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1 Radiative models for the Earth

Due to its distance to the Sun, the Earth receives an amount of radiation Fs

(the solar constant) given by

Fs = 1370
W

m2

(Think of fourteen 100 W light bulbs in a square meter; this should roughly
agree with your perception of looking up at the Sun, at midday, a clear summer
day.)

1.1 No atmosphere

If the Earth were a flat black body lying in space in the direction facing the
Sun, it would absorb all the solar radiation, and radiate an amount given by
the Stefan–Boltzman law:

Fe = σ T 4 ,

where T is its temperature in degrees Kevin (i.e., Celcius, but with the freezing
point of water at 273◦), and σ = 5.67 10−8 W

m2K4 . In equilibrium, we would have

T =

(

Fs

σ

)1/4

≈ 394◦

somewhat above the boiling point of water. Not a bad starting point as theories
go (we could have ended up orders of magnitude away), but obviously in need
of some corrections.

First of all, the Earth is not planar but a sphere; hence the total radiation
impinging upon it is given by

Rs = π r2 Fs ,

where r = 6357km is the Earth’s radius. The total radiation emitted by a
spherical black–body at uniform temperature T , on the other hand, is

Re = 4 π r2 σ T 4 .
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Moreover, not all of the radiative energy Rs impinging upon Earth is absorbed:
about thirty porcent of it is scattered back into space (i.e., the Earth’s albedo

is about 0.3.) Hence a corrected calculation gives

T =

(

0.7 Fs

4 σ

)1/4

≈ 255◦ ,

this time sinning on the cold side of things.
At this point, the texts usually bring in the Atmosphere and its warming

greenhouse effect. This strikes me as being done a bit early though: how much
sense is there in assigning a uniform temperature T to a solid planet which
receives solar radiation only from one side? This is the question that I’d like to
address next. To this end, we need to combine the effects of radiation and heat
conduction, as well as to include the rate of rotation of the Earth.

Consider a solid planet which, for simplicity, we shall assume to have the
thermal properties of water, but not its capacity to convect (i.e., carry thermal
energy by fluid motion): a density

ρ = 1000
kg

m3
,

a heat capacity

c = 4000
J

kg K
,

and a thermal conductivity

K = 0.5
W

m K
.

What are the time scales for thermal equilibration by radiation and by conduc-
tion? If we perturb slightly the surface temperature of the planet, its restoring
due to radiation will satisfy the law

c ρ h Tt = 4 σ T 3 (Teq − T ) ,

where h is the depth of the affected surface material. The corresponding time
scale for radiation is therefore

tr =
c ρ h

4 σT 3
.

For vertical conduction, on the other hand, we have

c ρ h Tt = K
Teq − T

h
,

with a corresponding time scale

tc =
c ρ h2

K
.
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The two scales will match when

h =
K

4 σ T 3

with corresponding

tc = tr =
c K ρ

16 σ2T 6
.

For T = 300◦, these yield a depth h ≈ 10cm, and a time scale tc = tr ≈ 12h.
The small length scale tells us that there will be no significant heat conduc-

tion between differentially heated areas of the world. The time scale comparable
to a day, on the other hand, speaks of memory, the soil during the day remem-
bering the colder nocturnal temperature, and vis–a–versa (if you try cooler
temperatures, the time scale rapidly exceeds a day). Yet it appears that the
seasons can be safely neglected; their time scale is much larger than that of
radiative restoring.

This suggests writing a model for the evolution of the near surface tem-
perature at latitude α, involving just time and the vertical direction: a heat
equation with upper boundary condition given by radiation (variable with the
time of the day), and with an asymptotic temperature inside the Earth so as to
reach a periodic state. Anybody interested in carryin this through?

1.2 The greenhouse effect

Now we’ll add the atmosphere, though a non–convecting one. Away from clouds,
the atmosphere is mostly transparent to the solar radiation, but quite opaque to
the infraread radiation emanating from the ground. Hence the latter receives not
just the direct radiation from the Sun, but also the infraread radiation emited
downwards by the atmosphere; this leads to higher ground temperatures than
those predicted in the models without an atmosphere.

The simplest model (see the book by Andrews, section 1.3.2), looks at the
atmosphere as a whole, letting through a τs = 0.9 fraction of the incoming
solar radiation (from which the albedo has already been substracted), and a
τg = 0.2 fraction of that emited by the ground. The remainder is absorbed and
re–emited, up and downward in equal shares. It follows that, in equilibrium,

1

4
(1 − A)Fs = Fa + τg Fg ,

and

Fg = Fa + τs
1

4
(1 − A)Fs ,

where A = 0.3 is the Earth’s albedo, the 1/4 stands for the ratio between
the cross–sectional area of the Earth and its surface area, and Fa represents
radiation by the atmosphere, both up and downwards. Then

Fg =
1

4
(1 − A)Fs

1 + τs

1 + τg
= σ T 4 ,

yielding a quite realistic mean ground temperature T = 286◦.
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