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Ten years ago Hou, Lowengrub and Shelley [4] published a state-of-the-art boundary integral simula-
tion of a classical viscous fingering problem, the Saffman-Taylor instability [12]. In terms of complexity
and level of detail, those computations [4] are still among the most ramified and accurately computed
interfacial instability patterns that have appeared in the literature. Since 1994, the computational power
of a standard workstation has increased a hundredfold as predicted by Moore’s law [7]. The purpose of
this Note is to consider Moore’s law and its consequences in computational science, and in particular, its
impact on studying the Saffman-Taylor instability. We illustrate Moore’s law and fast algorithms in
action by presenting the worlds largest viscous fingering simulation to date.

Viscous fingering is one of the fundamental interfacial instabilities in fluid dynamics: Perturbations to
an expanding circular air bubble displacing a viscous fluid in a thin gap flow device become unstable,
resulting in intricate densely branched interfacial patterns. The viscous fingering problem is governed by
the three-dimensional incompressible Navier-Stokes equations with moving free boundaries at the fluid/
air interface. Without simplification, this problem is computationally intractable and will remain so for
the foreseeable future. The simulations in this Note build upon decades of advances in mathematical
modeling and numerical methods: (i) The fluid dynamics in a thin gap is reduced from the three-
dimensional Navier—Stokes equations by asymptotic analysis to a Darcy’s law [12]
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for a two-dimensional velocity and pressure field (4 is the gap thickness and u is the viscosity); (ii) The
three-dimensional boundary conditions at the free-surface are approximated at I" to leading order [9] by
a two-dimensional Young-Laplace boundary condition [p] = —yk relating the pressure, the surface tension
7, and curvature x, and by the kinematic condition 0x/0¢ = w; (iii) The pressure satisfies a Laplace equation
which is written in a boundary integral formulation [2]; (iv) The integral equation is solved iteratively using
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GMRES [11] without forming the matrix explicitly; (v) The integral operator [2] is evaluated at each iter-
ation using the fast multipole method (FMM) [3]in O(N) operations with N discretization points along I;
(vi) The small-scale decomposition (SSD) [4] removes a severe restriction on the size of a time-step that

arises from the Young-Laplace boundary condition.
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Fig. 1. The world’s largest viscous fingering simulation at 7'= 500. The computation completes in 50 days on a modern desktop PC.
The resolution has been increased as necessary through N =4096, N =8192, N =16,384, N = 32,768 to resolve the expanding
interface during the 500,000 time steps taken during the simulation. Inset: The reference viscous fingering computation published in
1994 by Hou et al. [4]. The computation required 50 days in 1994 to reach 7'=45 in 45,000 timesteps using at most N = 8192 grid

points along the interface (shown to scale).
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It is the combination of mathematical modeling, items (i) and (ii), and advanced numerical algorithm
development, items (iii) and (vi), that has made possible the world’s largest viscous fingering simulation
to date (Fig. 1). The use of the FFT makes the algorithm formally O(N logN) per time-step in complexity,
though the real cost is currently dominated by the FMM and the solution of the integral equation. Bound-
ary integral algorithms for viscous fingering simulation are relatively mature and their computational com-
plexity has not improved since 1994 (see, however, the recent review [5]).

We have repeated the viscous fingering simulation from 1994 [4] on a workstation from 2004. The
computations were performed on a single processor of a 2.2 GHz Pentium 4 desktop PC running Linux.
The initial data is a slightly perturbed circular interface (x(o), (o)) = Ro- (1 + 0.1(cos 3w + sin2a))
(cosa,sina), as in [4]. The modified capillary number [1] is Ca = 12,uUR§/b2y = 1000 (U is a the initial
velocity of the interface). The computational time for reproducing [4, Fig. 1], also shown as the inset in
Fig. 1, has decreased to 14 h which is roughly 1% of the 50 days required in 1994, This performance gain
can be explained by Moore’s law [7], which predicts that computational power doubles every 18 months. In
other words, we can expect computing power to increase roughly 100-fold in 10 years.

We present new computations of much more ramified viscous fingering patterns using the methods from
1994 [4]. Fig. 1 shows a simulation with same initial data and parameters as in the inset of Fig. 1 (from [4]).
Our simulations gain one order of magnitude increase in the length and size of the simulations in compar-
ison to [4] also using 50 days of wall time. The complexity of the pattern evolution process has outstripped
the exponential growth in computing power predicted by Moore’s law. Nevertheless, long time simulations
such as the one presented in Fig. 1 may reveal a new asymptotic scaling regime in Fig. 2, where the interface
length could be related to the bubble area by a power-law relation [13].

In recent years, many computational methods have been developed for simulating interfacial instabili-
ties: (see e.g., Fast and Shelley [1] and the references therein). Finite difference, finite volume or finite
element based methods solve equations in the bulk, not just on the boundary as in [4], thereby requiring
significantly more computational effort. However, the results obtained by such methods are close in appear-
ance to those obtained in 1994 with a boundary integral method. This is due to many advances in
algorithms, but it is also in large part due to the continued increase in the computational power of standard
workstations, as predicted by Gordon Moore in 1965.
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Fig. 2. The area of the growing bubble vs. the length of the interface. Based on this limited sample, the large time asymptotic behavior
of the area seems to scale with the interfacial length as 4 ~ L* with o = 1.45 for a bubble driven by a constant massflux.
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Table 1

The speed of supercomputers has increased by more than a 100-fold between June 1994 and November 2004

Date Rank Machine Rmax Nprocs Rmax/Nprocs
November 2004 1 IBM/LLNL BG/L 70,720 32,768 2.158

June 2004 2 Intel Itanium 1.4 GHz 19,940 40,96 4.868

June 2004 5 Intel Xeon P4 3.06 GHz 9819 2500 3.928

June 2004 12 Intel Xeon P4 2.2 GHz 7634 2340 3.313
November 1994 1 Fujitsu Numerical Wind Tunnel 170 140 1.23

June 1994 1 Intel Paragon XP/S140 143.4 3680 0.039

Rinax is the maximum number of floating point operations in GFlop/s, Nprocs is the number of processors, and Ruax/Nprocs €stimates
the floating point performance of a single processor. Excerpt from the Top 500 supercomputer list[6] that measures performance using
the LINPACK benchmark.

Table 1 from the Top 500 supercomputer list [6] demonstrates that Moore’s law has been accurate in
the past 10 years. Indeed, the single processor performance increased from 39 million floating point
operations per second (MFlop/s) in June 1994 on an Intel Paragon to at least 3928 MFlop/s in June
2004 on a commodity Intel 3.06 GHz Pentium based cluster node. The fastest machine in November
1994 was a Fujitsu vector processor based architecture that breaks the trend with its performance of
1230 MFlop/s per processor, but it also represents an unlikely technology for present day workstations.
Examining the Top 500 list closer shows that the broad trends are well explained by Moore’s law, with
a few notable outliers such as the Fujitsu Numerical Windtunnel in 1994, and the IBM/LLNL Blue
Gene/Light which is currently the world’s fastest supercomputer. Moore’s law is expected to hold for
at least another 10 years [8], which should have implications in algorithms design and computational
science.

We have discussed two aspects of Moore’s law and its impact on computational science in general, and
on studying the Saffman-Taylor instability in particular. On one hand, a computer that is one hundred
times faster than computers were ten years ago allows us to repeat a computation from 1994 in only
one percent of the time the simulation took originally. The speed-up is entirely due to Moore’s law and
is independent of the algorithms used, and of their complexity.

On the other hand, a hundredfold increase in computing power allows us to simulate a physical problem
in greater detail using the same amount of wall time as 10 years ago. The algorithmic complexity will deter-
mine to a large degree how much more is achieved by an increase in processing power. Fast algorithms that
scale as O(N) or O(N logN) in the number of unknowns allow significantly larger simulations, whereas
simulations using “slow” algorithms with, e.g., O(N?) or O(N?) complexity will gain very little even from
a 100-fold increase in computational resources.

We note that in 1984, ten years before Hou et al. [4], computers were 100 times slower than in 1994, and
10,000 times slower than they are today. If the original solver from 1994 [4] were to be run in 1984 on a
commodity PC (using perhaps the Intel 286), one might reach in 50 days of wall time the very early stages
of the pattern formation process (around 7'= 1,...,4 in Fig. 1), where the viscous fingers are first beginning
to split. However, three key pieces of the algorithm were not available in 1984: (1) The fast multipole meth-
od [3,10], published in 1985-1987, allows the efficient evaluation of the boundary-integral operator in an
iterative scheme; (2) GMRES [11], published in 1986, converges rapidly for integral equation formulations;
and (3) The small-scale decomposition [4], published in 1994, allows time steps that are 10° larger than in
prior work. A viscous fingering simulation without FMM, GMRES, and SSD would have to use iterative
methods with direct summation or direct factorization methods to solve the boundary-integral formulation,
and would need at least 45 million computationally expensive timesteps and years of computing time just to
reproduce the original results [4] even on today’s computers. Fast computers help but it is the fast algo-
rithms that make a big difference in our ability to simulate physical processes.
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