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Abstract

A unified variational methodology is developed for classification and
clustering problems, and tested in the classification of tumors from gene
expression data. It is based on fluid-like flows in feature space that clus-
ter a set of observations by transforming them into likely samples from
p isotropic Gaussians, where p is the number of classes sought. The
methodology blurs the distinction between training and testing popula-
tions through the soft assignment of both to classes. The observations
act as Lagrangian markers for the flows, comparatively active or passive
depending on the current strength of the assignment to the corresponding
class.

1 Introduction

Some classification problems require few input variables. In clinical diagnosis,
for example, patients with active infections may be easily identified by the sole
presence of an elevated count of white blood cells in the circulation, while pa-
tients with advanced liver failure can be detected by measuring the ammonia
levels in the blood. If data from a large enough training population is available,
these variables can be calibrated so as to produce the desired classification when
a new testing sample becomes available. In the simplest scenario, this calibra-
tion may produce a table of possible ranges of the combined input variables –or
features– from which to read off the output; or a formula for the output, with
parameters fitted to the training data. A more thorough approach may estimate
a probability density in the space of features associated with each class, and use
it to infer the likelihood that the new sample belongs to each of the classes.
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Yet such combination of few required input variables and large training pop-
ulations is often unavailable. This is the case when one studies exceptional
situations, such as a rare illness, when observations are difficult or costly, and
when the fundamental causes underlying the separation into classes –which pre-
sumably link the classes to a few well-defined observables– are not thoroughly
understood, as is often the case in complex systems: the human body, our
planet’s climate, the financial world. Modern technology offers us a way to
compensate for this lack of understanding: the possibility to monitor not a few,
but myriads of variables loosely associated with the classification sought, such
as the expression level of genes, the sea-surface temperature throughout the
globe, and the prices of options. Presumably, we can balance with quantity of
data the missing well-defined causal links to a few.

There is a problem though. Consider, for instance, the simplest procedure of
compiling a table. Since the number of entries required grows exponentially with
the dimension of the feature space, as this grows, the size of the training popu-
lation required to fill the table soon becomes unrealistic (billions of patients, of
temperature monthly averages, of daily returns.) In building a parametric for-
mula, this problem translates into over-fitting: one can always find parameters
that provide a perfect fit to the training population, yet may yield meaningless
results on new samples.

Similarly, for density estimation, one needs a number m of training samples
that grows exponentially with the dimension n of the space; this is the “curse
of dimensionality”. For simple illustration, consider the situation when m < n.
Since all training points lie on a hyperplane of dimension m, they do not tell us
how to estimate the probability density away from this hyperplane. Yet, with
probability one, when a testing sample arrives, it will not lie on the hyperplane;
how can one then say anything meaningful about its likelihood? The planar
geometry of this illustration is not essential: the crucial point is that almost
all points in phase space are far from the observations –“not in the table”–, so
their estimated density is not reliable.

This problem seems insurmountable; yet there is something counter-intuitive
about it. Since the classification problem appears challenging, we gather more
information; can this extra information hurt us? Attempting to diagnose a
patient’s ailment, we are provided with extra clinical results: should we throw
them away without reading, lest they confound our judgment? Clearly, if there
is a problem, it resides not in the availability of additional data, but in our way
of handling it. In this article, we propose to bypass this problem through a
general methodology for classification and clustering.

The general principle is quite straightforward. We worry that the testing
points may lie far from the training observations, and so their probability density
in each class may be poorly estimated. Yet we have observations lying precisely
on the testing points: the testing points themselves! Of course, we do not know
a priori to which class they belong –that is what we would like to unfold from
the data–, but we do know that they belong to one of them. This knowledge can
be used to provide a robust classification scheme. Such use of unlabeled data
for classification lies at the core of semi-supervised learning [2] and transductive
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inference [12]. This methodological direction blurs the distinction between the
training and testing populations. One can pursue this idea further, to establish a
general methodology that does not distinguish between problems in classification
and in clustering; the latter do not have a training population at all.

Our proposal, which builds on a density estimation algorithm developed in
[11], is based on a set of fluid-like flows that transform the observations into
realizations of p isotropic Gaussian processes. The flows use the observations
as active Lagrangian markers, which guide the descent of the Kullback-Leibler
[10] divergence between the current distributions and the target Gaussians. All
observations guide all p flows but, as some become more firmly assigned to indi-
vidual classes, they become more active in the flows associated with these, while
behaving more and more as passive Lagrangian markers for the others. This pro-
cedure allows us to integrate the expectation-maximization methodology into a
natural descent framework.

Many of the topics discussed in this paper have points in common with
themes in the literature; our contribution provides novel ingredients, but also a
unified methodology and viewpoint. A central role is played by the Expectation
Maximization framework [4], for which we provide an alternative derivation
in classification-clustering settings. The Gaussianization procedure for density
estimation was originally developed in [11], but shares some traits with one
developed in [3], in the general context of exploratory projection pursuit [6].
Variable selection is a broad field (see [8] for a general review); we use a cluster
assessment criterion for variable selection that fits loosely within those based
on information theory [5]. Our main innovation is the use of smooth, gradual
flows as a clustering technique.

The paper is structured as follows. After this introduction, section 2 presents
a general, unified formulation of classification and clustering in the EM frame-
work. Section 3 introduces the flows in feature space, the centerpiece of the
methodology proposed. Section 4 extends the methodology to cluster assess-
ment, with focus on its application to the selection of observables for classifica-
tion. Section 5 illustrates the procedures discussed in the context of a medical
application, the classification of tumors, using data from two published sources:
one concerning the small round blue cell tumors of childhood [9], and the other
two classes of acute leukemia [7]. Finally, section 6 closes the paper with some
concluding remarks.

2 Clustering and classification: a unified formu-
lation

The clustering problem consists of the following: given a matrix Z of m obser-
vations zj of n variables zi, one is asked to partition the observations into p
clusters Ck with common traits.

By contrast, in a classification problem, one is asked to assign testing obser-
vations yj to the class Ck, k ∈ (1, . . . , p), with which each has the most traits in

3



common. To identify these traits, one is told the classes to which a set of train-
ing observations xj belong. A prior belief πjk on the attribution of each testing

observation may be provided as additional input; πjk represents the probability,
before observing any feature, that the jth sample belongs to the kth class.

The classification problem can be generalized and softened, regarding both
the goal sought and the input required. One may seek, instead of a rigid as-
signment, a probability pjk that the testing observation yj belong to the class
Ck. Also, one may be provided with just a soft assignment of the training
population: the probability pjk that xj is in Ck. The clustering problem can
be generalized in a similar way: one may seek a soft partition, in which each
observation zj has probability pjk of belonging to the cluster Ck.

It should be clear at this point that the two problems, clustering and classi-
fication, in their generalized formulation, can be posed in a unified way: given
a matrix X of m observations xj of n variables xi, and, for a subset Jtrain
of the observations, the probability pjk that the observation xj is in class Ck,

one seeks the corresponding posterior probabilities pjk for the remaining obser-

vations, j ∈ Jtest, for which we only have a prior, πjk. The only difference
between the two problems in this formulation is that, for pure clustering, Jtrain
is empty.

Notice too that one recovers the “hard” version of the two problems if the
training observations have probabilities pjk that are either zero or one; and a
rule is established to assign a testing observation xj to a class, such as choosing
the class Ck with maximal pjk.

2.1 Clustering and classification through density estima-
tion

How can one characterize the “common traits” that define each class Ck? The
most natural and general way is through a probability density ρk(x), which
specifies how likely it is to find a sample with observables x in the class Ck.
Given one such probability density for each class, the posterior probability pjk
that the observation xj belongs to the class Ck follows from Bayes formula,

pjk =
πjk ρk(xj)∑
q π

j
q ρq(xj)

. (1)

Assume that we are in possession of a density–estimation algorithm that,
given a set of m observations yj of n variables, produces an estimate for the
underlying probability density ρ(y). The way density estimation is usually ap-
plied to classification problems involves estimating the distributions ρk(x) from
the training data, and then applying (1) to each member xj of the testing pop-
ulation, to infer the probability that it belong to each class k.

Yet this procedure does not use all the information at our disposal. This
leads to problems when, as is often the case, one has observations of many
variables and a relatively small training population (For instance, in micro-
array based diagnosis, one may have records of the expression level of tens of
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thousands of genes, from a training population of a few hundred patients.) In
classical procedures, such as linear regression, this yields the problem of over-
fitting: with so many variables at one’s disposal, one can produce a perfect fit
of the training data, yet obtain poor results on the tests.

In procedures based on density estimation, this problems manifests itself
as under-sampling: one needs to estimate a probability density in a high-
dimensional space from only a handful of observations. Clearly, any such
density-estimation is necessarily poor. When the testing observations become
available, they are likely to be far from all training observations, and hence
assigned an inaccurate probability density in each class.

Rephrasing this: a problem arises in density-based classification, because the
probability densities of some or all classes may be under-resolved at the testing
points, due to the lack of training samples nearby. Yet we do have information
located precisely at the testing points: the testing samples themselves! We do
not know to which class they belong –that’s precisely the point of the classifi-
cation exercise–, but we do know that they belong to one class. Hence at least
one of the p distributions ρk should be nonzero at each testing point.

Consider density-estimation algorithms based on the maximization of the
likelihood of the data,

ρ = arg

(
max
ρ

(L[ρ])

)
,

where L is the logarithm of the likelihood function,

L[ρ] =

m∑
j=1

log
(
ρ
(
yj
))
, (2)

and the maximization is carried over a proposed set of permissible distribu-
tions ρ(y). The standard procedure would perform this maximization over each
class in the training population, and then infer the probabilities for the testing
population from Bayes formula (1). For each class, we would maximize

Lk =

j∈Ck∑
training

log(ρk(xj)). (3)

Yet this likelihood function does not take into the account the testing observa-
tions; in particular, the fact that each must belong to one of the classes. Since
the probability density for a testing observation xj is

ρ(xj) =
∑
k

πjk ρk(xj) , (4)

where πjk is the prior probability that the jth sample belongs to the kth class, the
complete log-likelihood for all observations involves now a sum over all classes,

L =
∑

training

∑
k

pjk log(ρk(xj)) +
∑

testing

log

(∑
k

πjk ρk(xj)

)
, (5)
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where pjk is one if the jth training observation belongs to the class k, and zero
otherwise.

Consider the derivative of the testing component of the likelihood function
with respect to ρjk = ρk(xj):

∂

∂ρjk
log

(∑
k

πjk ρ
j
k

)
=

πjk∑
k π

j
k ρ

j
k

=
pjk
ρjk
, (6)

where pjk is the posterior probability from (1). Notice that this is the same as
the partial derivative of the weighted log-likelihood∑

k

pjk log(ρjk) , (7)

if the posteriors pjk are kept fixed. Then the complete log-likelihood (5) has the
same partial derivatives with respect to the densities as the sum

L =
∑
k

Lk , where Lk =
∑
j

pjk log(ρk(xj)) , (8)

where the only difference between training and testing population is that the
priors πjk of the former are typically far more biased, possibly all the way to
Kroeneker deltas, as in the derivation above.

Initially, the probabilities pjk can be taken equal to the priors πjk. Maximiz-

ing the Lk’s with fixed pjk gives rise to a set of estimated densities ρ0k(x). Then,
in an expectation-maximization (EM) approach, we can iterate the procedure
with the probabilities pjk now given by the posterior from (1), and hence update
the ρtk(x)’s into ρt+1

k (x)’s, until convergence. Notice that this procedure remains
unchanged when the training population is only softly assigned to their classes;
then the provided pjk are not Kroeneker deltas, but more general discrete prob-
abilities. Finally, the procedure applies also when the training population is
empty, yielding a methodology for clustering.

To fix ideas, we re-enunciate the procedure more formally below. If a para-
metric density estimation procedure is provided, then, given

• a matrix X of m observations xj of n variables xi,

• a number p of classes Ck,

• a prior probability πjk that each observation j belong to class Ck,

• a family of probability distributions ρ(x;α),

we perform an iterative procedure that computes, at each step t ≥ 0, an esti-
mated probability P jk [t] that each observation j is in class Ck, and, for t > 0, a
set of estimated probability densities ρtk(x) describing each class Ck, as follows:

• Set the initial probabilities at their prior values, P jk [0] = πjk.
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• For all steps t > 0,

– compute ρtk(x) by maximizing over the parameters α the expected
value of the log-likelihood,

Lk =
∑
j

P jk [t− 1] log(ρtk(xj)) , ρtk(x) ∈ ρ(x;α) , (9)

for each class Ck.

– update the probabilities P jk through Bayes formula,

P jk [t] =
πjk ρ

t
k(xj)∑

q π
j
q ρtq(x

j)
, (10)

until a convergence criterion is satisfied.

(When performing pure clustering –i.e. when the priors πjk do not depend on j–,
we need to break the symmetry between classes in order to start the algorithm.
This can be achieved by making some of the initial assignments P jk [0] slightly
different for the various samples j.)

3 A normalizing flow

The procedure above seeks, for each class k, a fit to a parametric family of
distributions, ρk(x;α). Here we propose an alternative, in which each of these
distributions is characterized by a map yk(x) and a common target distribution
µ(y), so that

ρk(x) = Jk(x)µ(yk(x)) , (11)

where Jk(x) is the Jacobian of the map x→ yk. If the maps yk(x) are described
in terms of a set of parameters α, this appears to be just a convoluted rewriting
of the parametric proposal ρk(x;α). Yet we shall see that not only is such
a rewriting natural, giving rise to a geometric, “dual” view of the clusteing–
classification problem, but also that it provides a full class of novel, effective
algorithms for implementing its solution.

The duality comes about from looking at the proposal (11) from two alter-
native perpectives: given a sample of x, we seek either the density ρ(x) that
best represents it, or the map y(x) that best transforms it into a sample from
the known density µ(y). We have developed such an approach to density esti-
mation in [11]; in the classification-clustering context of this article, each map
yk(x) adquires an extra degree of signification, as it either “absorbs” or “rejects”
each observation into the geometric cluster of its corresponding class.

We may, as in [11], introduce an “algorithmic time” t, and think of the maps
yk(x) as terminal points of flows zk(x; t), with

zk(x; 0) = x, zk(x;∞) = yk(x).
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At each time t, we have a current estimate for the probability density in each
class,

ρtk(x) = Jk(x; t)µ(zk(x; t)) . (12)

These densities, in turn, determine the soft assignments P jk [t] from (10), and
hence the compounded log-likelihood

L =
∑
k,j

P jk [t] log(ρtk(xj ; t)) . (13)

Following the EM-like algorithm of the prior section, one could, in each time-
step, maximize L over the parameters in the densities, with the assignments
P jk [t] fixed, and then update these using Bayes. Yet, because the densities are
defined by flows zk(x; t), we can switch from discrete to continuous times t,
and evolve the flows through their corresponding velocity fields uk = ∂

∂tzk(x; t),
computed by ascent of the log-likelihood L:

uk ∝
δL

δuk
,

where the variations are taken with P jk fixed, from the argument in the previous
section extended to the continuous scenario.

In the presence of infinitely many observations, the log-likelihood (13) adopts
the form

L =
∑
k

∫
Pk(x; t) log(ρtk(x; t)) ρk(x) dx, (14)

where ρk(x) is the actual probability density for the class k evaluated at the
point x, ρtk(x; t) is given by (12), Pk(x; t) by

Pk(x; t) =
πk(x) ρtk(x)∑
q πq(x) ρtq(x)

, (15)

and the flow zk(x; t) satisfies the system of integro-differential equations

∂

∂t
zk(x; t) =

δL

δzk
, (16)

where again the variations are taken with Pk(x; t) fixed:

δL

δzk
= Pk(zk) Jk(x)

(
∇zkµ(zk)

µ(zk)
ρk(zk)−∇zkρk(zk)

)
. (17)

Here

ρk(zk(x)) =
ρk(x)

Jk(x)

is the current probability density of the zk’s and Pk(zk) is a shorthand for Pk(x),
with zk = zx(x).
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In this expression, it is only the Jacobian Jk(x) that keeps track of the
original observation x where the flow started. Here is where the dual view
of the flow becomes useful: if, instead of performing density estimation –i.e.,
finding ρk(x)– we were normalizing x through a map zk(x; t) converging to a
yk(x) with µ-statistics, there would be no need, at each time, to remember which
x we started at: the present values of z are all we need to continue deforming
them into a sample of µ. Then, adopting this dual view, we can remove the
Jacobian Jk(x) from the dynamics, turning the equations memory-less, with all
times formally identical to t = 0.

The resulting algorithm is a blend of the normalizing ideas developed in [11]
and the clustering and classification through EM and soft-assignments of section
(2). As before, we start with a matrix X of m observations xj of n variables xi,
and a prior probability πjk that observation j belong to class Ck, k ∈ 1, . . . , p.
Then we follow p flows zk(x; t), through the following steps:

• Preconditioning: In a first, preconditioning step, one considers each
class k, with all observations xj softly assigned to it according to their
prior πjk. Computing the weighted mean

x̄k =

∑
πjkx

j∑
πjk

and average standard deviation

σk =

√∑
πjk‖xj − x̄k‖2

n
∑
πjk

,

one obtains, for each flow, the particles’ centered and normalized initial
positions:

zjk = zk(xj ; 0+) =
xj − x̄k
σk

. (18)

The corresponding initial Jacobians of the flow are given by Jjk = σ−nk .

• Flow: For all (discretized) steps t > 0,

1. Compute the soft assignments,

P jk =
πjk ρ

j
k∑

q π
j
q ρ

j
q

, (19)

where
ρjk = Jjk µ(zjk) . (20)

2. Perform a normalizing step in each class. Following the procedure
developed in [11], we propose for target distribution the isotropic
Gaussian

µ(y) =
1

(2π)
n
2
e−

1
2 |y|

2

.
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Then each step starts with a random unitary transformation,

zjk → Ukz
j
k,

followed by n one-dimensional, near-identity transformations (one
per dimension i),

zjk(i) → F ik(zjk(i))

Jjk → d

dz
F ik(zjk(i)) Jjk ,

that moves its marginal distribution toward Gaussianity. The trans-
formation F ik is selected from a parametric family F (z;α), with F (z; 0) =
z, by ascent of the log-likelihood:

α ∝ ∇αLi |α=0 , (21)

where

Li(α) =

m∑
j=1

P jk

[
log
∣∣∣Fz (zjk(i);α

)∣∣∣+ log µ
(
F
(
zjk(i);α

))]
;

here µ(z) is the one-dimensional normal distribution.

The flows zk(x; t) and their Jacobian need only be computed on the obser-
vations xj . If there are other points x̃ where the density ρ is sought, these can
be carried passively by the algorithm, without affecting the log-likelihood. In
regular classification, the xj ’s are the observations in each class, and the x̃’s
those in the testing population. In the unified framework for classification and
clustering presented here, all observations constitute “active” markers for all
classes, with their contributions to the log-likelihood corresponding to class k
weighted by the probabilities P jk .

4 Cluster assessment and variable selection

The methodology developed above, which follows flows zk(x; t) in phase space
in order to softly assign a set of observations to classes, can be used to address
the reciprocal problem: to assess how well a set of variables x supports a given
clustering, i.e. a distribution of a population into classes with probability qjk.

This includes as a particular case the hard attribution qjk = δkkj , where kj is the
class assigned to the jth observation.

There are a number of situations where a clustering assessment criterion is
useful. The one that motivates us here is the problem of variable selection.
When the number of observed variables greatly exceeds the number of indepen-
dent observations, one may want to use only a subset of these variables. It is
natural then to pick those that “best” cluster the data. In classification prob-
lems, for instance, one may choose the variables that optimize the clustering of
the training data given by its actual class attribution.
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A natural measure of how well the variables xi support a clustering qjk is
provided by minus the cross-entropy:

M =
∑
k,j

qjk log
(
pjk

)
(22)

(the minus arising because we seek to discriminate among classes, i.e. order,
not disorder.) Here the probabilities pjk are the ones implied by the observed
variables xi under the given clustering; they follow from Bayes formula (1),
where the densities ρk(x) maximize the log-likelihood functions

Lk =
∑
j

qjk log(ρk(xj)) . (23)

The densities ρk can be computed by the same flow methodology described
above, with the qjk’s either provided –as when hard assignments into classes are

known for the training population– or equated to the posterior assignments pjk.
In the latter case, the procedure is identical to the one for clustering, except
for a matter of emphasis: the quantity sought is not the set of assignments pjk
or densities ρk(x) –though these are computed in the process– but the negative
cross-entropy M .

Since the measure in (22) agrees, up to a sign and an additive constant, with
the Kullback-Leibler (KL) divergence [10] of q and p:

DKL(q, p) =
∑
k,j

qjk log

(
qjk
pjk

)
, (24)

the maximum possible value of M is achieved when pjk = qjk, i.e. when the
variables xi yield precisely the attribution provided. Then DKL(p, p) = 0, and
M becomes the negative entropy derived from the observations,

M =
∑
k,j

pjk log
(
pjk

)
(25)

a meaningful measure of the effectiveness of the underlying variables for clus-
tering.

To better understand the meaning of the attributions qjk, let us consider
some typical applications to the selection of a subset i ∈ I of variables from a
larger set IT .

• Classification problem (first approach): In the classification problem, we
typically have a training population for which the classes are known. We
can then select those variables xi that maximize M on the training pop-
ulation, where qjk = δkkj . In this case, the measure M represents the

log-likelihood of the posterior probabilities pjk under the observed attribu-
tions.
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• Clustering: For clustering, one does not know the attributions qjk before

hand. Then we must adopt qjk = pjk; i.e. perform a clustering procedure
from the variables xi and assess its performance by its own implied neg-
ative entropy. Since M ≤ 0, its maximum possible value is zero. This is
achieved when the pjk are sharp ones and zeros, corresponding to clustering
with complete certainty.

• Classification problem (refined approach): When the training population is
small and the testing one large, one might be tempted to use the clustering
approach above rather than the one suggested for classification. In fact,
one should always do this: using the training population alone for the
assessment misses the information available in the observed values of x in
the testing population. The best approach, then, uses the full combined
population, with the known values of qjk for the training observations, and

the posteriors qjk = pjk for the testing ones.

Selecting a subset I ⊂ IT of the variables involves a combinatorial search,
that can be prohibitively expensive when the cardinalities of I and IT are large.
Moreover, each density estimation can involve a significant amount of work.
Simple practical strategies to reduce this work come in two flavors:

• Not to test all of I at once, but instead smaller subsets. In the simplest
case, one computes the performance of each individual variable acting
alone, and selects those that rank at the top.

• Not to perform a fully-blown density estimation for the ρk’s, but a straight-
forward one, such as simple parametric estimation to an isotropic Gaus-
sian.

Clearly, more sophisticated searches can be devised. The right balance depends
on the significance of the variable reduction and the resources available. If the
number of variables is being reduced just to make the problem more tractable,
then the simplest strategy may be used. If the goal is to identify key variables,
such as sets of genes related to a particular disease, a more thorough search
is indicated. In the clinical examples below for tumor classification from mi-
croarray data, we have adopted the simplest approach of assessing each variable
individually through a density estimation based on isotropic Gaussians, with
very good results.

5 Clinical examples: classification of tumors

In order to illustrate the use of the methodology proposed here, we applied it
to two well-characterized data sets available in the literature, both concerned
with the diagnosis of tumors from gene expression. The first data set [9] has the
expression level of 2308 genes from tumor biopsies and cell lines, of 83 patients
with one of four types of the small, round blue cell tumors of childhood: neu-
roblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin lymphoma (NHL),
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and the Ewing family (EWS). The second set [7] has the expression level of 6817
genes from bone marrow and peripheral blood samples, of 72 patients with one
of two classes of acute leukemia: acute lymphoblastic leukemia (ALL) and acute
myeloid leukemia (AML). These two data sets are qualitatively different, as it
will become apparent in the plots below. We attribute this difference mainly
to the fact that the 2308 genes in [9] are a subset from a total of 6567, filtered
so that they all have at least a minimal level of expression. By contrast, the
6817 genes in [7] are unfiltered, which results in many genes having a uniform
expression level in many of the samples. We shall see that the methodology
proposed works well with both filtered and unfiltered data.

5.1 Diagnosing one sample at a time

We first concerned ourselves with classification. In a first set of experiments,
we picked each sample in turn as a testing case and used the remaining ones
for training, with the goal of diagnosing the type of cancer of the test. This
involves the following steps:

• Assigning a prior probability πjk that sample j belongs to the kth class. We

used a uniform πjk = 1
4 for the four tumors of childhood, and πjk = 1

2 for
the two lymphomas. Notice that these priors are assigned to the training
population too, as they are needed for gene selection.

• Selecting a subset of genes. We rank the genes by the measure (25), where
the P jk are the posteriors computed by the clustering algorithm using one

gene at a time, the Qjk are ones or zeros for the training population, and

Qjk = P jk for the tests. Then we pick the n top-ranking genes.

• Classifying the testing samples (one in this case). Using the selected genes,
we compute the posterior P jk for each test, and assign it to the class with
largest posterior.

When the number n of selected genes is large enough, just the pre-conditioning
step of the algorithm scores a nearly perfect performance. Thus, with n ≥ 20,
all 83 cases with the round blue cell tumors of childhood are classified correctly,
as are all but two of the 72 cases with acute Leukemia with n ≥ 10. The
nonlinear steps allow us to further reduce the number of required genes for a
correct diagnosis.

For illustration, we show the results of using just two genes to diagnose one
particular patient with non-Hodgkin lymphoma. Figure 1 shows the raw data
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Figure 1: Raw data in the plane of two genes, selected because they ranked
first in their ability to cluster the population. To make the selection procedure
expedient, each gene was only considered individually, and the associated den-
sity estimation was reduced to its pre-conditioning step, which consists only of
a rigid displacement and an isotropic linear rescaling. In the plot, the training
population is colored according to class. The testing sample in green was chosen
for this illustration because, lying on the outskirts of the clusters, it is among
the most challenging to classify.

in the “gene space” of the two genes selected by the algorithm based on the
training population. The various types of tumor are shown in different colors,
and the patient to diagnose in green, since the code is not informed of the
actual diagnosis, according to which it should be colored cyan. Notice in this
figure how well the two genes chosen by the algorithm cluster the four types of
tumor. Figures 2 and 3 tell graphically the story of how the diagnosis of this
particular “green” patient, evolves as the iterations progress. In figure 2, we
see the transformed variables z = φt(x) for the four classes of tumors, including
in each –through EM– the still undiagnosed patient. The top row of panels
represents the same data as in figure 1, separated by class. The second row
has the results of the pre-conditioning, which corresponds simply to a displaced
and re-scaled version of the top panel. At this level –with zero iterations–, the
code miss-assigns the patient to class EWS, since it is closer to its center than
to that of NHL. However, neither of the corresponding clusters corresponds yet
to an isotropic Gaussian. As the iterations progress in the next two rows of
panels, we see the clusters evolving toward Gaussianity, with the green point
clearly included in the cloud of NHL, and not in that of EWS. This evolution,
at the level of the actual diagnosis, can be seen in figure 3, which displays the
evolution of the assignment P [t]k, which relaxes to the posterior probability
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Figure 2: Datapoints transformed according to class, with the testing point
in green softly assigned to the classes according to its posterior probability of
belonging to each. The top panels display the raw data in the plane of the two
selected genes, as in figure 1, sorted by class. The second row is a rescaled and
re-centered version of the one above, corresponding to the pre-conditioning step.
The third and fourth rows are snap-shots of the nonlinear normalizing map that
the algorithm performs. As each class approaches a Gaussian distribution, the
testing point is either absorbed or rejected.

pjk that the tumor belongs to each of the four classes. Initially, all P [t]k’s are
equal to 0.25 –the prior– and, though initially the probability of the wrong class
(EWS) grows, it is eventually overcome overwhelmingly by the probability of the
correct diagnosis, NHL. An example from the Leukemia populations is depicted
in figures 4, 5 and 6. This particular diagnosis was produced with 13 genes,
though the plots show only the plane of the first two genes at time t = 0, and
of the first two components of z = φt(x) for later times. As figure 6 shows, the
patient is diagnosed correctly with AML from time zero, but with a probability
only barely above fifty percent. As the iterations evolve, this probability reaches
one. Figure 5 shows this evolution in the space of the first two variables where,
as the clusters become more clearly Gaussian, the green point gets ejected from
the wrong cloud, ALL, and absorbed into the one of its true class, AML.
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Figure 3: Evolving assignment P [t]k that the testing sample belongs in each
class. Even though the initial trend assigns the sample incorrectly, as, after the
linear re-scaling, it is closest to the center of class D, this is corrected as the
normalizing procedure unveils more detailed structure of the probability density
of each class.

5.2 Multi-sample diagnosis

Given the success of the classification procedure above, it is natural to ask
whether we could have done similarly well with less information at our disposal.
In particular, can we achieve similar results inverting the ratio of testing to
training samples, i.e. using only a handful of training cases to diagnose most of
the population?

To address this question, we reduced the training set for the classification
of the four childhood tumors to only five samples per cancer type, and used it
to classify all the remaining samples. The results were invariably very good:
using 60 genes, for instance, we classified correctly 95 percent of the samples.
Similar results were obtained from the Leukemia samples: from a training set
of just two patients per class, 110 genes yielded 90 percent correct diagnoses.
In all cases, the nonlinear component of the algorithm was fundamental for its
success: the linear preconditioning step alone yielded a poorer outcome.

The weakest step of the procedure, when the training population is so small,
is not the classification itself, but the selection of the genes to use: it is difficult
to assess which variables best cluster the various classes, when each class is
severely unrepresented. This is compounded by the fact that the gene selection
process itself is reduced to its bare essence: assessing one variable at a time,
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Figure 4: Same as figure 1, but for the classification of lymphomas. Even
though the samples are shown in the plane of the first two-genes selected by
their clustering capability, the actual number of genes used is 13. Notice the
presence, in this unfiltered dataset, of samples where the genes sit at their
nominal minimal level of expression, requiring more than two genes for sensible
clustering and classification. In particular, it would be impossible to classify
correctly the test sample, plotted in green, from these two genes alone.

and just by linear means. When we select the best set of genes using a larger
training population, we obtain a classification that is close to a hundred percent
correct, even when the training population for the classification itself is reduced
to just two samples per class. This will be more thoroughly discussed in the
subsection below in the context of clustering, where the situation is even more
extreme, with an empty training population.

5.3 Clustering (class discovery)

We can carry the multi-sample idea to the limit, and get rid of the training
population altogether. Here we cannot any longer classify, since there is no
longer a name attached to the various classes. Yet we can see if the clustering
that the algorithm proposes agrees with the known classification by tumor type.
In the language of [7], this is the process of “class discovery”: patterns in the
gene expression suggest the existence of various underlying tumor types.

The steps are the same as in the procedures above, except that we need to
break the initial symmetry among classes. We do this by picking as initial soft
assignments Qjk’s not the priors πjk, but a small random perturbation:

Qjk = πjk + rjk , (26)
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Figure 5: Same as figure 2, for the two cases of acute leukemia. The evolution is
displayed in the plane of the first two variables, which correspond to two genes
at the initial time. Yet the algorithm works in a 13-dimensional space. It is out
of the information in these 13 genes that the procedure manages to identify the
correct class and, in the plots displayed, “eject” the sample from the Gaussian
cluster of the incorrect class.

where the rjk’s are small random numbers adding to zero over k.
The problem of gene selection, however, already present when the training

population was small, becomes acute when this vanishes completely. This is
to be expected even from a purely philosophical perspective: we are asked to
figure out, from a set of thousands of genes, which are the ones that best cluster
a population of around a hundred patients. Yet without a training population
that weights the cancer type in, the procedure may blindly cluster the data
points from a different angle, be it by age, gender, ethnicity, blood type, heart
condition. Even random variations of the gene expression, not attributable to
any specific cause, may give rise to robust clusters when the ratio of candidate
variables to patients is so big.

Therefore, in our experiments, we selected the genes to utilize making use
of the diagnosis of all tumors, and only forgot these diagnoses when performing
the clustering itself. The success rate is huge, reaching a hundred percent once
enough genes are used: for the small blue round tumors of childhood, 70 genes
are enough; for the two kinds of acute leukemia, just 10 do the job. We illustrate
this in experiments with a smaller number of genes. Figure 7 shows the result
of using 40 genes for clustering the childhood tumors: only one sample is placed
in the wrong class. Figure 8 uses 6 genes for clustering the leukemia samples,
discovering classes that agree with the type of leukemia in 93 percent of the
samples.
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Figure 6: Same as figure 3, but for the evolving assignment of the testing sample
to one of the two classes of leukemia.

6 Conclusions

A general methodology was developed for classification and clustering, and
demonstrated on two well-characterized clinical examples involving the classifi-
cation of tumors. The building block is a density estimation procedure based on
the joint, multi-Gaussianization of the variables through fluid-like flows, where
the observations play the role of active Lagrangian markers. As an observation
becomes more clearly assigned to one class, it plays a more active role in the
corresponding flow, while acting as a nearly passive marker for the others. The
methodological framework involves the blurring of distinctions between train-
ing and testing populations. This serves the purpose not just of unifying the
procedures for classification and clustering, but also of palliating the curse of
dimensionality in classification problems with high-dimensional data, through
the use of unlabeled data.
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Figure 8: Same as figure 7, but for the two types of acute leukemia, clustered
using 6 genes. Shown circled are the observations assigned to classes that do
not agree with the type of leukemia.

References

[1] Bishop, C. M., Pattern recognition and machine learning, Springer,
2006.

[2] Chapelle, O., B. Schlkopf and A. Zien, Semi-supervised learning, MIT
Press, 2006.

[3] Chen, S. S., Gopinath, R. A. “Gaussianization.” In T.K. Leen, T.G. Di-
etterich, and V. Tresp (Eds.). Advances in neural information processing
systems 13, 423–429. Cambridge, MA: MIT Press, 2001.

[4] Dempster, A., Laird, N. and Rubin, D., “Likelihood from incomplete data
via the EM algorithm”, Journal of the Royal Statistical Society, Series B,
39, 1:38, 1977.

[5] Dhillon, I. S., Mallela, S. and Kumar, R. “A divisive information-theoretic
feature clustering algorithm for text classification”, J. Mach. Learn. Res.,
3, 1265-1287, 2003.

[6] Friedman, J. H., Stuetzle, W. and Schroeder, A. “Projection pursuit density
estimation.” J. Amer. Statist. Assoc. 79, 599–608, 1984.

21



[7] Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M.,
Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A.,
Bloomfield, C. D., Lander, E. S., “Molecular classification of cancer: class
discovery and class prediction by gene expression monitoring”, Science,
286, 531–537, 1999.

[8] Guyon, I. and Elisseeff, A., “An introduction to variable and feature selec-
tion”, J. Mach. Learn. Res., 3, 1157-1182, 2003.

[9] Khan, J., Wei, J. S., Ringnér, M., Saal, L. H., Ladanyi, M., Westermann,
F., Bertholod, F., Schwab, M., Antonescu, C. R., Peterson, C. and Meltzer,
P. S., “Classification and diagnostic prediction of cancers using gene expres-
sion profiling and artificial neural networks”, Nature Medicine, 7, 673–679,
2001.

[10] Kullback S. and Leibler, R. A. On information and sufficiency, Annals of
Mathematical Statistics 22, 79–86, 1951.

[11] Tabak, E. and Vanden-Eijnden, E., “ Density estimation by dual ascent of
the log-likelihood”, Comm. Math. Sci., 8 , 217-233, 2010.

[12] V. N. Vapnik, Statistical learning theory, Wiley, 1998.

22


