mimic the arguments above, for cross-sections of the tube
defined by the condition s = constant. The flux through one such section may
be written as
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Γ =

∫

α

ω(r(s, α, t), t) · dΩ(s, α, t) =

∫

α

c(s, α, t)
∂

∂s
r(s, α, t) · dΩ(s, α, t) . (14)

The vector dΩ is the oriented differential area of the cross-section, which may
be expressed formally as

dΩ = Ωα(s, α, t) dα1dα2 ,

where

Ωα(s, α, t) = det







~i ~j ~k
∂r1

∂α1

∂r2

∂α1

∂r3

∂α1

∂r1

∂α2

∂r2

∂α2

∂r3

∂α2






.

(The subindices refer to the components of the vectors r and α.) Since Γ must
be a constant for arbitrary widths of the tube, we conclude that the quantity

Γα(α) = c(s, α, t)
∂

∂s
r(s, α, t) · Ωα(s, α, t)

is independent of s and t. The volume between two sections, on the other hand,
is given by

V =

∫ s2

s1

∫

α

∂

∂s
r(s, α, t) · dΩ(s, α, t) ds =

∫ s2

s1

∫

α

Γα(α) dα1dα2

c(s, α, t)
ds . (15)

Since this volume must be time independent, we conclude that c does not depend
on t.

7 Kelvin and Helmholtz Theorems

for Compressible Flows

Many of the ideas developed above extend with small variations to compressible
flows. Here we shall see which these variations are, and under which conditions
they apply. The first important constraint is that the flow should be smooth,
i.e. shock-free, since vorticity can be created at shocks. Therefore we will
concentrate here on smooth solutions, and we will write the Euler equations for
compressible fluids in the following non-conservative form:

ρt + ∇ · (ρu) = 0 (16)

ut + u · ∇u = −
∇P

ρ
+ ∇(gz) (17)

St + u · ∇S = 0 , (18)
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where ρ is the fluid density, u the vector velocity and S the entropy, defined by

TdS = de + Pd

(

1

ρ

)

. (19)

Here T is the absolute temperature and e the internal energy of the gas. The
right hand side of (19) measures the energy absorption by an element of fluid,
divided into internal energy and work performed on its surroundings. The in-
verse of the temperature provides an integrating factor for this differential; the
corresponding integral is the entropy S.

If we recall the derivation of Kelvin’s theorem for incompressible flows, the
fact that the right-hand side of the momentum equation (1) could be written as
a gradient played a crucial role. This will only be the case for equation (17) if
either the density is a constant or the pressure P is a function of ρ alone. Now,
in general, the pressure is a function of the density and the entropy, i.e.

P = P (ρ, S).

However, it is clear from equation (18) that, if the entropy is initially a constant
(as it is for a uniform fluid at rest), it will remain constant forever –provided,
of course, that no shocks are formed. Thus we will restrict our attention to this
case; i.e. we shall consider only isentropic flows. For these, the right-hand side
of (17) can be written as

−
∇P

ρ
+ ∇(gz) = ∇(−h + gz) , (20)

where

h = e +
P

ρ

is the enthalpy of the gas.
With the right-hand side of (17) written as a gradient, the derivation of

Kelvin’s theorem follows exactly as in section 3. Helmholtz theorem also fol-
lows without changes. We have, therefore, the following partial results: For
smooth isentropic flows, vortex tubes move with the flow, and their strength
remains constant. These results are identical to the ones obtained above for in-
compressible flows. The vortex stretching mechanism, however, takes a different
form, derived in the following section.

8 Vortex Stretching for Compressible Flows

We have seen above that both Kelvin and Helmholtz’ theorems remain valid
for smooth isentropic compressible flows. Hence vortex tubes move with the
flow, and their strength does not change in time. This tells us that, if the
cross-section of a vortex tube should shrink, then the mean vorticity across this
cross-section should increase proportionally. For incompressible flows, volume
conservation implies that the transversal shrinking of a tube is proportional to
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its longitudinal stretching, hence the vortex stretching mechanism. However,
this proportionality does not hold for compressible flows, which may conserve
mass without preserving volume, and the vortex stretching mechanism has to
be modified to account for this fact.

Schematically, if we think of a cylindrical tube with length L, cross-sectional
area A and density ρ, it is not the volume LA but the mass ρLA which has to be
preserved by the flow. Since the tube’s strength ωA is a constant, we conclude
that ω/ρ has to be proportional to L. Thus it is the vector field ω/ρ, not simply
ω, which undergoes stretching. Following the same procedure developed above
for incompressible flows, we conclude that we can identify ω/ρ with the element
of vortex filament to which it is attached, and that the equation

d

dt

(

ω

ρ

)

=

(

ω

ρ

)

· ∇u (21)

must hold. The formalization of this derivation follows exactly the same steps
as in section 6, with the total volume replaced by the mass, and will therefore
be omitted.

9 Ertel’s Potential Vorticity

Equation (21) is a vector identity. We can derive a useful scalar identity from
it by introducing any scalar quantity S which is advected by the flow; i.e. it
satisfies the equation

dS

dt
= 0. (22)

An example of such quantity is the concentration of a non-reactive pollutant for
time intervals small enough that the effects of diffusion are negligible. It follows
from (21) and (22) that the quantity

q =
ω · ∇S

ρ
(23)

is conserved along particle paths; i.e.

dq

dt
= 0. (24)

The quantity q in (23) is the potential vorticity, first introduced by Ertel.
The meaning of (23) and (24) in terms of vortex stretching is simple. The

distance between to surfaces of constant S is inversely proportional to |∇S|. As
this distance changes, the projection of ω onto the direction normal to these
surfaces has to change proportionally. This is the content of (24).

Although the formal derivation of (24) from (21) and (22) is straightforward,
we will give here an alternative derivation. The reason for this is not only to
provide (24) with some intuition, but also to show that this equation remains
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valid for non isentropic flows, even though (21) does not. For this statement
to hold, the quantity S has to be such that, together with either P or ρ, it
completely determines the thermodynamical state of the fluid. For compressible
flows, a quantity satisfying this and (22) is the entropy; hence the letter “S”
that we assigned to it.

The point of this latter requirement is that, on a surface of constant S, P
and ρ are functionally dependent, even though this functional relation depends
on the chosen value of S. Therefore, if one considers only contours C(t) lying on
such surface, Kelvin’s theorem remains valid. (Notice that, if C(t) lies initially
on a surface of constant S, it will remain there forever, since both C and S
are convected by the flow.) Thus, if the area Ω(t) enclosed by C(t) shrinks in
time, the normal component of the vorticity has to amplify proportionally. In
symbols,

Γ =

∫

Ω(t)

ω · ∇S

|∇S|
dΩ = const. (25)

Now consider a tube of fluid between two surfaces S = S1 and S = S2 –not
a vortex tube, since these do not move with the flow in the non isentropic case,
but any mass of fluid that is convected. In order to compute the mass within
the tube, we consider cross-sections of the tube by surfaces of constant S, with
areas Ω(S, t). Then the total mass of the tube is

M =

∫ S2

S1

∫

Ω(S,t)

ρ dΩ
dS

|∇S|
= const. (26)

Equation (24) follows from (22), (25) and (26): For each particle, ρ and
ω ·∇S are proportional, with a constant of proportionality independent of time.
This semi-formal derivation can be further formalized, of course, much as in
section 6.

The conservation of potential vorticity is a powerful constraint in the study
of geophysical flows. For these flows, the vorticity vector is the sum of the local
vorticity and the vorticity associated with the rotation of the Earth. Slightly
different definitions of the potential vorticity are used when the flows are mod-
eled as incompressible with non-uniform density, and in the shallow water ap-
proximation. The potential vorticity is also often linearized in various ways, in
important geophysical limits such as those of fast rotation and strong stratifi-
cation.

10 The Deformation Tensor

We have worried so far about vortex stretching, but not about the flow responsi-
ble for this stretching. Equations (4) and (21) describe the stretching of vortex
filaments. They both derive from the identity

d

dt

∂

∂s
r(s, t) =

∂

∂s
r(s, t) · ∇u , (27)
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where ∂r/∂t = u(r(s, t), t). Thus filaments will stretch or not depending on
their alignment with the eigenvectors of the tensor ∇u. In this section, we shall
study this tensor in more detail.

Let us start by decomposing ∇u into its symmetric and anti-symmentric
parts:

∇u =
∇u + ∇u⊥

2
+

∇u −∇u⊥

2
, (28)

or




ux vx wx

uy vy wy

uz vz wz



 = D + Ω , (29)

where

D =





ux
vx+uy

2
wx+uz

2
uy+vx

2 vy
wy+vz

2
uz+wx

2
vz+wy

2 wz



 , (30)

the symmetric part of ∇u, is the deformation tensor, and

Ω =





0
vx−uy

2
wx−uz

2
uy−vx

2 0
wy−vz

2
uz−wx

2
vz−wy

2 0



 =
1

2





0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0



 , (31)

the anti-symmetric part of ∇u, which can be written in terms of the three
components of the vorticity vector, represents local rotation. The product of
this latter matrix and the vorticity vector cancels, so equations (4) and (21)
take the simpler forms

dω

dt
= Dω (32)

and
d

dt

(

ω

ρ

)

= D

(

ω

ρ

)

. (33)

Since the tensor D is symmetric, it has three real eigenvalues with corre-
sponding orthogonal eigenvectors. The vectors ω and ω/ρ amplify maximally
when they are oriented along the direction of the eigenvector of D with largest
positive eigenvalue; this is the direction of maximal stretching of the flow. For
incompressible flows, at least one of the eigenvalues of D is always positive,
since the trace of D is zero. This is not necessarily the case for compressible
flows, where the fluid may be experiencing a local compression, and all three
eigenvalues may be negative. However, even in this case the component of the
vorticity along the direction of the eigenvector corresponding to the least nega-
tive eigenvalue will be amplifying, even though ω/ρ will not. This follows from
the identity

d

dt
ω = ρ

d

dt

(

ω

ρ

)

+

(

ω

ρ

)

dρ

dt
= ρ(D − (∇ · u) I)

(

ω

ρ

)

(34)

and the fact that the trace of D is precisely given by ∇ · u.
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