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M. S. Howe [J. Fluid Mech. 206, 131 (1989)] presented integral formulas for the force and torque
on a rigid body that permit the identification of the separate influences of added mass, normal
stresses induced by free vorticity, and viscous skin friction. Here a simple extension of Howe’s
formulas is done for systems of several rigid bodies. The goal is to separate these effects on each
rigid body. These new formulas may help in understanding the hydrodynamic interaction between
bodies. As an example, the interaction forces on a pair of bubbles rising at high Reynolds number
side by side are computed. © 2007 American Institute of Physics. [DOI: 10.1063/1.2730481]

I. INTRODUCTION

The problem of finding the force on a rigid body moving
inside a fluid is central in many branches of engineering, so
there is an enormous literature dedicated to the subject. In
principle, if the motion of the fluid is known, then the com-
putation of forces reduces to the integration of the fluid
stresses on the body surface. The point is that, except for
bodies moving at very low speeds, there is no realistic prob-
lem for which the fluid velocity can be determined. Thus,
many force and torque integral expressions alternative to in-
tegrating stresses on the body surface were proposed. These
alternative expressions may be more suitable for experimen-
tal measurements, for numerical evaluation, or just for theo-
retical insight. The reader can find a partial list of the litera-
ture on the subject in Refs. 1-4.

This paper is concerned with a particular form of force
and torque expressions proposed by Howe.' These are based
on formulas used in the theory of aerodynamic sound previ-
ously obtained by the same author.”’ Expressions of the
same type were obtained independently by Quartapelle and
Napolitano8 and Chang.g The advantage of the force formu-
las proposed by these authors, especially those in Refs. 1 and
9, is that they allow a partial identification of the separated
influence of added mass, skin friction, and normal stresses
induced by vorticity (see also Ref. 10 about this separation of
effects).

Here we generalize the force and torque expressions
given in Howe' for a single moving body, to the case of a
system of many moving bodies, in such a way that the
above-mentioned separation of effects can be, at least par-
tially, performed independently on each body. Howe himself
indicated implicitly this generalization in Ref. 5; it is also
natural in the context of the work of Quartapelle and
Napolitano8 and Chang.9 The particular case of the interac-
tion between a plane wall and an airfoil fixed to it was ex-
plicitly treated by Howe'' using the same idea as that used
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here. So, our main contribution in this paper is to pursue the
details of this natural generalization of the work by Howe to
any system of many moving bodies and to show that it may
be useful in the study of the problem of hydrodynamic inter-
action between bodies.

Our work is divided as follows. In Sec. II, we present a
generalization of Howe’s force expression to the case of
many bodies. The way we obtain this generalization is the
same one that Chang9 used to get his formulas, which is a
little different from the procedure of Howe’s." Section II has
a subsection about the particular case of no-slip boundary
conditions.

In Sec. III, we generalize the torque formula of Howe to
the case of many bodies. The procedure is very similar to
that used for the force formula. In Sec. IV, we compute the
drag and the lift on a pair of bubbles rising side by side with
the same constant velocity and at high Reynolds number. For
this, we were guided by the detailed numerical work of Leg-
endre et al.'” The idea was to apply the force formula ob-
tained in Sec. II to a system in which the velocity field could
be estimated analytically. The problem and its difficulties are
discussed in Sec. IV.

Il. FORCE FORMULAS

The hypotheses and notation used in this paper are as
follows. Consider a system of N rigid bodies whose bound-
aries are smooth (i.e., continuously differentiable) surfaces.
In each body, labeled a e {1,2,...,N}, fix a reference point
and an orthogonal reference frame K, centered on it. Let K
={e,,e,,e;} denote a reference frame fixed in space. The
configuration of the system is determined by N position vec-
tors R, and N orthogonal transformations 7,, where R, is
the position of the reference point of solid a with respect to
K, and T,:K,— K describes the orientation of body « with
respect to K. (T, is the attitude matrix of body «.) The ve-
locity and angular velocity of body « with respect to K will
be denoted by Ra and €, respectively. The set of points of
body « will be denoted by B,, and its boundary by dB,. The
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bodies move in a prescribed way, without collision, through
an incompressible liquid of density p and dynamic viscosity
. The region outside the bodies and occupied by the fluid
will be denoted by FI. The region Fl can be either bounded or
unbounded. If Fl is bounded, then its “external” boundary
will be denoted by dBy. In this case, dBy can be understood
as the boundary of a distinguished body By which contains
the liquid and all other bodies in its interior. If dB), is at rest,
then RN and Q, are null for all time. The case of partially
bounded domains can also be treated but it will not be ex-
plicitly considered here. The velocity field of the fluid will be
denoted by v and its vorticity field by w=V Xv. If FI is
unbounded, it will be assumed that the velocity and vorticity
fields decay sufficiently fast at infinity, such that the several
surface integrals at infinity that appear below can be ne-
glected. It suffices that v=0O(1/]x|?) and o=0O(1/|x|*). No-
tice that these surface integrals at infinity may also be zero
under milder hypotheses as in the case in which the velocity
and vorticity decay varies with the direction with slower de-
cay within narrow wake regions. However, we will not try to
present the most general hypotheses under which our results
hold. Decay estimates for the velocity and vorticity can be
found in several places such as, for instance, the appendix of
Ref. 1 or lemma 2.1 of Ref. 3 The pressure p is assumed
bounded at infinity.

In Howe’s formulas, a prominent role is played by cer-
tain velocity potentials. Here, for given body « and direction
e;, the analogue potential is provided by the solution of the
following problem:

Ad,i(x,6)=0 for x € Fl,

V¢ai(xvt) -n(x,t) = e - n(x,7) forx e B,

(1)
Vai(x,t) -n(x,t)=0 forx € dBg, B+ a,

|V¢w~(x,t)| = 0(1/|X|3) — 0 as |x| — 0,

where the last condition applies to the case in which FI is
unbounded. The irrotational velocity field V¢, is that of an
ideal fluid initially at rest acted upon by the motion of body
B, with velocity e; while all other bodies remain at rest.
Throughout this paper, n(x, ) denotes the unit normal vector
at boundary points x € dB,, at time ¢, which is directed to-
ward the inside of B,. Equation (1) depends on 7 through the
position and orientation of bodies Bg, B=1,...,N, which
change as the bodies move. So, ¢,; also depends on 7. In the
usual case of a single body, it is enough to solve Eq. (1) at
t=0 for i=1,2,3. The solutions to problems (1) for all other
positions and orientations can be obtained through conve-
nient translations and rotations of those at r=0. In the case of
many bodies, this is not true anymore. Nevertheless, if the
pairwise distance between bodies is sufficiently large, useful
approximated solutions for problem (1) in terms of one-body
solutions can still be obtained (see, for instance, Refs.
13-16). This will be done for the problem treated in Sec. IV.

The following derivation of force expressions is based
on that of Howe,' although we start differently writing the i
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component of the force, F,;, which acts on body B, as the
integral of the stress tensor over dB,,

Fai:f Pei'n_ﬂf (axjvi"' avn;, ()
B, B

a

where the sum convention over repeated indices is assumed.
Using the identity

aB 9By [

a

the viscous part of (2) can be rewritten as

— MfaB (ale),‘ + (Q.,C[Uj)l’lj =- /_LfaB (ﬁij[ - ﬁx;vj)nj

a

=—,uf e; X w-n. (3)
B,

To handle the pressure term, we multiply the Navier-Stokes
equation

pa,v+V<p+§|v|2)=pv><w—,uV X @ 4)

by V¢, and integrate over the region Fl occupied by the
fluid,

o ¥ oueawe [ ¥ ouv{psEn)
Fl Fl 2
=pJ V(ﬁai-VXw—,uf V-V Xo. (5)
Fl Fl

Each term in this sum will be analyzed separately. First,

f V¢m--Vp=f diV(pV¢m)=f pe;-n,
Fl Fl B,

where we have used the facts that V¢, n equals e;-n if n
€ dB, and vanishes if n € dB g, with 8# «, and that the sur-
face integral at infinity of pV ¢,;-n is zero. (For simplicity,
we will always refer to the case of an unbounded fluid do-
main.) Notice that the expression on the right-hand side of
the above equation is exactly the pressure force term that
appears in Eq. (2). In a similar way, we get

pf 2 P
o[ wauwhe=2|
2 Fl 2 Fl

=Ef [vPe; -
2 B

a

div(|[v[* V ¢,)

and
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—,u,f V(bai'VXw:,u,f div(Ve,; X o)
Fl Fl

Vg, X o n.
By

N
=u
B=1

Finally,

J Vqsai'atvzf at(vd)ai'v)_ V'U-'tvd)ai
Fl

F1 Fl

=<9zf Vd)ai'v_f v-V(v:-Vé,)
FI FI

- J v Vatqsai
Fl

=0 f div(ggv) = [ div[(v-Vg)v]
Fl

Fl

- f div(vd,de;)
Fl
N

=&t Ef ¢aiv‘n
p=1 By

(&t(ﬁai +v- V¢ai)v -,
(9BB

N

B=1
where we have again used the fact that the surface integrals
at infinity vanish, due to the decay hypotheses. Collecting all
the above terms, we obtain a force expression that is an
analogue to Howe’s equation (2.11) in Ref. 1,

N
Faiz_p&t Ef ¢aiv'n
p=1 By

(0 pai +V-Vg)v-n

N
+p>
p=1J g

—BJ |V|2e,--n+pf Vg VXw
2)m, Fl

N
+p V¢m><w‘n—uf
B=1

B,

e, Xw-n. (6)
By

Remark: Since each By is a rigid body, the factor v-n that
appears in all surface integrals above is given by

Vn=[RB+QBX(X—RB)]n,

where x € 9B . O

Remark: In the case of a single body, denoted just by «,
Eq. (6) is not exactly equation (2.11) in Ref. 1 obtained by
Howe. Indeed, Howe’s expression is more compact, and it is
written not in terms of the function ¢,;, but of X;=x,—R;
— ¢, For a single body in R?, the following identity holds:
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J [v[? f : [IVI2 ]
—e;-n= div| —e;
B, 2 Fl 2
kS
=| V|— | e
Fl 2

=fv><w-e,-+ (v-Vv)-e
Al Fl

=f v><w~Vx,-+f v;V-n. (7)
Fl oB

a

Using this identity in Eq. (6), one easily obtains Howe’s
expression,

Fai=—Pf9rf ¢m‘V'n—Pf (0X;+v-VX)v-n
B, B

+pf VX,--wXV+,u,f o X VX;-n.
FI B

If there is more than one body, however, it is not possible to
eliminate the integrals [|v|?e;-n from the surfaces of all bod-
ies. So, although Eq. (6) can be rewritten in other forms
using functions like X, the new expressions do not look sim-
pler than Eq. (6). O

Remark (Ideal flows): Howe' makes an interesting
analysis of forces in inviscid irrotational and rotational flows
for the case of a single body. The analysis becomes much
more complicated in the presence of more bodies. Let us
briefly discuss the case of irrotational flows. In this case,
only the first two lines of Eq. (6) are non-null. For a single
body in R, denoted by B,, it is possible to show that the
second line is also null. Indeed, in this case v=V¢ and Eq.
(7) becomes

\vj 2
J ﬂei "n= f (ax()D)V .
B, 2 B,

Then the second line of (6) becomes

pf ((?t¢ai+Vso~V¢m)V-n—pf (g, @)v-mn=0.  (8)
B, a

BCY

This last identity is proven in the appendix of Ref. 5. So, in
the case of one body. the only remaining term in (6) is the
one in the first line. It corresponds to the well-known added-
mass forces of potential flows (see Ref. 1, Sec. 2.2). With
more than one body, the second line of (6) does not cancel
out anymore. In Sec. IV, for instance, the potential flow of a
pair of spheres moving parallel to each other with uniform
velocity will be analyzed. For this system, the term in the
first line of (6) vanishes, but the one in the second line does
not, yielding instead an attractive force between the two
spheres. For arbitrary motion and body geometries, even in
the context of irrotational flows, the first two lines in Eq. (6)
can give rise to very complex interaction forces (see, for
instance, Ref. 15 for a treatment of this question using La-
grangian formalism). It is worth mentioning that the most
complete analysis of the forces and torques on a deformable
single body moving unsteadily in a weakly nonuniform, non-
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stationary, irrotational flow field was given by Galper and
Miloh."” O

A. No-slip boundary conditions

Some simplifications of expression (6) occur when a no-
slip boundary condition is imposed. In this case, the velocity
at the surface of each body is given by

v=R,+Q,X (x-R,), forx e dB,. 9)

This implies that

- Bf |v|%e;- n=pVol(B,)(Q, X R,) -e
2)m,

+pﬂa>< (an ga)‘eh (10)

where Vol(B,) is the volume of B, and
ga:f (X_Ruz) (11)
B[I

is the un-normalized center of volume of B ,, measured from
its reference point. In particular, if R, coincides with the
center of volume of B, then £, is null. Moreover, if ¢,,(x,?)
is known, then the other terms in lines one and two of Eq. (6)
are also known.

Remark (Skin friction): The no-slip boundary condi-
tion hypothesis implies that the stresses on the surface of
each body can be written as pn+un X (w—2€,). So, the last
term in Eq. (6) is an integral of tangential viscous stresses on
body B,, representing the so called skin friction. The other
term in the last line of Eq. (6) arises from the integral of the
pressure on the surface of B,. Howe gave this interpretation
in Ref. 18 (Sec. 2.3) and Ref. 19 (Sec. 4.4.3) and illustrated
the difference computing these terms for the Stokes drag on
a sphere. The distinction between both terms is more evident
here than in the case of a single body, since the integral of
the first term in the last line of Eq. (6) is over the surface of
all bodies, not only B,, and this is not consistent with the
concept of skin friction. This point is pursued further in
Ref. 10. ]

Remark: It is worth pointing out another big difference
between the case of a single body and that of more than one
body. In the case of a single body in R3, it is possible to
obtain the three functions ¢, ¢,, and ¢; for any 1€ R (we
will omit the index « to simplify the notation) since they are
known at r=0. This is a consequence of the invariance of the
Laplacian under translations and rotations. The construction
is as follows. Let T(z) be a rotation matrix that describes the
orientation of the body and which is given in the following
way: At time t=0, choose an arbitrary point X, in the body
distinct from its reference point. If x is the position at time ¢
of the chosen point, then 7(r) is such that x=R(z)+T(z)[x,
—-R(0)]. To simplify the notation, let us suppose that R(0)
=0, T(0)=identity, and let us denote the function X,
—R(1)+T(r)x, by x— t,(x,). Notice that i, is the flow of
the rigid body motion velocity field R+ X (x—R). If (?Sj(x),
j=1,2,3, denote the functions ¢;(x,0), j=1,2,3, at =0,
then it can be shown that for any ¢,
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@i(x,1) = Ty(1) J’][‘ﬁz_l (x)].

Using this, we conclude that on the surface of the body,
where the velocity field is the rigid-body one due to the
no-slip boundary condition, the following holds:

d
ddi(x,0) +v-V(x,1) = ;t (%), 1) 10

d -
= ;t Tij(t) d)j(x)|t:0'
Finally, from this identity, we obtain
f (0,pi+ v -V)v-n= ijkﬂjf DX, 1)V - 1. (12)
B B

This last equation is essentially expression (2.15) of Howe,'
which can be easily rewritten in terms of added-mass coef-
ficients. For the case of more than one body, however, this
very explicit construction does not work. Something similar
can be done when approximated explicit functions ¢,; are
used, as in Refs. 15 and 16. Yet the analogue to Eq. (12)
becomes much more complicated. O

lll. TORQUE FORMULAS

The following derivation of torque expressions is again
based on that of Howe.' Nevertheless, here we assume from
the beginning that, if u is different from zero, then no-slip
boundary conditions hold. So, if u#0, the force per unit
area on the surface of body « is

pn+un X (w-2Q,), (13)

while if ©=0, this force reduces to pn.

Remark: The reason for assuming no-slip boundary
conditions from the beginning is that expression (13) is not
true under more general boundary conditions if u# 0. Con-
sider, for instance, the velocity field v=(-x;,—x,,2x;) and
the surface X ={x;=0}. This surface is rigid, in the sense that
v-n=v-e;=0. The deviatoric stress tensor d,-j=,u,((9xl_vj
+(9ij ;) is not tangential at X. Indeed, the deviatoric force per
unit area on X is ue;(d,v;+ 6xjvl-) d;3=4ue;, which does not
agree with (13), since in this case =0 and w=0. Howe in
Ref. 1 also starts from expression (13), but does not discuss
this point. There are problems, like the bubble one in the
next section, where the flow is essentially irrotational, vis-
cosity is not null, and yet the boundary conditions are not the
no-slip ones. For this sort of problem, it is not clear that the
torque expressions of this section apply. O

The i component of the torque about the reference point
R, of body B, is

pe;- (x-R,) Xn
B,

Mai=

*“f e,-(x-R) X[nX (0-2Q)].  (14)
JdB

a

To find expressions for the torque, we do not use the auxil-
iary potential function ¢,; of the previous section, but in-
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stead the potential y,;, which is the solution to the following
problem:

Ax,i(x,1)=0 forx e FI,

Vxa.i(x,1) - n(x,r) =e; X (x—=R,) -n(x,r) for x € dB,,

(15)
VXai(X.) -n(x,)=0 forx € dBp, B# a,
|VXai(X7t)| = 0(1/|X|3) —0 as |x| —

where the last condition applies to the case in which Fl is
unbounded. To handle the pressure term in Eq. (14), we pro-
ceed as in the previous section, multiplying the Navier-
Stokes equation (4) by Vy,,; and integrate over Fl,

pf ani-&,HJ VXai'V(p+B|V|2)
Fl Fl 2

=pf V)(ai~v><w—,uf Vxai- VX o. (16)
Fl Fl

Each term in this equation can be handled in a way similar to
that in the previous section. For instance, the pressure part of
(14) can be written as

J V Xei- VP = f div(p V x )
Fl Fl

=f peiX(x—Ra)-n.
B,

Hence, essentially repeating the same steps that led to ex-
pression (6), we obtain

N

Mai=_p(9! EJ XaiV 1M
p=1 7 By
N
+p2 (atXai-'-V'VXai)v'n
p=17 B,
2o xR X
2 B,
N
+pf V)(m~v><w+,u,2 VXai X @ D
FI p=1 By
+,uf (0-2Q) X [e; X (x-R,)]-n, (17)
9B

a

where the last term is the one proportional to u in Eq. (14),
written in a different way.

Remark: Using the no-slip boundary condition, we can
write

2 e R
Z&H

=pei'(RaXQa) X§a+pei'ﬂax (Iaﬂa)’ (18)

where &, is defined in (11) and I, is the moment of inertia
operator given by
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TU . TU

FIG. 1. Diagram showing the coordinates used to describe the two-bubble
system.

Iaﬂa=f (X_Ra) X [Qa X (X_Ra)]'
Ba

O
Remark: In the case of a single body, the following
identity holds [it is the analogue to Eq. (12)]:

Xak(x7t)v ‘n,

f (OXai + V- VXV 1= iijjf
B

By

a

an integral that again can be rewritten in terms of the body’s
added-mass coefficients. 0

IV. A PAIR OF BUBBLES RISING SIDE BY SIDE
AT HIGH REYNOLDS NUMBER

Our goal in this section is to illustrate the use of the
force formula obtained in Sec. II. The system that we will
consider consists of two spherical bubbles rising with uni-
form velocity side by side. This problem was recently com-
putationally studied by Legendre et al.'® This detailed and
rather complete paper guided us on the subject. The differ-
ence between this system and that of two solid spheres lies in
the boundary conditions, the no-slip for the rigid spheres,
and the no-tangential-stress for the bubbles. This second
boundary condition is much milder in the sense of generating
vorticity.

The geometry of the problem is the following. Consider
a pair of spherical bubbles of radius a centered, respectively,
at y=-1/2 and /2 with respect to a Cartesian reference
frame {e,.e,,e }, see Fig. 1. We will denote the bubble at y
=-1/2 by B, and that at y=1/2 by Bg. The bubbles move
with constant and equal velocity Ue,. The force on each
bubble has two components: a drag in the direction of the
motion, e,, and a lift in the direction transversal to the mo-
tion, e,. These forces are usually given in dimensionless
form as drag and lift coefficients, Cj, and C;, respectively,
obtained dividing the forces by ma’pU?/2. Here we will be
interested in the limit of high Reynolds number, Re
=2apU/ u, and far apart bubbles, namely S=I[/a large. In
these limits, the leading-order terms of Cp, and C; on bubble
B,; are, as given in Ref. 12,

c 48(1 1) (19)
=—— + —
b Re 3/
- 21-8) "
L= g4 Re/’

The term in Cp, which is independent of the distance, was
first obtained by Levich,?’ and that proportional to S~ was
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obtained by Kok.?! Both Levich and Kok obtained their re-
sults equating the viscous power dissipated by the irrota-
tional flow to the work done by the drag. Here both terms in
(19) will be obtained from the surface integrals in the last
line of Eq. (6). The term in C; that is independent of the
Reynolds number, an attractive force, is due to the irrota-
tional velocity field of the two spheres. This term can be
found, for instance, in Ref. 22. Here it is obtained from the
integrals on the second line of (6), when only the potential
velocity field is taken into account. The term proportional to
Re™! in Cy, as far as we know, was not analytically derived
yet. In Ref. 12, Legendre et al. estimated this term numeri-
cally, after arguing that it should be of this form based on an
order of magnitude analysis like that in Moore.” In prin-
ciple, it is possible to obtain this part of C, from Eq. (6). It
comes from surface integrals in the second line of (6) and
from the volume integral in the third line of (6). The com-
putations are troublesome and it will not be pursued here.

We point out that with the use of Eq. (6), we were able to
obtain in a unified way all known results on this problem,
which were previously obtained using very different argu-
ments. Moreover, along the computations in Sec. IV C, one
can see that we are able to separate the different contribu-
tions of the normal viscous stress and the pressure stress to
the drag. This cannot be done through power dissipation
methods, and it was previously known only in the case of a
single bubble.”* This illustrates one of the main advantages
of Howe’s formula, namely the identification of different ef-
fects on the overall forces.

A. Boundary conditions and velocity potentials

The idea on how to study the flow around bubbles at
high Reynolds number® (Sec. 5.14) (Refs. 23-26) can be
briefly described as follows. At high Reynolds number, the
flow outside a system of bubbles is essentially irrotational
except for a boundary layer around each bubble of thickness
~Re™"? and a wake of breadth ~Re™/*. If the velocity po-
tential of the system is denoted by ¢, the velocity field of the
fluid can be written as v=V¢+u, where the velocity correc-
tion u is essentially different from zero only inside the vor-
tical region. At the boundary of each bubble, a free-
tangential-stress boundary condition must be satisfied. If
only the potential part of the flow is taken into account, this
condition is violated. In fact, in order to satisfy the free-
tangential-stress boundary condition, it is necessary that w
=V X u satisfies

w=2[n-V)Veg]Xn (21)

on the surface of each bubble.

In order to proceed, we need the velocity potential ¢ of
a pair of spheres as shown in Fig. 1, as well as the potentials
defined by Eq. (1). Velocity potentials for a pair of spheres
moving at arbitrary angle with respect to their line of center
can be found in Refs. 27 and 28, and approximations, such as
that presented below, can be found in Refs. 13 and 14. Up to
order 1/1* and in a neighborhood of the sphere B s> the func-
tion ¢ is given by
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Q= U(A0+A3 +A4), (22)
where

A 1d° 1d° p

0== 5 3%p=" 72 ¢0s b,
ZrB ZrB
l1d° 1d® 1d° 1d°

A3 —51_3 +2r_; .Xﬁ: 213 rB+ r_z COS 0,3,

(23)

l1d® ) a’ .
51—4 3rg+ 2r—3 cos g sin 6 cos ¢p.

B
Here {xﬁ, yﬁ,zﬁ} are Cartesian coordinates with origin at the
center of sphere By and axis parallel to those of system
{).c, v,z} shown in Fig.1, and {r,g., HB,d)B} are spherical coor-
dinates centered at sphere Bg, with

Xg=rpgcos g, yg=rgsin fcos ¢3, zg=rgsin Ogsin ¢B‘
The same ¢ is given in a neighborhood of sphere B, by
e=U(Ag+A5-Ay), (24)

where A, Az, and A, are the same functions given above but
evaluated at {x,, V4,24 and {r,, 0,, P}, which are Cartesian
and spherical coordinate systems, respectively, with the ori-
gin at the center of sphere a. Notice that qu~e,a= Ue, e,
and V(p~e,ﬁ= Ue,-e, . The solution to problem (1) for ¢z (1,
2, and 3 stand for the directions x,y,z, respectively) in a
neighborhood of B and up to order 1/ I* is given by

Dp1(xp. Y525 = Ag (25)
and near B, by

81 (XY aZa) = A3 = Ay. (26)
Near B,, ¢, is given by

a1 (XY arZa) = Ags (27)
and near Bg, it is given by

ba1 (XY po2p) = Az +Ay. (28)

Near B, the solution of (1) for ¢, up to order 1//* is given
by

¢,32(xﬁayﬁ’zﬁ) =E, (29)
and, near B,, by
Pp(XasYaZa) = E3+ Ey, (30)
where
Ey=- la—jy,;: - la_j sin 65 cos ¢g,
2 g 2 i

1a° a’ 1a’ a’\
E3=§l—3 2+g y‘8= 51—3 2}"B+r_é sSin GBCOS ¢ﬁ’
(1)
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B
1a°(3r5 &
=El—4(_2§+r_3 (3 sin2 QBCOSZ d)ﬁ_l)’
B

and again, near B,, we must replace (xﬁ,yﬁ,zﬁ) by
(Xg»Ya»rZa)s €tc. For ¢, similar expressions hold.

B. The pure irrotational part of the forces

We will just compute the forces on bubble By (those on
B, then follow from the symmetry of the problem). If the
flow is irrotational, only the first two lines of Eq.(6) contrib-
ute to the force. In fact, since the velocity of the bubbles is
constant, only the second line of Eq. (6) is nonzero. The
irrotational contribution to the force in the direction of the
motion e, is null. This is D’ Alambert’s paradox. In the con-
text of Eq.(6) with i=1, the best way to see this is to consider
both bubbles as a single rigid body. By symmetry, the force
on the pair is twice the force in each one. But for a single
rigid body, the second line of Eq. (6) is zero due to Eq.(8).

We turn to the computation of Fpg,. Substituting (22),
(24), (29), and (30) in the second line of Eq.(6), neglecting
all terms of order larger than 1/1*, remembering that n=
—e,B on dBg and n=-e, on dB,, and that, since the bubbles
are translating with velocity Ue,, we have ¢=¢(x—Ute,),
which implies that d,p=—UV ¢-e, (the same is true for
dipp. etc.), we obtain that the irrotational part of Cj is
—6/5*, which is the dominant term in the expression (20) for
the lift.

C. The drag coefficient Cp

Now we compute the integrals in the last line of Eq. (6).
Again we consider just the forces on bubble Bg. From the
boundary conditions (21) with Ra=Rﬁ= Ue,, we have on the
surface of By that w=wey+ wge,, wWhere

2
=———0, o,
@e a® sin O ‘/’B(P
(32)

2U . 2
W4= + 7 sin 6+ zo"%(p.

The same expressions hold on the surface of B,, replacing
rg, 0g, P by 1o, 04, o A simple symmetry argument involv-
ing parity with respect to the reflection §— 7— 6 can be used
to conclude that all functions that are being integrated in the
last line of Eq. (6), for i=2, which corresponds to a lift force,
are null. Therefore, there is no contribution of the last line of
Eq. (6) to the lift.

Next we compute the contributions of the last line of Eq.
(6) to the drag i=1, namely in the direction e,=e,. First
consider the integral

o
7

e Xw-e,.
5 1 g
B

This term comes from the integral of the viscous stresses on
dBg, Eq. (2), through the modification in Eq. (3). For a

Phys. Fluids 19, 057108 (2007)

bubble, the tangential stresses are null. So, although it is not
obvious from the expression above, the resulting force ob-
tained from the above integral is due to normal viscous
stresses acting on the surface of the bubble. Again, this
shows that the stress expression given in Eq. (13) does not
hold for the no-tangential-stress boundary condition as al-
ready noted in the remark below Eq. (13). After substituting
expressions (32) for w in the above integral, using some
parity arguments, and performing some elementary compu-
tations, we are led to the following result:

4
,u,f e Xw-e == 877'Ua,u—477'U,u,cll—3 + O/,
By

The part of this force that is independent of / is a piece of
Levich drag, the other is due to the interaction between
bubbles. The other integrals in the last line of Eq. (6),

—MJ V¢lew'erﬁ_lu‘J Vg Xw-e,,
B 3B,

are due to pressure stresses. Using w as in Eq. (32), and the
expression for ¢, in (25), we obtain, after some computa-
tions,

4
a

—,uf Vg Xw-e =-dmlUapn-2mUpn—5.
By b !

The term —4wUau is the last piece of Levich drag, which
comes from integrating pressure stresses. Finally, using w as
in Eq. (32) and ¢ as in (26), we obtain

4
a
—/,Lf Vg X w~era=—67'rU,ul—3.
B

@

Adding all these contributions and dividing by ma’pU?/2,
we obtain the expression (19) for Cj,.

Notice that the drag is completely determined by the
surface integrals in the last line of Eq. (6), and that these
integrals depend only on the vorticity on the surface of both
bubbles. This result is in agreement with those of Kang and
Leal** and Stone.” In particular, Stone showed that for any
bubble of any shape under steady translation, the drag coef-
ficient up to order Re™! depends only on the vorticity on the
bubble surface, and it does not depend on the vorticity within
the fluid (this was demonstrated using an identity that relates
the energy dissipated by the potential flow to the vorticity on
the surface of the bubble). The same applies here, as shown
in the following.

After all integrals already computed in Secs. IV B and
IV C are subtracted from the force expression in Eq. (6), the
following terms are left:

—pf (V<p-u)V¢3i-n+pf (Vgi-u)v-n
JB JB

B B

+PJ (V¢5i'u)V'n+Pf (Vo X w) - Vg
oB Fl

a

[uf?
—PJ — Vg ntp| (WX o) Vg
B F
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It is convenient to further transform these integrals: the first
plus the second line and the third line of the above expres-
sion become, after some computations, the first and the sec-
ond integral, respectively, of the following:

+pf u-VX(V(bBiXVq;)—pJ (u-Vu)-Veg. (33)
A A

The order of magnitude of each integral above with respect
to Re™! can be estimated using the analysis presented by
Moore® of the flow around a single bubble (see also Ref.
25). The first conclusion we get from this analysis is that up
to order Re™!, the contribution of the second integral in (33)
can be neglected in comparison to the first one for both com-
ponents of the force. This is very natural since u goes to zero
as Re—o0, So, we are left with the first integral of (33).

Let us consider the first integral in (33) with i=1, which
corresponds to the drag direction e;=e,. In this case, it is
convenient to write =U(¢,;+ ¢p ), which holds due to the
definition of ¢, and ¢g, in (1). Then

Vg XVo=UV ¢g X Vo,
U
=5 V(g1 = da1) X V(a1 + dp1)

and a parity analysis with respect to the variable y (we recall
that {x,y,z} are Cartesian coordinates with the origin at the
center of volume of the two bubbles) implies that the first
integral in (33) is zero. Therefore, at least up to the order of
magnitude considered here, there is no contribution to the
drag that comes from integrals in Eq. (6) that involve the
vorticity inside the fluid.

We can also show that the opposite situation arises for
the lift: All integrals in the last line of (6), which involve the
vorticity on the bubble surface, do not contribute to the vis-
cous part of the lift. The viscous part of the lift depends only
on the vorticity within the fluid.
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