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Abstract

The Applied Mathematics Laboratory is a research laboratory within the Math-

ematics Department of the Courant Institute. It was established to carry out

physical experiments, modeling, and associated numerical studies in a variety of

problems of interest to Courant faculty, postdocs, and graduate and undergradu-

ate students. Most of the research to date has involved fluid mechanics, and we

focus in this paper on the work that relates to the interaction of fluids with rigid,

movable, or flexible bodies. © 2012 Wiley Periodicals, Inc.

1 Introduction: A Brief History of the AML
Although the Courant Institute has a long and notable history of applied mathe-

matics research, until the late 1990s this work had been almost entirely theoretical.

One notable exception is captured in a photograph, reproduced in Figure 1.1, of

Richard Courant illustrating a minimal surface by suspending soap film from a

wire frame. While fluid dynamics was not the point here, the viewers may well

have noted the beautiful flows of material that can be seen within such films as

the fluid drains and redistributes itself. Fifty years later applications using soap

films reappeared at the Institute in the Applied Mathematics Laboratory, or AML,

though now to study complex fluid dynamical phenomena involving the interaction

of bodies with high-speed fluid flows.

The Applied Math Lab is an experimental research laboratory within the Insti-

tute. The research interests of the lab are broad but our primary work is in the

dynamics of fluids. We shall focus here on one particular area of interest to us in

recent years, namely, fluid-structure interactions. A beautiful example is shown
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FIGURE 1.1. Richard Courant (left) using a suspended soap film to

illustrate minimal surfaces, circa 1946. Reproduced with permission of

the Courant Institute, New York University. Right: In a flowing soap

film, the wakes swept below a flexible loop embedded within the film

[21]. The coupled fluid-structure system shows bistability, with a sta-

tionary state and an oscillatory state. Reproduced with permission of the

authors.

in Figure 1.1. A deformable loop—a two-dimensional balloon—interacts with an

oncoming flow and sheds vortical structures downstream.

In this introduction, we give a very brief history of the AML. There is some tra-

dition for having experimental labs in mathematics environments. The longstand-

ing fluids labs at DAMTP in Cambridge University, in the Applied Mathematics

Department at MIT, and in Mathematics at Penn State are three examples. More

recent laboratories are now in place at Arizona, Delaware, UCLA, and UNC. The

Courant Institute’s AML—originally called the WetLab—was founded in 1996 by

Childress and Shelley as a combined experimental and computational facility. The

impetus for its founding was the lack of experimental research in fluid dynamics in

our New York City neighborhood, and the conviction that the best applied math-

ematics and simulation were tied to real applications and interesting experiments.

We sought to reinforce this notion by having our own lab combine the equipment

of experiment with the equipment of theory, which is the computer.

The AML at first consisted of one large lab room, and an adjacent computer

lab stocked with Silicon Graphics computers that were generously donated by SGI

Inc. The overall space was created from a suite of offices on the ground floor
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of Warren Weaver Hall that were gutted and renovated to create usable lab space

using support from a bequest by the William A. Sears family to NYU and from

the Mobil Foundation. The Institute’s director at that time, David McLaughlin,

was very supportive in securing the funds and the space, and later in securing an

associated faculty position. SC and MS lent a hand to the AML’s design by setting

its electrical power outlets into the floor where, with gravity’s help, fluids could

easily drain (these were later sealed and electricity accessed through drop-downs

from the ceiling).

Our clear need for an actual experimentalist in the lab was met with the assis-

tance of Albert Libchaber’s biophysics lab at Rockefeller University. SC had then

for been working with Libchaber and one of his postdocs, Jun Zhang, on an ex-

periment of thermal convection at high Rayleigh number [55, 56]. Soon afterward

Jun agreed to work part-time in the AML, which he outfitted with basic equipment

and tools. Soon thereafter he became a full-time postdoc in the lab, and following

that he accepted a joint appointment in the faculties of Physics and Mathematics at

NYU and is now one of the AML’s directors.

Simultaneously, the infrastructure of the AML began to evolve. Computing

had become progressively delocalized and the need for dedicated computer labs

had waned. At the same time, the need for more experimental space in the AML

became apparent and the computer lab was converted into more experimental lab

space.

The first thermal convection experiments eventually led to a set of experiments

that investigated how convecting fluids, such as the Earth’s mantle, interact with

movable objects, like the Earth’s continents. The observed dynamics is related to

the so-called Wilson cycle of continental drift. Additional experiments on fluid-

structure interactions concerned the flapping of flags in fluid flows and were in-

spired by the swimming of fish. Biology and locomotion have been a constant

motivation for work in the AML, and the flag experiment has led to other exper-

iments, concerning, for example, drag reduction by flexible bodies bending in a

flow, the mechanisms of flapping flight, hovering, and valveless pumping. Devel-

oping areas of research in the AML concern collective behavior, pattern formation

in geophysics, and the dynamics of complex and active fluids. These experiments

are discussed in detail below. We also touch upon the many accompanying theo-

retical and numerical studies that interacted with and informed the experiments.

2 Fluid-Structure Interactions in Soap-Film Flows
One of the first experimental devices built in the AML was a soap-film flow

tunnel, an elegant apparatus that had been developed in other laboratories to study

laminar and turbulent two-dimensional fluid flows [12, 16, 34]. Two stretches of

nylon fishing line emanate downward from an upper reservoir of soap solution. By

separating the lines a gravity-driven flowing film is formed between them. In our

flow tunnel the width of the film is about 10 cm and the range of gravity-driven

flow speeds is 0.5–3 m/s. The patterns of flow in the film cause slight changes
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FIGURE 2.1. Left panel: The (a) stretched-straight and (b) flapping

states of a “flag” in a quasi-two-dimensional flow of a soap film. Here

the dynamics is in the bistable regime. Right panel: The (c) in-phase

and (d, e) out-of-phase states of two nearby flags. Reproduced from [57]

with permission of the authors.

in its thickness, which can be visualized using interference fringes from reflected

sodium light. Figure 1.1 illustrates how these fringes reveal the vortical structures

in the flow, and also shows that a flowing soap film can be used to investigate the

interactions between high-speed flows and flexible bodies.

2.1 Flapping of Flags
In particular, the flapping of a flag is amenable to study in this flow device. To

do this, a short length of flexible thread (2–6 cm) is wetted into the film and fixed at

one end, so that it is stretched out by the flow. While the film is very thin compared

to the thread—�4 �m versus 150 �m—it also flows very fast and so can apply

appreciable fluid forces. Given the setting, this experiment essentially investigates

the dynamics of a one-dimensional flag in a two-dimensional flow; see Zhang et

al. [57].

Figure 2.1(a) shows two examples of the flow pattern. We find that if the “flag”

is short, its stable position is simply stretched straight (SS), with a thin von Kármán

wake shed downstream as seen in (a). However, by slowly increasing the length,

we find that there is a critical length beyond which the SS-state is not stable, and

the flag instead “flaps,” through traveling waves of deformation moving from head

to tail, as seen in Figure 2.1(b). The wake structure also changes: on each half-

stroke the flag sheds vortex layers of alternating sign with local Kelvin-Helmholtz

instabilities developing along them. Surprisingly, this bifurcation is hysteretic. De-

creasing the flag length yields flapping to a second critical length, smaller than the

first, below which the SS state reappears. Between these two critical lengths there

is a range of bistability where the flapping and SS states coexist as stable states.
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These results were not in accord with the classical understanding of the flapping

of flags. Theoretical treatments originate with Lord Rayleigh [32], whose theory is

a special degenerate case of the Rayleigh-Helmholtz instability. The latter consid-

ers a parallel flow between two regions of fluid having equal velocity and density.

The two fluids are allowed to slip at a dividing interface. A slight distortion in

the interface away from being flat produces a discontinuity in the velocity at the

interface, and the interface is then a vortex sheet which, in Rayleigh’s conception,

corresponds to the flag. Here the surface vorticity thus produced is free and moves

downstream in the flow. A sinusoidal vorticity variation produces steady lateral

migration of fluid particles, and the lateral displacement of the virtual interface, or

flag, grows linearly with distance downstream.

While Rayleigh’s model captures important features of the physics, it is incom-

plete and not in accord with experimental results. In particular, Rayleigh’s model

does not account for the materiality of the flag: the interface lacks its own inertia,

as well as internal mechanics such as bending and tensile forces. Lacking these

elements, Rayleigh’s model predicts that any perturbation, no matter how small,

will lead to instability. This is not in accord with the existence of the SS state.

Rayleigh’s model is actually most appropriate to describing the wake shed by the

flag, where the vorticity produced in the boundary layers along the flag has been

shed, and which moves freely downstream.

In counterpoint, our laboratory flag exhibits the essential elements of fluid-

structure interaction, in that the mass of the flag and its elastic properties are es-

sential to understanding the dynamics, properties which tend to be obscured for

large cloth flags subject to gravity. Alben and Shelley developed a fully nonlinear

two-dimensional elaboration of Rayleigh’s vortex sheet model that accounts for

these elements, as well as the shedding of vorticity off the flag into a free wake

[2, 5]. Stability analyses and nonlinear simulations of this model predict a linear

instability dependent upon flag mass, which is consistent with experiment, and the

existence of the bistable state [1, 5, 39]. Other experiments using the AML’s wa-

ter tunnel showed that to flap in flowing water, flags needed to be much heavier.

These special flags were constructed of parallel metal panels glued to a flexible

substrate [39]. These various experiments motivated other experimental and sim-

ulation studies that were recently reviewed by Shelley and Zhang [40]. We would

like to especially note those done by our colleague Charles Peskin and his students

using new versions of the immersed boundary method that account for flag mass

[22, 61].

If two identical flags are placed side by side in the soap film, a state of flapping

in or out of phase with each other can occur along with the stretched-straight state;

see Figure 2.1(c,d,e). Flags sufficiently far apart behave independently, but as the

separation distance is reduced below about half the flag length, these three different

states are observed, with in-phase flapping occurring as the separation becomes

sufficiently small. Numerical studies using the immersed boundary method [60]

and the nonlinear vortex sheet model [3] have since reproduced these dynamics.
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FIGURE 2.2. A pair of tandem flags flap in a downward flowing soap

film at two different separations. (a) and (c) show visualization by thin-

film interferometry, while (b) and (d) are their respective visualizations

as long-time exposure photographs. Panel (e) shows the normalized fluid

drag on the tandem flags as a function of separation distance. Repro-

duced from [33] with permission of the authors.

2.2 Drafting of Flexible Bodies
The flapping motion of our flags bears a close resemblance to the movements of

a steadily swimming fish, and it has been argued that fish movements are largely a

natural response of a slender, massive, elastic object to an ambient flow [25]. In this

view, the additional movements needed to generate the required thrust are small

modifications of a basic flapping mode. It is also of interest to further compare

the flapping states of multiple flags with the observed, coordinated movements of

schools of fish.

The fish-flag paradigm suggests another experiment related to the energetics of

schooling fish [54]. If two identical objects are placed one behind the other in a

steady flow, it is customary to think of the leading body as experiencing the higher

drag (drafting effect) of the two. Indeed this is observed in experiments and is

exploited by racing cyclists and race car drivers. But do fish draft?

To approach this problem, we put in tandem two identical flags and measured

the drag forces on each; see Figure 2.2. Much to our surprise we found that the

trailing flag had increased drag relative to the single flag case while the leading

flag had smaller [33]. For a group of six flags placed in tandem, the leading flag

again had smaller drag than the second flag. A partial explanation of this result

lies in the interaction of the flapping dynamic of the second flag with the vortical

wake created by the first flag and in the impedance to tail flapping of the first flag

provided by its proximity to the second. This case of inverted drafting need not
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be applicable to a thrust-generating pair of fish, but it illustrates the complexity of

flow interactions that can occur between multiple flexible bodies.

2.3 Self-Streamlining of Flexible Bodies
The flapping instability of flags aligned with a flow is produced by growth of

traveling waves. A very different problem concerns the bending of flexible bodies

that instead obstruct a flow. Obstructing and bending under flow is part of the life

of sessile organisms such as trees [29], coral, and seaweeds [24, 44]. Indeed, the

reconfiguration of elastically flexible bodies by fluid flows is common in nature and

can yield substantial and beneficial drag reduction [13, 23]. A particularly elegant

example is given by S. Vogel [52], who studied the shape reconfiguration of tree

leaves when placed in a wind tunnel. He observed that as wind speed increased,

the leaves rolled themselves into ever tighter cones, a self-streamlining mediated

by body flexibility that yielded a drag growth slower than the classical rigid-body

U 2 law.

These observations motivated a study of self-streamlining in a simpler and more

controlled setting (see Alben, Shelley, and Zhang [6, 7]). Using again a soap film

tunnel we considered the bending of a flexible fiber (here a length of fiber optic

glass) held transverse to the oncoming flow. This is a one-dimensional leaf in a

two-dimensional wind; see Figure 2.3. At low flow speeds (panel (a)), the fiber

remains nearly straight, and from its ends are shed sharp shear layers. The wake

extends downstream, is roughly symmetric, and is very slowly moving relative to

the outer flow. As flow speed increases (panels (b) and (c)) the fiber becomes

more bent and streamlined. As a function of flow speed and other parameters,

the drag on the fiber, the fiber shape, and the wake structure were all recorded

simultaneously, with Reynolds numbers ranging from 2000 to 40,000. From these

experiments and an associated theory, we hoped to discover an exponent ˛ that

corrected the classical drag law to U 2�˛ and thus accounted for velocity-dependent

shape change.

Looking at steady-state behavior, we modeled this system using a generalization

of free-streamline theory [17, 19] to construct simple steady flows around surfaces

whose shapes were given by the balance of bending, tensile, and fluid pressure

forces. After normalization, the system retains a single control parameter �, which

is essentially a nondimensional flow velocity,

� D
�

�fL3U 2=2

E

�1=2

;

where � is fluid density, L is the fiber length, f is soap film thickness, U the

free-stream velocity, and E the fiber flexural rigidity. Further note that � can be

expressed as the ratio of fiber length L to an intrinsic length L0: � D .L=L0/3=2

where L0 D .2E=�f U 2/1=3. If this intrinsic length, which scales as U �2=3, de-

fines the effective cross section of the body to the flow, we then expect that at large

velocities the fluid drag on this deformable body to scale as U 2�2=3 D U 4=3, and
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FIGURE 2.3. Top panel: From [6, 7], normalized experimental drag data

(symbols) and theoretical drag relation (solid), as a function of the di-

mensionless flow velocity �. Dot-dash lines correspond to drag laws of

�2 and �4=3. Bottom panel: Fibers in the soap film shown with interfer-

ometry. (a) Flow past a rigid fiber. Flows around a flexible fiber at flow

speeds of (b) 69 cm/s and (c) 144 cm/s. Reproduced from [6, 7] with

permission of the authors.

hence ˛ D 2
3

. This prediction is consistent with our experimental data. Figure 2.3

(top) shows the measured drag plotted as a function of normalized velocity �. The

drag for small � grows as �2 and then transits at � � O.1/ to a new growth law,

presumably �4=3.
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In the accompanying theoretical study [6, 7], we showed the close concordance

between shapes computed from our theory and those measured experimentally. We

showed also that the new �4=3 drag law was associated with the emergence of shape

self-similarity at large � and gave an asymptotic construction of these shapes.

3 Self-Organization of Bodies in Thermal Convection
Thermal convection is ubiquitous in nature and occurs on length scales rang-

ing from millimeters to the planetary scales of thousands of kilometers. We are

interested here in a particular aspect of convection involving an interaction be-

tween freely floating bodies and an underlying convection flow. The experiment

is motivated by the facts of continental drift and plate tectonics. Convective pro-

cesses within the Earth’s mantle are believed to drive the movements of plates in

the Earth’s upper crust, but it is not so clear how the convection depends on the

disposition of plates.

We decided to study this in a simple model system involving an insulating

floater—the model “continent”—that sits above a viscous fluid undergoing ther-

mal convection. Here the continent plays both an active role, since it can serve as

a thermal blanket on the underlying “hot” fluid, and a passive one, since viscous

stresses associated with the convection can change its position. Our experimental

system overlooks many of the geophysical details but retains three features that

are of vital importance to the feedback process: (1) The range of the Rayleigh

number (the principal measure of convective intensity and state) of our tabletop

experiments covers that relevant to mantle convection, Ra � 107; (2) the ther-

mal blanket effect of the continents—heat loss through the continents is about only

one-tenth of that through the oceanic crust—is reproduced; and (3) the motion of

the continents to the movement and deformations of the underlying mantle as a

viscous fluid adhering to and exerting viscous stress on the continent.

In our early experiments [58], a single continent is introduced onto the free

surface of a convection cell; see Figure 3.1. The thermally opaque continent causes

heat to accumulate below it, and the warm, buoyant fluid thus formed tends to rise,

inducing an upwelling flow (top panel). In this way the continent modifies the

flow pattern that drives its motion. As a consequence, the coupled system becomes

unstable and the continent is moved to a new position at the other side of the cell

(second panel). Such an action-reaction loop leads to an oscillation (bottom two

panels). This oscillation is robust despite the fact that the thermal convection at

this large Rayleigh number is highly turbulent, with the convecting fluid being

filled with small-scale plumes. The likely root of this robustness is the persistence

of a large-scale convective flow (see Childress [9]) and the model continent being

large relative to the small-scale fluctuations.

We then asked the following question: if a large number of small continents are

present in the convective system and each acts as a small thermal blanket, what

will happen? To study this we immerse several hundred small spheres within the

convecting fluid, and being somewhat more dense than the fluid, they settle to the
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FIGURE 3.1. Visualization of thermally convective flow inside a fluid

cell with a floating boundary. Here the boundary covers 40% of the upper

fluid surface. We use illuminated liquid-crystal beads for visualizing the

flow lines. (Top panel) Just before the free boundary is entrained toward

the left; (second panel) after the floating boundary arrives at the left side

of the cell; (third panel) shortly before the boundary starts to move back

to the right; (bottom panel) while moving to the right. Reproduced with

permission of the authors [59].
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FIGURE 3.2. Thermal convection and free-moving bodies. Top left:

The feedback mechanism is outlined in the top four panels, where ther-

mal blanket effect of the spheres overturns the existing flow direction

and the sphere are entrained by the flow. Right: Snapshots of hundreds

of spheres undergoing collective oscillations as they interact with the

convective fluid. Bottom left: Time series of the center of mass of the

spheres, showing a cyclic oscillation. Reproduced from [27] with per-

mission of the authors.

bottom (the blanketing effect now acts upon heat flux from the convecting cell’s

base). The dynamics of this system is illustrated in Figure 3.2. The outcome is

surprising but quite simple. The mobile spheres aggregate into a single mass that

executes the familiar oscillatory movements of our continent, though more as a

condensed “gas” covering the bottom than as a solid. In our study (Liu and Zhang

[27]) we determined the oscillation frequency as a function of sphere size, sphere

number (coverage), and the Rayleigh number. Geophysical processes are complex

but nonetheless obey simple physical laws. Studies such as these, by focusing on a

few key elements, can provide insight into their underlying mechanisms.
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4 Locomotion in Fluids
One of the most interesting and widely observed fluid-body interactions occurs

in animal locomotion. A swimming fish, a flying bird, or an undulating flagellar

microorganism is moving through the fluid while simultaneously reacting to the

forces exerted by the fluid. All of the elements, illustrated by flag flapping, are

generally present: there are time-dependent pressure and viscous forces that act

on a time-dependent flexible object of given mass distribution. But in addition the

locomoting animal is free, and so its rigid body motion (defined by establishing

a suitable body frame) has to be determined along with the velocity and pressure

fields of the fluid.

One important and somewhat counterintuitive fact about unaccelerated motion

through a fluid is a simple consequence of Newton’s second and third laws: if the

organism is neutrally buoyant, the time-averaged force exerted by the body on the

fluid and by the fluid on the body must vanish. Because of the nonlinearity of the

Navier-Stokes equations, locomotion problems cannot in general be broken down

into separate computations of thrust and drag. Also, since the steadily locomoting

(constant velocity) body does no net work on the fluid, the efficiency of locomo-

tion is not obviously quantifiable, and this has a bearing on attempts to optimize

performance.

Because of these complexities, locomotion problems offer prime opportunities

for physical and numerical experimentation. G. I. Taylor, in a famous experiment

presented in one of the films produced by the National Committee for Fluid Me-

chanics [45], showed two basic strategies for swimming through a fluid. Simulta-

neously Taylor illustrated the importance of the Reynolds number in determining

the effectiveness of a given swimming style. For our purposes the Reynolds num-

ber may be defined as Re D UL=� where U is the swimming velocity, L a body

length, and � the kinematic viscosity of the fluid. One of Taylor’s swimming de-

vices consisted of a spherical head attached to a thin rubber tube. A spiral wire

was inserted into the tube and turned by a rubber band mechanism within the head.

When placed in thick syrup (large �, or small Re), a helical wave moved down the

model “flagellum” and the object swam just as a screw would be driven through

a medium. The second swimmer was a body attached to a simple fin that flapped

back and forth. Placed in water, this object swam (at large Re) with a fishlike un-

dulation. Taylor then reversed the fluids and the body equipped with the flagellum

failed to move in water, and the flapper failed to move in syrup. The flapper in

water exhibits swimming at large Re, the so-called Eulerian realm of locomotion.

The flagellum in syrup swims at a small Re and represents the Stokesian realm of

locomotion, where the Stokes approximation to the hydrodynamic equations ap-

plies. Each mechanism is adapted to the Reynolds number range at which it must

operate and fails when well outside that range.
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4.1 Emergence of Locomotion by Active Flapping
To illustrate our work on locomotion in the AML, we first consider the question

of transition between the two extremes represented by Taylor’s experiment. The re-

search to be described originated in studies by one of us (SC) at McMurdo Station,

Antarctica, in collaboration with the biologist Robert Dudley, of the swimming of

the “sea butterfly” Clione antarctica. This creature is a shell-less mollusk, which

in its juvenile form is a small (�0:5 cm) cigar-shaped body equipped with three

encircling rings of cilia. But it also has a pair of small wings tucked into forward

pockets, which can be extended at will and made to beat up and down in a simple

flapping motion.

Cilia, like flagella, are the appendages of choice for swimming in the Stokesian

realm, while the wings are adapted to the Eulerian realm. It so happens that the

Reynolds number of the young Clione was in the range 101–102, an intermediate

range between Eulerian and Stokesian regimes, and so these organisms offered us

the opportunity to study the relative advantages of cilium and wing as the organ-

isms grew, increasing L and hence Re. Dudley was able, using small jets of water,

to elicit swimming in two modes, either using the cilia or using the wings. Focus-

ing on swimming using the wings, we may define a frequency Reynolds number
Ref D Lf 2=� where f is the frequency of flapping. When we plotted measure-

ments of the swimming velocity in flapping mode, expressed through the Reynolds

number Re as defined above, as a function of Ref , we found that Re extrapolated

to 0 at a finite value �12 for Ref [10]. Our results thus suggested the existence

of a mathematical bifurcation in swimming speed as a function of Ref ; flapping

“flight” ceased to be possible below a critical value Rec
f

� 12.

Such a conclusion is consistent with known results for Stokesian and Eulerian

locomotion. In Stokes flow, the scallop theorem [31] is fundamental to understand-

ing the mechanisms of locomotion. Stokes’ approximation to the Navier-Stokes

equations drops the acceleration terms. In incompressible flow we then have

rp � �r2u D 0; r � u D 0;

where p and u are the pressure and velocity fields and � is the fluid viscosity.

Explicit time is thereby eliminated from the dynamics. Also, it is known that the

exterior problem with prescribed u can be solved uniquely, with the entire flow field

being set up instantaneously by the boundary velocity (and the value of pressure

at one point, e.g., infinity). As the body is deformed relative to a body frame,

the associated rigid-body motion of the frame is determined by the instantaneous

vanishing of force and torque. Suppose that the body motion is periodic relative to

the body frame but is invariant under time reversal. The opening and closing of a

scallop shell offers an example of such reciprocal motions. It then follows that the

object cannot locomote, since forward and reverse rigid body movements agree.

A simple up-and-down movement of a flapper is another example of a reciprocal

motion, hence also one inoperative at zero Re. It is such a reciprocal motion that

Clione uses in its flapping mode.
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FIGURE 4.1. Left: Schematic of an experimental device to investigate

free flapping flight. Right: Visualization of the flow structures around a

flapping wing. (a) At low Ref in its stable nonrotating state. (a0) The

direction of the wing motion and the flow structure corresponding to (a).

(b) The flow structure associated with the accelerating wing. (c) The

wake of the wing in the rotating state exhibits an “inverted” von Kármán

vortex street. (c0) The direction of the flow and the motion of the wing

(dashed line). Reproduced from [51] with permission of the authors.

On the other hand, the aerodynamics of flapping wings at large Re insures

the production of thrust and therefore forward flapping flight. According to two-

dimensional airfoil theory, the lift in steady flow is orthogonal to the oncoming

stream. Quasi-steady flapping, defined by the inequality fL=U � 1, produces lift

orthogonal to the apparent wind, and this is seen to imply a forward component of

the “lift” in both up and down strokes. Note that this lift-based thrust is obtained

once the wing is actually in flight. Consequently, it is reasonable to assume that

swimming or flight utilizing a simple reciprocal action of a wing becomes effective

within an intermediate range of Reynolds numbers.

To test this idea in our laboratory we used the device shown in Figure 4.1. A

stiff rectangular wing is attached at its center to a rod and is free to rotate. The

rod is driven up and down in a tank of fluid. If the frequency is sufficiently small,

we observe that the wing does not rotate, and if made to rotate it comes to a stop.

Above a critical frequency, however, rotation of the wing ensues spontaneously,

in a direction that is random; see Vandenberghe et al. [50, 51]. Thus locomotion

occurs as a symmetry-breaking hydrodynamic instability, the rotation taking the

place of rectilinear “flight.”

Detailed studies of the fluid motion revealed the physical basis for this instabil-

ity. At low frequencies the motion of the wing produced symmetric paired eddies
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from its edges; see Figure 4.1(a). These move away from the wing and have little

effect on it. At higher frequencies the eddies become more tightly bound to the

wing and can strongly interact with it when the wing is in “flight” and the eddies

are carried by the wind. Thus it becomes possible for small vertical movements of

the wing to produce thrust, which can sustain the horizontal motion.

Numerical simulations in two dimensions of this bifurcation to forward flight

were subsequently carried out by Alben and Shelley [4]. In these computations the

wing was an ellipse of a certain density relative to the fluid, which was driven in

vertical flapping motion but allowed to move horizontally according to Newton’s

laws. Frictional contributions from the bearings, a feature in the physical exper-

iments, were not present. This may explain why no hysteresis or bistability was

found in the simulated system. These studies did reveal a bifurcation with a rich

structure. Flight was not necessarily initiated by an abrupt acceleration to terminal

speed. Oscillations in the horizontal motion, both periodic and chaotic, could also

occur and with rising frequency preceded steady forward flight. In fact, the struc-

ture of the bifurcation, involving the full force of the Navier-Stokes nonlinearity in

a time-dependent flow, has still not been fully elucidated.

We have considered yet more complicated wing-fluid systems. For example, the

thrust provided by flapping can be increased by allowing the wing to pitch about

the horizontal plane. In a combined experimental and numerical study (Spagnolie

et al. [42]) we studied a wing equipped with a torsional spring that allowed pitching

to occur passively. In this system the symmetry of the rigid wing is broken at any

Reynolds number, and while we found a continuous transition to flight through the

Stokesian regime, it was only at intermediate Reynolds numbers that flight perfor-

mance improved rapidly. This study also revealed limits on the improvements due

to passive pitching; at sufficiently high Ref , wing speed peaks and declines and

can actually lead to backwards flight and bistability.

4.2 Hovering in an Oscillating Airflow
While hovering is not, strictly speaking, locomotion through a fluid, the mecha-

nisms of lift generation needed to hover are very similar to those for thrust genera-

tion. The hovering of birds and insects involves a variety of wing movements and

mechanisms for lift enhancement. The key elements are the vortices shed from the

edges of the wing during the various phases of the stroke cycle and the movements

of the wings through the field of already shed vortices.

In natural hovering the wings are moved actively by the organism. Because of

the difficulty of constructing active hoverers for experimental studies, we decided

to look at the possibility of the hovering of a body subjected passively to an os-

cillating airflow. The experimental device that emerged is shown in Figure 4.2. A

large speaker drives an oscillating column of air at frequencies in the range 10–

40 Hz. We place our “bug” in the test chamber, then increase the amplitude or

frequency of the oscillation until hovering occurs. One example of a flexible bug,

hovering up and down on a wire, is shown in Figure 4.2 (upper right). This bug was
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FIGURE 4.2. Left: Device for generating an oscillating airflow. A large

loudspeaker drives air through a diffuser and into a cylindrical chamber,

creating an AC wind tunnel. Top right: Smoke visualization of the flow

around a hovering “paper bug” that is constrained to slide along a vertical

wire. Bottom right: A two-dimensional vortex dipole is shed from the

edge of a flapping wing. Reproduced from [11, 53] with permission of

the authors.

made from folded tissue paper stiffened with lacquer and is 2–5 cm in diameter.

High-speed movies of the hovering show that the wings flex in a regular pattern

similar to active beating. By constructing geometrically similar bugs of various

sizes, we find that for each size there is a unique frequency f � at which a bug can

hover with minimum amplitude A� (maximum-to-minimum excursion of the air in

one cycle) of the oscillating flow, with f �A� being roughly independent of size

(and approximately 50 cm/s). Also, f � increases with decreasing bug size, in a

way similar to the increase of beat frequency with decreasing size observed among

insects [11].

We were able to model our results qualitatively using a two-dimensional flap-

ping model. This and other experimental studies led to an understanding of the ba-

sic mechanism of lift production, which resembles that available in active flapping

and hovering. Oscillatory motion of air past a sharp edge tends to produce a pair of

oppositely oriented eddies, forming a “vortex dipole”; see Figure 4.2 (lower right).

If, for example, the counterclockwise eddy is on the right of the clockwise eddy,

then each is advected downward by its neighbor, resulting in the propagation of
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the pair as a coherent vortex dipole. (In the case of our three-dimensional bug, the

edges of all four side-wings produce structures that combine into a sort of toroidal

vortex dipole.) As the dipole propagates downward, it carries momentum. The

production of this downward momentum with each flap of the wings is, accord-

ing to Newton’s laws, associated with an upward force on the body that balances

its weight. A similar mechanism involving symmetrical bodies that change their

shape was also investigated through Navier-Stokes simulations in two dimensions;

see Spagnolie and Shelley [43]).

We crudely estimate this force as follows: the total circulation � (or vortex tube

strength) introduced by the upward or downward air motion past an edge in opti-

mal hovering is approximately � � f �A� � A�=2. The dipole can be estimated

to move at a speed U � 4�=a, where a is the radius of the disc of paper forming

the bug; we estimate the radius of the cross section of the dipole pair as a=4, and

the length of the dipole tube as 4a. The momentum M thus produced in one cycle

is about U times twice the virtual mass of a cylinder of radius a=4 in air and the

length of tube. Thus M � .2f �A�2=a/ � 2�.a=4/2� � 4a, where � is the air den-

sity. The rate of momentum transport is f �M � ��.f �A�a/2, which must equal

gm where m is the mass of the bug. Thus m � ��.f �A�a/2=g � 3�a2 mg, a

measured in centimeters, given that f �A� � 50 in optimal hovering. Since our

tissue material has a density of 2:8 mg/cm2, we have reasonable agreement with

this estimate. It is interesting that the lift mechanism scales as length squared. For

our paper bugs the weight scales similarly, but in general a complex flapping device

should have weight scaling as length cubed. This raises the prospect of extremely

small active hoverers that nevertheless maintain a sufficiently large Reynolds num-

ber to effect the mechanisms studied here.

Following our work with these flexible hoverers, we investigated the possibility

that passive hovering could be accomplished with a rigid object. We therefore

constructed rigid pyramid-shaped bodies from tissue paper applied to a carbon

fiber frame. To our surprise we found that the rigid bodies hovered under similar

conditions, presumably by a similar mechanism; see Weathers et al. [53]. Dealing

with a rigid body allowed us to interpret the lift as the difference between the “drag”

on the object as the air moves downward over it compared to that obtained when

the air moves upwards.

One very surprising observation arising from these studies is the stability of

hovering. When the pyramidal bodies are dropped in still air, from any initial

orientation, they quickly assume an inverted orientation because of their shape

and center of gravity. However, in an oscillating airflow the upright “unstable”

orientation is in fact quite stable. In ongoing work, we are beginning to understand

the cause of this stability; see Liu et al. [26]. It promises to be important in the

construction of active hoverers utilizing the mechanisms accessible to study in an

oscillating airflow.
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4.3 A Complementary Problem: Pumping
Locomotion involves interactions of a body with the fluid through which it

moves. In a similar way, pumping involves the interactions of a fluid with the

boundary of the conduit through which it moves. While the impeller of a mechan-

ical pump is very similar to the propeller of an airplane, pumping also involves

other tricks such as the use of valves and centrifugal pressures. Our work in the

AML has dealt with a far simpler mechanism known as valveless pumping. There

are various types of valveless pumps, but all involve moving the walls of a simple

conduit, usually a tube. The purpose of the pump may be to move the fluid from

one reservoir to another, or it may be to move fluid along a tube despite viscous

friction. Probably the most familiar valveless pump is the peristaltic pump, where

a wave of contraction moves down a flexible tube. In the extreme case the tube

closes off at the restrictions and thus carries a bolus of fluid along as if on a con-

veyor belt. Swallowing of food or drink provides a good example of peristaltic

pumping.

The device we examined experimentally is more subtle in its interactions be-

tween boundaries and fluid. It utilizes a tube that closes on itself, i.e., a thin toroidal

container filled with fluid. Most of the tube is a rigid cylinder, but a small segment

is elastic and can be deformed. To induce pumping through this system, the elastic

segment is squeezed periodically at an off-center point. Surprisingly fast flows can

be built up in this way, by adjustment of the squeezing frequency. The asymmetric

placement of the point of squeezing is crucial to the mechanism and to determin-

ing the direction of the mean flow. Such a valveless pump is of interest because of

its simple construction and because its mechanism may be in operation in animal

hearts during early development [15].

An experiment on valveless pumping of this kind was carried out in our lab by

graduate student Tom Bringley, who also devised an elegant ODE model of the

process [8]. The model accounts for most of the observed properties of valveless

pumping. The process is subtle because the interaction of flux, pressure, and wall

elasticity occurs not only quasi-steadily but also dynamically through the propa-

gation of hydroelastic waves on the flexible portion of the tube. Bringley’s model

assumes that the time of transit of these waves is short compared to the time interval

between squeezes of the tube. It cannot therefore account for certain resonances as-

sociated directly with wave propagation but is effective over most of the parameter

range of interest. In earlier work, two-dimensional numerical simulations utilizing

the immersed boundary method revealed how these wave interactions can lead to

surprising effects, such as flow reversal under a change of frequency [20].

5 Current Directions and Future Outlook
Fluid-structure interactions between flexible and/or movable bodies with inertial

flows has been a primary and fruitful focus of the AML. This area is of course rich
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in phenomenology that is central to answering basic questions in biology, engineer-

ing, and geophysics. In moving forward we are particularly interested in devising

experiments and theory for fluid-mediated collective behavior of swimming and

flying organisms. In one foray into collective dynamics we are studying synthetic

nanomotors whose motion is induced by chemical reactions [30]. Synthetic sys-

tems have the advantage of removing behavior and internal stochasticity from the

study, but often involve fairly complicated physical and chemical processes that

are not yet well understood and which can have their own nonbiological quirks

(such as the production of electric fields). Outside of the small length-scale regime

governed by the Stokes equations, it remains a formidible challenge to construct

controlled experiments of freely moving and interacting bodies. The experiments

using arrays of flags [33] are a step in this direction in that the body is free to de-

form itself, though of course its position in the flow relative to the other bodies is

fixed. This means of course that typically the flags are producers of drag and not

thrust, which affects the nature of the surrounding fluid flows.

There are several recent or ongoing experiments in the AML that investigate the

dynamics of complex fluids, which present an extreme version of fluid-structure

interactions. In one very recent experiment, we investigated the force transmission

properties of “wet” granular media, here an aqueous solution of cornstarch parti-

cles at high volume concentration. It is well known that a dry packing of grains

transmits an applied force through sparsely distributed and branching force chains.

On the other hand, through a normal viscous fluid, a force can be delivered rather

uniformly towards the other side of the fluid. The situation with a suspension of

grains is much less investigated and has surprising results.

In our experiment a solid sphere is driven slowly through a shear-thickening

cornstarch solution; see Figure 5.1 from Liu, Shelley, and Zhang [28] (with per-

mission). We found that the granular fluid dynamically hardens into a solid-like

body attached to the sphere, and that this solid can be used to deliver a focused

force. The hardened region melts upon cessation of the body’s motion. We inves-

tigated the scaling and geometric form of the hardened mass with sphere size and

speed (actually suspension strain rate), and its dependence upon the shape of the

penetrating body. This work demonstrated how stress hardening of fluidic mate-

rials can be used to assemble temporary and useful structures and gives another

route to force transmission that lies somewhere between solids (elastic and plastic

deformation) and fluid (strain-rate modulated dissipation).

Another ongoing experiment involves a layer of fluid that overlays an array of

disks that rotate and counterrotate to set up an array of vortices and hyperbolic

stagnation points. This experiment investigates the onset of symmetry breaking

bifurcations and flow oscillations that were predicted from theoretical studies of

Shelley and his collaborators, particularly B. Thomases [47, 48, 49]. A second ex-

periment involves a body moving in a viscoelastic fluid while under an oscillatory

body force. The point of this experiment is to investigate the interaction of two

timescales, that of the fluid “relaxation time,” which is intrinsic to a viscoelastic
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FIGURE 5.1. A sphere moves slowly through a suspension of corn-

starch, causing a focused depression on a flat layer of molding clay. (a)

The depression is created by a sphere of radius R D 12:7 mm, which

is driven downward by a linear motor. The sphere stops short of the

clay surface, at H D 0. (b) The shape of the depression is digitized and

shown as its elevation ´ against radius r . (c) Each profile created at a dif-

ferent impact speed suggests a parabolic shape. The slower the impact

speed, the larger the indent curvature. The dashed line shows the corre-

sponding profile of the sphere that caused all depressions. Reproduced

from [28] with permission of the authors.

fluid, and that of the forcing. Recent numerical experiments investigating sperm

motility in a viscoelastic fluid have suggested that locomotion is enhanced when

these two timescales are comparable; see Teran, Fauci, and Shelley [46].

Finally, as mentioned above, new experiments are involving synthetic micro-

swimmers that are composed of bimetallic rods, gold and platinum, that move

through two catalytic reactions with hydrogen peroxide to produce a directed pro-

ton flow along its surface. With this system we hope to investigate many-body

interactions experimentally, as has been done in biological systems using bacteria
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(see, for example, Dombrowski et al. [14]), as well as how microswimmers interact

with complex geometries.

This work is related, again, to theoretical work on many-swimmer suspensions

by Shelley and his collaborators D. Saintillan and C. Hohenegger [18, 35, 36, 37,

38]. In that work, collective behavior was modeled using tools developed for com-

plex fluids where Fokker-Planck equations for evolving the motile particle confor-

mation distribution function are coupled to the flows produced by the collective

motion. This has been very successful in the Stokesian regime, where such the-

ories make testable predictions, such as changes in stability with swimmer con-

centration. Little has been done in this direction in higher-speed flows due to the

complications of efficiently modeling locomotory mechanisms, vorticity produc-

tion, and turbulent dissipation.

As the above work on suspensions and microswimmers suggests, the AML has

been moving towards the small. Developmental biology brings a whole host of new

fluid-structure interaction problems such as how nuclei are moved about within

the cell [41], or how mitotic spindles are formed in the approach to cell divi-

sion. The important biological components—microtubules, actin, motor proteins,

ATP/ADP—could be elements of future “smart fluids” that are engineered to per-

form technological tasks.

There are also other interesting fluid-structure problems that arise in geophysics

and which in some reduced form might be amenable to experimentation. One

example is pattern formation through fluid erosion. While these are difficult free-

boundary problems, they are somewhat simplified by the separation of flow time-

scales from erosion timescales. Also, clays and muds can have plastic responses

beyond a critical yield stress. A very different and interesting class of problems

at a far larger scale concerns how suspended objects aggregate in a fluid, and how

these aggregates may affect the circulation of fluid and other processes such as

heat absorption and transfer. The problem that comes to mind is understanding

the appearance and effect of vast aggregates of plastic particulates in the Earth’s

oceans (e.g., the “Great Pacific Garbage Patch”).

To close, we find that a physical laboratory can be a stimulating and vibrant

part of an applied mathematics environment. An important part of this are exper-

iments that are simple enough that the kernel of a physical interaction can be re-

vealed. Such experiments in the AML have provoked new mathematical modeling

and analysis, and the development of new numerical methods that address funda-

mental problems in fluid-structure interaction. We have also found that theorists

can develop an “experimental intuition” that also allows them to contribute to the

course of experiment. From our experience the AML has become a true interdisci-

plinary platform where scientists from many different backgrounds—mathematics,

physics, biology, chemistry—can work together.
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