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Abstract

In this paper we prove novel lower bounds for the Ginzburg-Landau energy with
or without magnetic field. These bounds rely on an improvement of the “vortex
balls construction” estimates by extracting a new positive term in the energy lower
bounds. This extra term can be conveniently estimated through a Lorentz space
norm, on which it thus provides an upper bound. The Lorentz space L2,∞ we use
is critical with respect to the expected vortex profiles and can serve to estimate the
total number of vortices and get improved convergence results.

1 Introduction

1.1 Motivation

In this paper we consider the Ginzburg-Landau “free energy”

Fε(u, A) =
1

2

∫
Ω

|∇Au|2 + |curl A|2 +
(1− |u|2)2

2ε2
. (1.1)

Here Ω is a bounded regular two dimensional domain of R2, u is a complex-valued function,
and A ∈ R2 is a vector field in Ω. This functional is the free energy of the model of
superconductivity developed by Ginzburg and Landau. In the model, A is the vector-
potential of the magnetic field, the function h := curl A = ∂1A2 − ∂2A1 is the induced
magnetic field, and the complex-valued function u is the “order parameter” indicating
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the local state of the material (normal or superconducting): |u|2 is the local density of
superconducting electrons. The notation ∇A refers to the covariant gradient, which acts
according to ∇Au = (∇− iA)u.

We are interested in the regime of small ε: ε corresponds to a material constant, and
small ε implies type-II superconductivity. In this regime, u (because it is complex-valued)
can have zeroes with a nonzero topological degree. These defects are called the vortices of
u and are the crucial objects of interest.

By setting A ≡ 0 we are led to studying the simpler Ginzburg-Landau energy “without
magnetic field”:

Eε(u) =
1

2

∫
Ω

|∇u|2 +
(1− |u|2)2

2ε2
. (1.2)

All our results will thus apply to this energy as well, by setting A ≡ 0.
These functionals, and in particular the vortices arising in their minimizers or critical

points, have been studied intensively in the mathematics literature. We refer in particular
to the books [1] for Eε and [8] for the functional with magnetic field. The interested reader
can find there more information on the physical and mathematical background.

We are interested in proving lower bounds on Fε, and in particular estimates which
relate Fε(u, A) and ‖∇Au‖L2,∞ , the norm of ∇Au in the Lorentz space L2,∞. Noticeably,
Lorentz spaces were already used in the context of the Ginzburg-Landau energy by Lin
and Rivière in [5]. Their goal there was to study energy critical points in 3 dimensions,
but what they used was interpolation ideas and the duality between Lorentz spaces L2,1

and L2,∞.
The Ginzburg-Landau energy is generally unbounded as ε → 0; it blows up roughly

like πn |log ε|, where n is the number (or total degree) of vortices. Our investigation of
estimates for ‖∇Au‖L2,∞ is thus part of a quest for intrinsic quantities in ∇Au which do
not blow up as ε → 0, but rather remain of the order of n.

1.2 Heuristics for idealized vortices

Let us now try to explain the interest and relevance of the Lorentz space L2,∞ for this
problem. The space L2,∞, also known as “weak-L2”, is a functional space which is just
“slightly larger” than the Lebesgue space L2. One simple way of defining the L2,∞ norm
is by

‖f‖L2,∞ = sup
|E|<∞

|E|−
1
2

∫
E

|f(x)| dx, (1.3)

where |E| denotes the Lebesgue measure of E. An equivalent way is through the super-level
sets of f :

‖f‖L2,∞ = sup
t>0

tλf (t)
1
2 , (1.4)

where λf (t) = |{x ∈ Ω | |f(x)| > t}| . For more information on Lorentz spaces we refer for
example to [2, 9]. A simple application of the Cauchy-Schwarz inequality in (1.3) allows
to check that if f is in L2 then it is in L2,∞ with ‖f‖L2,∞ ≤ ‖f‖L2 .
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Let us now consider vortices of a complex-valued function u in the context of Ginzburg-
Landau. In the regime of small ε, u can have zeroes, but because of the strong penalization
of the term

∫
Ω
(1− |u|2)2, |u| can be small only in (small) regions of characteristic size ε.

Then around a zero at a point x0, u has a degree defined as the topological degree of
u/ |u| as a map from a circle to S1, or in other words

d =
1

2π

∫
∂B(x0,r)

∂

∂τ

(
u

|u|

)
∈ Z, (1.5)

where r is sufficiently small. One can describe the situation very roughly as follows:
|u| is small in a ball of radius Cε, and |u| ≈ 1 outside of this ball, say in an annulus
B(x0, R)\B(x0, Cε). The size of R is meant to account for possible neighboring zeroes. In
this annulus, the model case is that of a radial vortex of degree d, i.e

u(r, θ) = f(r)eidθ, (1.6)

where (r, θ) are the polar coordinates centered at x0, and f is a real-valued function, close

to 1 in B(x0, R)\B(x0, Cε). When computing the L2 norm of ∇u, we find that |∇u| ≈ |d|
r

in the annulus and thus, using polar coordinates,

‖∇u‖2
L2(B(x0,R)) ≥

∫
B(0,R)\B(0,Cε)

∣∣∣∣dr
∣∣∣∣2 =

∫ R

Cε

2πd2

r
dr

≥ 2πd2 log
R

Cε
. (1.7)

This tells us that the (square of the) L2 norm of∇u blows up like 2πd2 |log ε| as ε → 0. This
is a crucial fact in the analysis of Ginzburg-Landau, much used since [1]. Jerrard [3] and
Sandier [6] showed that this picture is actually accurate even for arbitrary configurations:
without assuming that the vortex profile is radial, the inequality (1.7) still holds (the radial
profile is actually the one that is minimal for the L2 norm). Moreover, any configuration
with an arbitrary number of vortices can be understood as many such annuli, possibly at
very close distance to each other, glued together. Good lower bounds like (1.7) can be
added up together by keeping annuli with the same conformal type. This was the basis
of the “vortex-balls construction” that they formulated and which was used extensively to
understand Ginzburg-Landau minimizers, in particular in [8].

On the other hand, let us calculate (roughly) the L2,∞ norm of ∇u for the above vortex.

We recall that |∇u| ≈ |d|
r

in the annulus B(x0, R)\B(x0, Cε). Using the definition (1.4),
we have |∇u| > t if and only if r < |d| /t. Thus

λ|∇u|(t) ≈ πd2/t2,

and we find
‖∇u‖L2,∞(B(x0,R)\B(x0,Cε)) ≈

√
π|d|. (1.8)
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So in contrast, the L2,∞ norm of ∇u does not blow up as ε → 0. One can see that this
space is critical in the sense that 1/ |x| (barely) fails to be in L2 or in L2,q for any q < ∞
(its norm blows up logarithmically in all cases) but is in L2,∞ and in all Lp for p < 2.

Moreover, from this formula (1.8), it is expected that the L2,∞ norm can serve to esti-
mate the total degree

∑
|di| of all the vortices of a configuration. This is convenient since

the total degree
∑
|di| is generally obtained via a “ball construction” that is nonunique.

On the other hand ‖∇u‖L2,∞ provides a unique and intrinsic quantity useful to evaluate
the number of vortices.

Because of these remarks and because of the paper [5], it could be expected that Lorentz
spaces are a suitable functional setting in which to study Ginzburg-Landau vortices. One
may point out that there are other spaces that would be critical for the profile 1/ |x|,
such as Besov spaces; however, it seems difficult to find an effective way of using them in
connection with the Ginzburg-Landau energy.

The main goal of our results is to give a rigorous basis to the above observations. The
connection with the Lorentz norm of∇u is made through the “vortex-balls construction” of
Jerrard and Sandier, as formulated in [8]. Our estimates will in fact provide an improvement
of these lower bounds by adding an extra positive term in the lower bounds, which is then
related to the Lorentz norm. Just as in the ball construction method, one of the interests
of the result is that it is valid under very few assumptions: only a very weak upper bound
on the energy, even when u has a large number of vortices, unbounded as ε → 0. This
creates serious technical difficulties but is important since such situations occur for energy
minimizers when there is a large applied magnetic field, as proved in [8].

1.3 Main results

Let us point out that the estimates we prove are not on the Lorentz norm of ∇u but
rather on that of ∇Au. The reason is that the energy Fε is gauge-invariant : it satisfies
Fε(u, A) = Fε(ueiΦ, A +∇Φ) for any smooth function Φ. Thus the quantity |∇u| is not a
gauge-invariant quantity, hence not an intrinsic physical quantity. This is why it is replaced
by the gauge-invariant “covariant derivative” |∇Au|.

Our method consists in proving the following improvement of the “ball construction”
lower bounds (see [8], Chapter 4):

Theorem 1 (Improved lower bounds). Let α ∈ (0, 1). There exists ε0 > 0 (depending on
α) such that for ε ≤ ε0 and u, A both C1 such that Fε(|u| , Ω) ≤ εα−1, the following hold.

For any 1 > r > Cεα/2, where C is a universal constant, there exists a finite, disjoint
collection of closed balls, denoted by B, with the following properties.

1. The sum of the radii of the balls in the collection is r.
2. Defining Ωε = {x ∈ Ω | dist(x, ∂Ω) > ε}, we have
{x ∈ Ωε | |u(x)− 1| ≥ δ} ⊂ V := Ωε ∩ (∪B∈BB), where δ = εα/4.
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3. We have

1

2

∫
V

|∇Au|2 +
1

2ε2
(1− |u|2)2 + r2(curl A)2

≥ πD
(
log

r

εD
− C

)
+

1

18

∫
V

|∇A+Gu|2 +
1

2ε2
(1− |u|2)2,

(1.9)

where G is some explicitly constructed vector field, dB denotes deg(u, ∂B) if B ⊂ Ωε and
0 otherwise,

D =
∑
B∈B

B⊂Ωε

|dB|

is assumed to be nonzero, and C is universal.

The improvement with respect to Theorem 4.1 in [8] is the addition of the extra term
1
18

∫
|∇A+Gu|2. The term G is a vector-field constructed in the course of the ball construc-

tion, which essentially compensates for the expected behavior of ∇Au in the vortices. One
can take it to be τd/r in every annulus of the ball construction where u has a constant
degree d, τ denotes the unit tangent vector to each circle centered at x0, the center of the
annulus, and r = |x− x0|. By extending G to be zero outside of the union of balls V , we
easily deduce:

Corollary 1.1. Let (u, A) be as above, then∫
Ω

|∇Au− iGu|2 ≤ C
(
Fε(u, A)− πD log

( r

εD
− C

))
(1.10)

where G is the explicitly constructed vector field of Theorem 1, and C a universal constant.

The right-hand side of this inequality can be considered as the “energy-excess”, dif-
ference between the total energy and the expected vortex energy provided by the ball
construction lower bounds. Thus we control

∫
Ω
|∇Au − iGu|2 by the energy-excess. This

fact is used repeatedly in the sequel paper [10] to better understand the behavior of∇Au for
minimizers and almost minimizers of the Ginzburg-Landau energy with applied magnetic
field.

One can also note that such a control (1.10) has a similar flavor to a result of Jerrard-
Spirn [4] where they control the difference (in a weaker norm but with better control) of
the Jacobian of u to a measure of the form

∑
diδai

by the energy-excess.

Once Theorem 1 is proved, we turn to obtaining an L2,∞ estimate from which G has
disappeared. In order to do so, we can bound below ‖∇A+Gu‖L2 by ‖∇A+Gu‖L2,∞ ; the more
delicate task is then to control ‖G‖L2,∞ in a way that only depends on the final data of
the theorem, that is on the degrees of the final balls constructed above and on the energy.
This task is complicated by the possible presence of large numbers of vortices very close to
each other, and compensations of vortices of large positive degrees with vortices of large
negative degrees. To overcome this, G is not defined exactly as previously said, but in a
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modified way, and ‖G‖L2,∞ is controlled not only through the degrees but also through the
total energy.

We then arrive at the following main result :

Theorem 2 (Lorentz norm bound). Assume the hypotheses and results of Theorem 1.
Then there exists a universal constant C such that

1

2

∫
V

|∇Au|2 +
(1− |u|2)2

2ε2
+ r2(curl A)2 + π

∑
|dB|2

≥ C ‖∇Au‖2
L2,∞(V ) + π

∑
|dB|

(
log

r

ε
∑
|dB|

− C

)
, (1.11)

where the sums are taken over all the balls B in the final collection B that are included in
Ωε.

This theorem bounds below the energy contained in the union of balls V in terms of the
L2,∞ norm on V . It is a simple matter to extend these estimates to all of Ω, and deduce a
control of the L2,∞ norm of ∇Au by the energy-excess, plus the term

∑
|dB|2. This is the

content of the following corollary.

Corollary 1.2. Assuming the hypotheses and results of Theorem 1, there exists a universal
constant C such that

‖∇Au‖2
L2,∞(Ω) ≤ C

(
Fε(u, A)− π

∑
|dB| log

r

ε
∑
|dB|

+
∑

|dB|2
)

, (1.12)

where the sums are taken over all the balls B in the final collection B that are included in
Ωε.

These estimates can indeed help to bound from above ‖∇Au‖2
L2,∞(Ω) by the total number

of vortices, provided we can control the energy-excess by that number of vortices. This can
in turn serve to obtain stronger convergence results when a weak limit of ∇Au is known.
For example, if one considers the energy Eε (which we recall amounts to setting A ≡ 0),
it is known from Bethuel-Brezis-Hélein [1] that π

∑
|dB| |log ε| = πn |log ε| is the leading

order of the energy (at least for minimizers) and that the next order term is a term of
order 1, called the “renormalized energy” W , that accounts for the interaction between the
vortices. The upper bound of Corollary 1.2 roughly tells us that

‖∇u‖2
L2,∞(Ω) ≤ C(W +

∑
|dB|2 +

∑
|dB| log

∑
|dB|).

It is expected that the total cost of interaction of the vortices in W is of order of n2, where
n =

∑
|dB| is the total vorticity mass (here n can blow up as ε → 0). Thus, we obtain a

bound of the form
‖∇u‖2

L2,∞(Ω) ≤ Cn2,

which indeed bounds the L2,∞ norm of ∇u by an order of n, the total vorticity mass, as
expected in the heuristic calculations of Section 1.2.
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In the simplest case where we know that Eε(uε) ≤ πn |log ε| + C, which happens for
energy minimizers when n is bounded, as proved in [1], we then deduce that ‖∇u‖L2,∞ ≤ C.
To be more precise, for the minimizers of Eε found in [1], we have

Proposition 1.3 (Application to minimizers of Eε with Dirichlet boundary conditions).
Let Ω be starshaped and uε minimize Eε under the constraint uε = g on ∂Ω, where g is a
fixed S1-valued map of degree d > 0 on the boundary of Ω, as studied in [1]. Then there
exists a universal constant C such that

‖∇uε‖2
L2,∞(Ω) ≤ C(min

Ωd
W + d(log d + 1)) + oε(1).

Moreover, as ε → 0,
∇uε ⇀ ∇u? weakly-∗ in L2,∞(Ω),

where u? is the S1-valued “canonical harmonic map” of [1] to which converges u in Ck
loc

outside of a set of d vortex points.

Note that the renormalized energy W depends on g (hence on d), and the d log d is not
optimal here; rather, it should be d. It is more delicate to obtain this kind of improvement
to the estimate; this is one of the things done in [10] in the context of the energy with
applied magnetic field. Also the convergence of ∇uε cannot be strengthened, convergence in
L2,∞ strong does not hold, as illustrated by the following model case: let Vε be the vector

field (x−pε)⊥

|x−pε|2 and V = (x−p)⊥

|x−p|2 with pε → p as ε → 0. Then 2
√

π ≤ ‖Vε − V ‖L2,∞ ≤ 4
√

π,

while clearly Vε ⇀ V weakly-∗ in L2,∞.

We have focused on proving upper bounds on ‖∇Au‖L2,∞ in terms of its L2 norm and
Ginzburg-Landau energy. It is not difficult to obtain some adapted, though not optimal,
lower bounds. For example, we can prove the following:

Proposition 1.4. Let f ∈ L∞(Ω) be such that ‖f‖L∞(Ω) ≤
C
ε

for some ε < 1. Then

‖f‖2
L2,∞(Ω) ≥

1

2 |log ε|

∫
Ω

|f |2 − C2 |Ω|
2 |log ε|

. (1.13)

This proposition is a direct consequence of the definition of the L2,∞ norm. Its short
proof is presented in Section 6.1.

For critical points of the Ginzburg-Landau energy, it is known that the gradient bound
‖∇Au‖L∞(Ω) ≤

C
ε

holds. Thus applying Proposition 1.4 to f = ∇Au, we find

‖∇Au‖2
L2,∞(Ω) ≥

1

2 |log ε|

∫
Ω

|∇Au|2 − o(1).

Knowing some lower bounds (provided by the ball construction) of the type
∫

Ω
|∇Au|2 ≥

2πn |log ε|, where n is the total degree of the vortices, we find lower bounds of the type
‖∇Au‖2

L2,∞(Ω) ≥ πn, also relating the L2,∞ norm of ∇Au to the total number of vortices.
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In [10], which is the sequel of this paper, the ideas and main results of this paper are
extended to the case of the full Ginzburg-Landau energy with an applied magnetic field,
getting better estimates on ‖∇Au‖L2,∞(Ω) in terms of the number of vortices. These results
lead to a somewhat stronger (than previously known results) convergence of ∇Au and of
the Jacobian determinants of u when certain energy conditions are fulfilled.

1.4 Plan

The paper is organized as follows: in Section 2, for the convenience of the reader, we
give a review (with slight modifications) of the crucial definitions and ingredients for the
vortex-balls construction following Chapter 4 of [8].

In Section 3 we present the main argument, with the introduction of the function G
and the “trick” that allows us to gain an extra term in the lower bounds for the energy on
annuli.

In Section 4 we show how this extra term incorporates into the estimates through the
growing and merging of balls, and hence through the whole ball construction.

In Section 5 we deduce the proof of the main results.
In Section 6 we estimate the L2,∞ norm of G in order to pass from Theorem 1 to

Theorem 2. This is the only section in which L2,∞ comes into play.
In Section 7 we show how the methods of this paper can be adapted to work with the

version of the ball construction formulated by Jerrard in [3], at the expense of less control
of ‖G‖L2,∞ .

2 Reminders for the vortex balls construction

2.1 The ball growth method

In finding lower bounds for the Ginzburg-Landau energy of a configuration (u, A) it is most
convenient to work on annuli, the deleted interior discs of which contain the set where u is
near 0, and in particular the vortices. On each annulus, a lower bound is found in terms of
a topological term (the degree of the vortex) and a conformal factor, which we define to be
the logarithm of the ratio of the outer and inner radii of the annulus. Therefore, to create
useful lower bounds we must be able to identify the set where u is near 0 and then create
a family of annuli with large conformal type outside this set. The first component of the
process uses energy methods to find a covering of the set by small, disjoint balls, and is
addressed later. The second component is known as the general ball growth method and
is presented in this section. Here we follow the construction of Chapter 4 from [8].

As a technical tool we will need the ability to merge two tangent or overlapping balls
into a single ball that contains the original balls, and with the property that its radius is
equal to the sum of the radii of the original balls. Our first lemma recalls how to do such
a merging. We write r(B) for the radius of a ball B.
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Lemma 2.1. Let B1 and B2 be closed balls in Rn such that B1 ∩B2 6= ∅. Then there is a
closed ball B such that r(B) = r(B1) + r(B2) and B1 ∪B2 ⊂ B.

Proof. If B1 = B(a1, r1) and B2 = B(a2, r2), then B = B
(

r1a1+r2a2

r1+r2
, r1 + r2

)
has the

desired properties.

The ball growth lemma now provides an algorithm for growing an initial collection
of small balls into a final collection of large balls. Essentially, the balls in a collection
are grown concentrically by increasing their radii by the same conformal factor. This is
continued until a tangency occurs, at which point the previous lemma is used to merge the
tangent balls. The process is then repeated in stages until the collection is of the desired
size. The annuli of interest at each stage are formed by deleting the initial collection of
balls from the final collection; the construction guarantees that all of the annuli in a stage
have the same conformal type.

Given a finite collection of disjoint balls, B, we define the radius of the collection, r(B),
to be the sum of the radii of the balls in the collection, i.e.

r(B) =
∑
B∈B

r(B).

For any λ > 0 and any ball B = B(a, r), we define λB = B(a, λr). Extending this notation
to collections of balls, we write λB = {λB | B ∈ B}. For an annulus A = B(a, r1)\B(a, r0),
we define the conformal factor by τ = log(r1/r0). We can now state the ball growth lemma,
the proof of which can be found in Theorem 4.2 of [8].

Lemma 2.2 (Ball growth lemma). Let B0 be a finite collection of disjoint, closed balls.
There exists a family {B(t)}t∈R+

of collections of disjoint, closed balls such that the follow-
ing hold.

1. B0 = B(0).
2. For s ≥ t ≥ 0, ⋃

B∈B(t)

B ⊆
⋃

B∈B(s)

B.

3. There exists a finite set T ⊂ R+ such that if [t, s] ⊂ R+\T , then B(s) = es−tB(t). In
particular, if B(s) ∈ B(s) and B(t) ∈ B(t) are such that B(t) ⊂ B(s), then B(s) = es−tB(t)
and the conformal factor of the annulus B(s)\B(t) is τ = s− t.

4. For every t ∈ R+, r(B(t)) = etr(B0).

We now show how to couple lower bounds to the geometric construction. We may think
of a function F : R2 × R+ → R+ as being defined also for collections of balls, B, via the
identifications

F(B(x, r)) = F(x, r)

and
F(B) =

∑
B∈B

F(B).
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Here and for the rest of the paper we employ the notation B̄ to refer to a specific ball B̄
in some collection, and not to refer to the closure of B. We will also abuse notation by
writing B̄ ∩ B(t) for the collection {B̄ ∩B | B ∈ B(t)}.

Lemma 2.3. Let B0 be a finite collection of disjoint, closed balls, and suppose that B(t)
is the collection of balls obtained from B0 by growing them according to the ball growth
lemma. Fix a time s > 0 and suppose that 0 < s1 < · · · < sK ≤ s denote the times
at which mergings occur in the the ball growth lemma, i.e. let the si be an increasing
enumeration of the set T defined there. Then

F(B(s))−F(B0) =

∫ s

0

∑
B(x,r)∈B(t)

r
∂F
∂r

(x, r) dt +
K∑

k=1

F(B(sk))−F(B(sk))
−, (2.1)

where F(B(sk))
− = lim

t→s−k

F(B(t)). Moreover, for any B̄ ∈ B(s), the following localized

version of (2.1) holds:

F(B̄)−F(B̄ ∩ B0) =

∫ s

0

∑
B(x,r)∈B̄∩B(t)

r
∂F
∂r

dt +
K∑

k=1

F(B̄ ∩ B(sk))−F(B̄ ∩ B(sk))
−. (2.2)

Proof. The proof is the same as in Proposition 4.1 of [8], but here we keep the second sum
in (2.1) rather than bounding it.

Note that in the case that

F(x, r) =

∫
B(x,r)

e(u)

for some u-dependent energy density e(u), the first term on the right of (2.1) corresponds
to integration in polar coordinates on each annulus, and the second corresponds to the
energy contained in the non-annular parts of B(s).

2.2 The radius of a set

In order to effectively use the ball growth lemma to generate lower bounds, it is necessary
to first produce a collection of disjoint balls covering the set where u is near 0. We do this
by using the concept of the radius of a set, which is useful in two ways. First, it is defined
as an infimum over all coverings of the set by collections of balls, so that by exceeding
the infimum we may find a covering of the set by balls. Second, it is comparable to the
H1 Hausdorff measure of the boundary, and so it can be used with the co-area formula to
produce coverings by balls of the set where |u| is far from unity.

We define the radius of a compact set ω ⊂ R2, written r(ω), by

r(ω) = inf{r(B1) + · · ·+ r(Bk) | ω ⊂ ∪k
i=1Bi and k < ∞}.

We make the following remarks.
1) In the definition we may assume that the balls are disjoint. If they are not, then we
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merge balls that meet into a single ball with radius equal to the sum of the radii of the
merged balls according to Lemma 2.1.
2) If A ⊆ B then r(A) ≤ r(B).
3) The infimum is not necessarily achieved.

It is necessary to also introduce a modification of the radius that measures the radius
of the connected components of a compact set ω that lie inside an open set Ω. Indeed, we
define

rΩ(ω) = sup{r(K ∩ ω) | K ⊂ Ω s.t. K is compact and ∂K ∩ ω = ∅}.

The following lemmas record the crucial properties of these quantities. The omitted proofs
may be found in Section 4.4 of [8].

Lemma 2.4. Let ω be a compact subset of R2. Then

2r(ω) ≤ H1(∂ω). (2.3)

Lemma 2.5. Let Ω be open and ω ⊂ Ω be a compact set. Then

2rΩ(ω) ≤ H1(∂ω ∩ Ω). (2.4)

Lemma 2.6. Let ω1, ω2 be compact subsets of R2. Then

r(ω1 ∪ ω2) ≤ r(ω1) + r(ω2). (2.5)

Lemma 2.7. Let ω1, ω2 be compact sets, and let Ω ⊂ R2 be an open set. Then

rΩ(ω1 ∪ ω2) ≤ rΩ(ω1) + rΩ(ω2). (2.6)

Proof. If Ω ⊂ ω1 ∪ ω2, then the result is trivial. Suppose otherwise. Let K ⊂ Ω be such
that K is compact and ∂K ∩ (ω1 ∪ ω2) = ∅. Then (∂K ∩ ω1) ∪ (∂K ∩ ω2) = ∅, which
implies that ∂K ∩ ω1 = ∅ and ∂K ∩ ω2 = ∅. Hence,

r(K ∩ (ω1 ∪ ω2)) = r((K ∩ ω1) ∪ (K ∩ ω2))

≤ r(K ∩ ω1) + r(K ∩ ω2)

≤ rΩ(ω1) + rΩ(ω2).

(2.7)

Taking the supremum over all such K, we get rΩ(ω1 ∪ ω2) ≤ rΩ(ω1) + rΩ(ω2).

We will now use these concepts to compare the energy of a real-valued function ρ,
defined on an open set Ω, to the radius of the set where ρ is far from unity.

Lemma 2.8. Let ρ ∈ C1(Ω, R) with Ω ⊂ R2 open and bounded. Let

Fε(ρ, Ω) =
1

2

∫
Ω

|∇ρ|2 +
1

2ε2
(1− ρ2)2. (2.8)

Then there is a universal constant C such that

rΩ ({ρ ≤ 1/2} ∪ {ρ ≥ 3/2}) ≤ εCFε(ρ, Ω). (2.9)

11



Proof. By the Cauchy-Schwarz inequality and the co-area formula we have that

Fε(ρ, Ω) =
1

2

∫
Ω

|∇ρ|2 +
1

2ε2
(1− ρ2)2

≥ 1

ε
√

2

∫
Ω

|∇ρ|
∣∣1− ρ2

∣∣
=

1

ε
√

2

∫ ∞

0

∫
{ρ=t}∩Ω

∣∣1− ρ2
∣∣ dH1dt

=
1

ε
√

2

∫ ∞

0

∣∣1− t2
∣∣H1({ρ = t} ∩ Ω)dt.

(2.10)

We break the last integral into two parts and bound

1

ε
√

2

∫ ∞

0

∣∣1− t2
∣∣H1({ρ = t} ∩ Ω)dt

≥ 1

ε
√

2

∫ 3
4

1
2

(1− t2)H1({ρ = t} ∩ Ω)dt +
1

ε
√

2

∫ 3
2

5
4

(t2 − 1)H1({ρ = t} ∩ Ω)dt

=
1

ε4
√

2
(1− t20)H1({ρ = t0} ∩ Ω) +

1

ε4
√

2
(t21 − 1)H1({ρ = t1} ∩ Ω),

(2.11)

where the last equality follows from the mean value theorem, and t0 ∈ (1
2
, 3

4
) and t1 ∈ (5

4
, 3

2
).

The bounds on t0 and t1 imply that

(1− t20) ≥ 1− 9

16
=

7

16
, and

(t21 − 1) ≥ 25

16
− 1 =

9

16
.

(2.12)

Combining (2.10), (2.11), and (2.12), we get

Fε(ρ, Ω) ≥ 7

ε64
√

2
H1({ρ = t0} ∩ Ω) +

9

ε64
√

2
H1({ρ = t1} ∩ Ω)

≥ 7

ε64
√

2

(
H1({ρ = t0} ∩ Ω) +H1({ρ = t1} ∩ Ω)

)
.

(2.13)

Write St0 and St1 for the R2-closures of the sets {x ∈ Ω | ρ(x) ≤ t0} and {x ∈ Ω | ρ(x) ≥ t1}
respectively. The bounds t0 ≥ 1

2
, t1 ≤ 3

2
imply the inclusions {ρ ≤ 1/2} ⊂ St0 and

{ρ ≥ 3/2} ⊂ St1 . We may then apply lemmas 2.5 and 2.7 to find the bounds

H1({ρ = t0} ∩ Ω) +H1({ρ = t1} ∩ Ω) = H1(∂St0 ∩ Ω) +H1(∂St1 ∩ Ω)

≥ 2rΩ(St0) + 2rΩ(St1)

≥ 2rΩ ({ρ ≤ 1/2}) + 2rΩ ({ρ ≥ 3/2})
≥ 2rΩ ({ρ ≤ 1/2} ∪ {ρ ≥ 3/2}) .

(2.14)

Putting (2.14) into (2.13) yields the desired estimate with C = 32
√

2
7

.
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3 Improved lower bounds on annuli

In this section we will show how to obtain lower bounds for the Ginzburg-Landau energy in
terms of the degree. We begin by constructing estimates on circles. The primary difference
between our estimates and those constructed previously is that we arrive at our lower
bounds by introducing an auxiliary function G and using a completion of the square trick.
This allows us to retain terms involving G and thereby create an energy bound with a
novel term. Before properly defining G let us prove the lower bounds on circles.

We first record a simple lemma (see for example Lemma 3.4 in [8]).

Lemma 3.1. Let u ∈ H1(Ω, C) be written (at least locally) u = ρv, where ρ = |u| and
v = eiϕ. Then |∇Au|2 = |∇ρ|2 + ρ2 |∇ϕ− A|2 = |∇ρ|2 + ρ2 |∇Av|2.

Now we prove the lower bounds on circles.

Lemma 3.2. Let B := B(a, r) ⊂ R2, and suppose that v : ∂B → S1 and A : B → R2 are
both C1. Let G : ∂B → R2 be given by G = cτ

r
, where τ is the oriented unit tangent vector

field to ∂B and c is a constant. Write dB := deg(v, ∂B). Then for any λ > 0,

1

2

∫
∂B

|∇Av|2 +
λ

2

∫
B

(curl A)2 ≥ 1

2

∫
∂B

|∇A+Gv|2 +
π

r
(2cdB − c2)− πc2

2λ
. (3.1)

Proof. Define the quantity

X :=

∫
B

curl A =

∫
∂B

A · τ. (3.2)

We write v = eiϕ and recall that 2πdB =
∫

∂B
∇ϕ · τ . Using Lemma 3.1, we see∫

∂B

|∇A+Gv|2 =

∫
∂B

|∇ϕ− A−G|2

=

∫
∂B

|G|2 − 2

∫
∂B

G · (∇ϕ− A) +

∫
∂B

|∇ϕ− A|2

=
2πrc2

r2
− 2c

r

∫
∂B

∇ϕ · τ +
2c

r

∫
∂B

A · τ +

∫
∂B

|∇Av|2

=
2πc2

r
− 2c

r
2πdB +

2c

r
X +

∫
∂B

|∇Av|2

=
2π(c2 − 2cdB)

r
+

2c

r
X +

∫
∂B

|∇Av|2 .

(3.3)

An application of Hölder’s inequality shows that∫
B

(curl A)2 ≥ 1

πr2

(∫
B

curl A

)2

=
1

πr2
X2. (3.4)

Combining (3.3) and (3.4) yields the inequality

1

2

∫
∂B

|∇Av|2 +
λ

2

∫
B

(curl A)2 ≥ 1

2

∫
∂B

|∇A+Gv|2 +
π(2cdB − c2)

r
− c

r
X +

λ

2πr2
X2. (3.5)
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As X varies, the minimum value of the right hand side occurs when X = πcr
λ

. Plugging
this into (3.5) yields (3.1).

For this lemma to be useful we must construct a function G : Ω → R2 compatible with
the ball growth lemma. That is, since estimates will ultimately be added up over balls B, G
must have the property that on each ∂B, G = τ∂B

c
r

with r the distance to the center of B.
We will take advantage of the fact that c was an arbitrary constant; many of the following
results are thus valid with any choice of constants, and it is only much later that we choose
specific values. Observe already, though, that taking c = dB yields an improvement by the∫
|∇A+Gv|2 term to the bounds constructed in Lemma 4.4 of [8]. Unfortunately, we must

choose a more complicated constant c to make the estimates in Sections 5 and 6 work. We
now show how to define such a G so that it will be useful analytically.

Let Ω ⊂ R2 be open and let {B(t)}t∈[0,s] be a family of collections of closed, disjoint
balls grown via the ball growth lemma from an initial collection B0 that covers the set on
which u is near 0. Let G denote the subcollection of balls in B(s) entirely contained in Ω,
and let G(t) denote the balls in B(t) that are contained in a ball from G, i.e. that remain
inside Ω for all t. For each ball B ∈ G(t) we define several quantities. Let τ∂B : ∂B → R2

denote the oriented unit tangent vector field to ∂B, and let aB denote the center of B. Let
dB = deg(u/ |u| , ∂B); this is well-defined since the set on which u vanishes is contained in
B0. Let βB denote a constant, to be specified later, with the property that if B1 ∈ G(t1),
B2 ∈ G(t2), and B2 = et2−t1B1 (i.e. B2 is grown from B1 without any mergings) then
βB1 = βB2 . In other words, the βB are constant over each annulus produced by the ball
construction. Let T ⊂ [0, s] denote the finite set of times from the ball growth lemma at
which a merging occurs in the growth of G(t). We then define the function G : Ω → R2 by

G(x) =

{
τ∂B(x) dBβB

|x−aB |
if x ∈ ∂B for some B ∈ G(t), t ∈ [0, s]\T

0 otherwise.
(3.6)

The ball growth lemma guarantees that if x ∈ ∂B for some B ∈ G(t), t ∈ [0, s]\T , then that
t is unique, and so G(x) is well defined. By construction, G = 0 in ∪B∈G(0)B, and so we
can use the above definition of G to extend any function previously defined on ∪B∈G(0)B.
We will frequently do so.

Figure 1 shows a simple example of balls grown near the boundary of Ω. Four initial
balls, colored light gray, are grown into three final balls, labeled B1, B2, B3. The initial
balls are first grown with by a conformal factor of τ = log 2 until a merging in required
in the balls that become B1. The result of this merging is the white ball contained in B1.
The growth is then continued with a conformal factor of τ = log(6/5) to produce the final
balls. The annuli on which G is defined are colored in dark gray and black. Since B3 leaves
the domain, G is set to zero on the annuli inside it. G also vanishes on the white region
contained in B1.

With G now properly defined we can show how to couple Lemma 3.2 to the ball growth
lemma to produce lower bounds on annuli.
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Figure 1: Balls grown near the boundary of Ω

Proposition 3.3. Let B0 be a finite, disjoint collection of closed balls and let Ω ⊆ R2 be
open. Let ω = ∪B∈B0B and denote the collection of balls obtained from B0 via the ball
growth lemma by {B(t)}, t ≥ 0. Suppose that v : Ω\ω → S1 and A : Ω → R2 are both C1,
and let G : Ω → R2 be the function defined by (3.6). Fix s > 0 such that r(B(s)) ≤ 1.
Then, for any B̄ ∈ B(s) such that B̄ ⊂ Ω, and any λ > 0, we have

1

2

∫
B̄\ω

|∇Av|2 +
r(B̄)λ

2

∫
B̄

(curl A)2 −
∑

B∈B̄∩B0

r(B)λ

2

∫
B

(curl A)2

≥ 1

2

∫
B̄\ω

|∇A+Gv|2 +

∫ s

0

∑
B∈B̄∩B(t)

πd2
B

(
2βB − β2

B −
β2

Br(B(t))

2λ

)
dt, (3.7)

where we have written dB = deg(u/ |u| , ∂B).

Proof. In order to utilize Lemma 2.3 we define the function

F(x, r) =
1

2

∫
B(x,r)

|∇Av|2 +
rλ

2

∫
B(x,r)

(curl A)2. (3.8)

Differentiating and using (3.1) with c = βBdB, we arrive at the bound

∂F
∂r

≥ 1

2

∫
∂B(x,r)

|∇Av|2 +
λ

2

∫
B(x,r)

(curl A)2

≥ 1

2

∫
∂B(x,r)

|∇A+Gv|2 +
πd2

B

r
(2βB − β2

B)− πd2
Bβ2

B

2λ
.

(3.9)
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We now recall the notation of Lemma 2.3: 0 < s1 < · · · < sK ≤ s denote the times at
which merging occurs in the growth of B0 to B(s) via the ball growth lemma, and

F(B̄ ∩ B(sk))
− = lim

t→s−k

F(B̄ ∩ B(t)). (3.10)

By discarding the terms involving curl A, we see that

K∑
k=1

F(B̄ ∩ B(sk))−F(B̄ ∩ B(sk))
−

≥
K∑

k=1

 ∑
B∈B̄∩B(sk)

1

2

∫
B

|∇Av|2 − lim
t→s−k

∑
B∈B̄∩B(t)

1

2

∫
B

|∇Av|2
 , (3.11)

which corresponds to the integral of 1
2
|∇A+Gv|2 over the non-annular parts of B̄\ω since

G = 0 there. Since the ball growth lemma makes

d

dt
r(B(t)) = r(B(t)),

the expression ∫ s

0

∑
B∈B̄∩B(t)

r(B)

2

∫
∂B

|∇A+Gv|2 dt

corresponds to the integral of 1
2
|∇A+Gv|2 over the annular parts of B̄\ω. We now combine

this observation, inequalities (3.9) and (3.11), and equality (2.2) to conclude that

F(B̄)−F(B̄ ∩ B0)

≥ 1

2

∫
B̄\ω

|∇A+Gv|2 +

∫ s

0

∑
B∈B̄∩B(t)

πd2
B

(
2βB − β2

B −
β2

Br(B)

2λ

)
dt

≥ 1

2

∫
B̄\ω

|∇A+Gv|2 +

∫ s

0

∑
B∈B̄∩B(t)

πd2
B

(
2βB − β2

B −
β2

Br(B(t))

2λ

)
dt.

(3.12)

This is (3.7).

The following corollary shows that our method, using G, can be used to recover the
same estimates found in Proposition 4.3 of [8].

Corollary 3.4. Under the same assumptions as in Proposition 3.3 we have

1

2

∫
B̄\ω

|∇Av|2 +
r(B̄)(r1 − r0)

2

∫
B̄

(curl A)2 ≥
∫ s

0

∑
B∈B̄∩B(t)

πd2
B

(
1− r(B(t))

2(r1 − r0)

)
dt, (3.13)

and

1

2

∫
B̄\ω

|∇Av|2 +
r(B̄)(r1 − r0)

2

∫
B̄

(curl A)2 ≥ π |dB̄|
(

log
r1

r0

− log 2

)
, (3.14)

where r0 := r(B0) and r1 := r(B(s)) = esr0.

16



Proof. Set λ = r1 − r0, each βB = 1, and disregard the |∇A+Gv| term and the curl terms
on B0 in (3.7) to get (3.13). If log r1

r0
< log 2, then (3.14) follows trivially. On the other

hand, if log r1

r0
≥ log 2, then r1 ≥ 2r0, which implies

1− r(B(t))

2(r1 − r0)
≥ 1− r1

2(r1 − r0)
=

r1 − 2r0

2(r1 − r0)
≥ 0. (3.15)

Then (3.14) follows by noting that r1 = esr0,

d

dt
r(B(t)) = r(B(t)), (3.16)

and (see Lemma 4.2 in [8]) ∑
B∈B̄∩B(t)

d2
B ≥

∑
B∈B̄∩B(t)

|dB| ≥ |dB̄| . (3.17)

We will need the following modification of the previous corollary later. It is a slight
modification of Proposition 4.3 from [8].

Lemma 3.5. Under the same assumptions as in Proposition 3.3 we have

1

2

∫
B̄\ω

|∇Av|2 +
r(B̄)r1

2

∫
B̄

(curl A)2 ≥ 2π

3

∫ s

0

∑
B∈B̄∩B(t)

d2
B dt. (3.18)

Proof. Lemma 4.4 from [8] provides the lower bound on circles, ∂B = ∂B(a, r):

1

2

∫
∂B

|∇Av|2 +
λ

2

∫
B

(curl A)2 ≥ π
d2

B

r

(
2λ

2λ + r

)
. (3.19)

We now set λ = r1, bound
2r1

2r1 + r
≥ 2

3
,

and proceed as before to conclude.

4 Initial and final balls

In this section we record the energy estimates that couple to the ball construction. For
technical reasons that will arise in the proof of Theorem 1 we must use the ball growth
lemma in two phases, just as in Chapter 4 of [8]. The first phase produces a collection of
initial balls that cover the set where |u| is far from unity and on which lower bounds of a
type needed in the proof of Theorem 1 are satisfied. This initial collection contains as a
subset a collection of balls on which we initially define the function G. The second phase
produces a collection of final balls, grown from the initial balls, of a chosen size and on
which nice lower bounds hold. In the final section we finally specify the values of the βB

used to define G and show that certain lower bounds hold with this choice of constants.
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4.1 The initial balls

Before we can produce the collection of initial balls, we must first produce a collection of
balls that covers the set where |u| is far from unity. This is accomplished via the following
lemma (Proposition 4.8 from [8]), which shows how the radius of this set is controlled by
the energy of |u|.

Lemma 4.1. Let M, ε, δ > 0 be such that ε, δ < 1, and let u ∈ C1(Ω, C) satisfy the bound
Fε(|u| , Ω) ≤ M . Then

r({x ∈ Ωε | |u(x)− 1| ≥ δ}) ≤ C
εM

δ2
(4.1)

where C is a universal constant and Ωε = {x ∈ Ω | d(x, ∂Ω) > ε}.

The next technical result shows how to bound from below the modified radius of sub-
and super-level sets.

Lemma 4.2. Let Ω ⊂ R2 be open, Ωε = {x ∈ Ω | d(x, ∂Ω) > ε}, and suppose B is a finite
collection of disjoint, closed balls that cover the set

{x ∈ Ωε | |u(x)− 1| ≥ δ}.

Let Bb denote the subcollection of balls in B that intersect ∂Ωε, and let Bi denote the
subcollection of balls in B contained in the interior of Ωε (i.e. B = Bb ∪ Bi). Define
Ω̃ = Ωε\(∪B∈Bb

B). For 0 < s ≤ t define the sets ωt = {x ∈ Ωε | |u| ≤ t}, ωt = {x ∈
Ωε | |u| ≥ t}, and ωt

s = ωs ∪ ωt. Then

rΩε(ωt) ≥ r(ωt ∩ Ω̃) for t ∈ (0, 1− δ),

rΩε(ω
t) ≥ r(ωt ∩ Ω̃) for t ∈ (1 + δ,∞), and

rΩε(ω
t
s) ≥ r(ωt

s ∩ Ω̃) for s ∈ (0, 1− δ), t ∈ (1 + δ,∞).

(4.2)

Proof. Suppose that t ∈ (0, 1 − δ) and let Int(·) denote the interior of a set. Write V =
∪B∈BB and Vi = ∪B∈Bi

B. Since the inclusions

Int(V ) ⊇ Int({x ∈ Ωε | |u(x)− 1| ≥ δ}) ⊃ ωt (4.3)

hold, we have that ωt∩ Ω̃ = ωt∩Vi, and hence r(ωt∩ Ω̃) = r(ωt∩Vi). When combined with
the fact that Vi is a compact subset of Ωε and ∂Vi ∩ ωt = ∅, this yields the first estimate
in (4.2). Similar arguments prove the second and third assertions.

We now construct the initial balls. The following proposition is the analogue of Propo-
sition 4.7 of [8], but here we have an extra term of the form∫

|∇A+Gv|2 .

Note that items 1, 2, and 3 are the same as those found in [8]; item 4 is new.
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Proposition 4.3. Let α ∈ (0, 1). There exists ε0 > 0 (depending on α) such that for
ε ≤ ε0 and u ∈ C1(Ω, C) with Fε(|u| , Ω) ≤ εα−1, the following hold.

There exists a finite, disjoint collection of closed balls, denoted by B0, with the following
properties.

1. r(B0) = Cεα/2, where C is a universal constant.
2. {x ∈ Ωε | |u(x)− 1| ≥ δ} ⊂ V0 := Ωε ∩ (∪B∈B0B), where δ = εα/4.
3. Write v = u/ |u|. For t ∈ (0, 1− δ) we have the estimate

1

2

∫
V0\ωt

|∇Av|2 +
r(B0)

2

2

∫
V0

(curl A)2 ≥ πD0

(
log

r(B0)

rΩε(ωt)
− C

)
, (4.4)

where
D0 =

∑
B∈B0
B⊂Ωε

|dB| . (4.5)

4. There exists a family of finite collections of closed, disjoint balls {C(s)}s∈[0,σ], all
of which are contained in in V0, and that are grown according to the ball growth lemma
from an initial collection, C(0), that covers the set ω

3/2
1/2 ∩ V0. The number σ is such that

r(C(σ)) = 3
8
r(B0). Let G : V0 → R2 be the function defined by using Ωε and {C(s)}s∈[0,σ]

in (3.6) and then extended by zero to the rest of V0. For each λ > 0 we have the estimate

1

2

∫
V0\ω3/2

1/2

|∇Av|2 +
∑
B∈B0

r(B)λ

2

∫
B∩Ω

(curl A)2

≥
∫ σ

0

∑
B̄∈C(σ)
B̄⊂Ωε

∑
B∈B̄∩C(t)

πd2
B

(
2βB − β2

B −
β2

Br(C(t))

2λ

)
dt +

1

2

∫
V0\ω3/2

1/2

|∇A+Gv|2 . (4.6)

Proof. We break the proof into six steps. The first four consist of finding four collections of
balls that are used to create the initial collection B0. The last two steps prove the estimates
of items 3 and 4.

Step 1.
Using M = εα−1 and δ = εα/4 in Lemma 4.1 produces a collection of disjoint, closed

balls E that cover the set {x ∈ Ωε | |u(x)− 1| ≥ δ} such that R := r(E) ≤ Cεα/2. We will
eventually need to use Lemma 4.2, so we employ its notation by breaking the collection E
into subcollections Ei and Eb and defining the set Ω̃ = Ωε\(∪B∈Eb

B).

Step 2.
By the definition of the radius of a set, for any t ∈ (0, 1 − δ) we can cover ωt ∩ Ω̃ by

a collection of disjoint balls, denoted by B0
t , with total radius less than 2r(ωt ∩ Ω̃). Since

r(ωt ∩ Ω̃) ≤ R, we can use Lemma 2.2 to grow the collection B0
t into a collection Bt such
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that r(Bt) = 2R. We then utilize Corollary 3.4 on each of the balls in Bt that is contained
in Ω̃ and sum to get the estimate

1

2

∫
Vt\ωt

|∇Av|2 +
4R2

2

∫
Vt

(curl A)2 ≥ πDt

(
log

2R

2r(ωt ∩ Ω̃)
− log 2

)
, (4.7)

where

Vt = Ω̃ ∩ (∪B∈BtB) , and

Dt =
∑
B∈Bt

B⊂Ω̃

|dB| .

Choose t̄ ∈ (0, 1− δ) such that Dt̄ is minimal.

Step 3.
Let m denote the supremum of

F(K) :=
1

2

∫
(K∩Ω̃)\ω

|∇Av|2 +
4R2

2

∫
K∩Ω̃

(curl A)2

over compact K ⊂ Ω such that r(K) < 2R. Choose K so that r(K) < 2R and F(K) ≥
m − 1. Cover K by a collection of disjoint, closed balls K such that r(K) = 2R (the
existence of such a collection is guaranteed by the ball growth lemma).

Step 4.
We can cover ω

3/2
1/2 ∩ Ω̃ by a collection of disjoint balls, denoted by C0, with radius less

than 3
2
r(ω

3/2
1/2 ∩ Ω̃). We use the ball growth lemma, applied to C0, to produce a family of

collections {C(s)} with s ∈ (0, σ),

σ = log

(
3R

r(C0)

)
.

Let C = C(σ) and note that by construction r(C) = 3R.

Step 5.
Define B0 to be a collection of disjoint balls that cover the balls in Bt̄, K, C, and E . We

may choose such a collection so that r(B0) = 8R. Let V0 = Ωε ∩ (∪B∈B0B). Then

I :=
1

2

∫
V0\ωt

|∇Av|2 +
r(B0)

2

2

∫
V0

(curl A)2 ≥ F(K) +
1

2

∫
ω\ωt

|∇Av|2 , (4.8)
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and by the construction of K and Vt for any t ∈ (0, 1− δ), this implies

I + 1 ≥ F(Vt) +
1

2

∫
ω\ωt

|∇Av|2

≥ 1

2

∫
Vt\ωt

|∇Av|2 +
4R2

2

∫
Vt

(curl A)2

≥ πDt

(
log

2R

2r(ωt ∩ Ω̃)
− log 2

)
≥ πDt

(
log

r(B0)

rΩε(ωt)
− C

)
,

(4.9)

where the last line follows from (4.2) and the fact that r(B0) = 8R. By the choice of t̄,

Dt ≥ Dt̄ =
∑
B∈Bt̄

B⊂Ω̃

|dB| . (4.10)

We break the collection of balls in the last sum in (4.10) into two subcollections:

I1 := {B ∈ Bt̄ | B ⊆ Ω̃, B ⊆ B′ ∈ B0 so that B′ ∩ ∂Ωε 6= ∅}
I2 := {B ∈ Bt̄ | B ⊆ Ω̃, B ⊆ B′ ∈ B0 so that B′ ⊆ Ωε}.

Then ∑
B∈Bt̄

B⊂Ω̃

|dB| =
∑
B∈I1

|dB|+
∑
B∈I2

|dB| ≥ 0 +
∑
B∈B0
B⊂Ωε

|dB| = D0, (4.11)

where the inequality follows from Lemma 4.2 in [8]. Combining (4.9), (4.10), and (4.11)
yields (4.4).

Step 6.
Let U be the union of the balls in C0 that are contained in Ωε and W be the union of

the balls in C that are contained in Ωε. Then applying Proposition 3.3 to each B̄ ∈ C such
that B̄ ⊂ Ωε and summing, we get the estimate

1

2

∫
W\U

|∇Av|2 +
∑
B̄∈C

B̄⊂Ωε

r(B̄)λ

2

∫
B̄

(curl A)2

≥ 1

2

∫
W\U

|∇A+Gv|2 +

∫ σ

0

∑
B̄∈C

B̄⊂Ωε

∑
B∈B̄∩C(t)

πd2
B

(
2βB − β2

B −
β2

Br(C(t))

2λ

)
dt. (4.12)

21



G vanishes in the regions V0\W and U\ω3/2
1/2, so

1

2

∫
(V0\W )∪(U\ω3/2

1/2
)

|∇Av|2 =
1

2

∫
(V0\W )∪(U\ω3/2

1/2
)

|∇A+Gv|2 . (4.13)

Adding (4.13) to both sides of (4.12) and noting that∑
B̄∈C

B̄⊂Ωε

r(B̄)λ

2

∫
B̄

(curl A)2 ≤
∑
B∈B0

r(B)λ

2

∫
B∩Ω

(curl A)2 (4.14)

yields (4.6).

4.2 The final balls

The next proposition constructs the final balls from the initial ones constructed in Propo-
sition 4.3. Items 1, 2, and 3 are the same as those of Theorem 4.1 of [8]; item 4 contains
the novel estimate with the G-term.

Proposition 4.4. Let α ∈ (0, 1). There exists ε0 > 0 (depending on α) such that for
ε ≤ ε0 and u ∈ C1(Ω, C) with Fε(|u| , Ω) ≤ εα−1, the following hold.

For any 1 > r > Cεα/2, where C is a universal constant, there exists a finite, disjoint
collection of closed balls, denoted by B, with the following properties.

1. r(B) = r.
2. {x ∈ Ωε | |u(x)− 1| ≥ δ} ⊂ V := Ωε ∩ (∪B∈BB), where δ = εα/4.
3. Write v = u/ |u|. For t ∈ (0, 1− δ) we have the estimate

1

2

∫
V \ωt

|∇Av|2 +
r2

2

∫
V

(curl A)2 ≥ πD

(
log

r

rΩε(ωt)
− C

)
, (4.15)

where
D =

∑
B∈B

B⊂Ωε

|dB| . (4.16)

4. Let G : Ω → R2 be the extension, according to (3.6), of the G from item 4 in
Proposition 4.3. Write s = log r

r(B0)
. Then

1

2

∫
V \ω3/2

1/2

|∇Av|2 +
∑
B̄∈B

r(B̄)(r − r(B0))

2

∫
B̄∩Ω

(curl A)2 ≥ 1

2

∫
V \ω3/2

1/2

|∇A+Gv|2

+

∫ s

0

∑
B̄∈B

B̄⊂Ωε

∑
B∈B̄∩B(t)

πd2
B

(
2βB − β2

B −
β2

Br(B(t))

2(r − r(B0))

)
dt

+

∫ σ

0

∑
B̄∈C(σ)
B̄⊂Ωε

∑
B∈B̄∩C(t)

πd2
B

(
2βB − β2

B −
β2

Br(C(t))

2(r(C(σ))− r(C0))

)
dt. (4.17)
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Proof. Lemma 4.3 provides an initial set of disjoint, closed balls B0. We grow these accord-
ing to the ball growth lemma to produce {B(t)}t∈[0,s] with s chosen so that r(B(s)) = r,
i.e. s = log r

r(B0)
. By construction, items 1 and 2 are proved. Let B = B(s), and write

V = Ωε ∩ ∪B∈BB, V0 = Ωε ∩ ∪B∈B0B. Let G : V0 → R2 be the function defined in item 4
of Proposition 4.3. We then use B0 and B to extend G : Ω → R2 according to (3.6).

We analyze the balls in B according to whether or not they are contained entirely in
Ωε. For balls B̄ ∈ B such that B̄ ⊂ Ωε, we use (3.14), and for the other balls we use the
trivial non-negative bound. Summing over all balls in B, we get

1

2

∫
V \V0

|∇Av|2 +
∑
B̄∈B

r(B̄)(r − r(B0))

2

∫
B̄∩Ω

(curl A)2 ≥ πD

(
log

r

r(B0)
− log 2

)
. (4.18)

Adding (4.4) to (4.18) and noting that D0 ≥ D then yields (4.15).
To prove (4.17) we proceed similarly, using different estimates for the balls in B accord-

ing to whether or not they are contained in Ωε. For balls B̄ ∈ B such that B̄ ⊂ Ωε we use
Proposition 3.3 to get the estimate

1

2

∫
B̄\V0

|∇Av|2 +
r(B̄)λ

2

∫
B̄

(curl A)2 −
∑

B∈B̄∩B0

r(B)λ

2

∫
B

(curl A)2

≥ 1

2

∫
B̄\V0

|∇A+Gv|2 +

∫ s

0

∑
B∈B̄∩B(t)

πd2
B

(
2βB − β2

B −
β2

Br(B(t))

2λ

)
. (4.19)

On the other hand, the construction of G guarantees that it vanishes on all balls B̄ ∈ B
such that B̄ ∩ ∂Ωε 6= ∅, and so for such B̄ we trivially have the estimate

1

2

∫
(B̄∩Ω)\V0

|∇Av|2 +
r(B̄)λ

2

∫
B̄∩Ω

(curl A)2 −
∑

B∈B̄∩B0

r(B)λ

2

∫
B∩Ω

(curl A)2

≥ 1

2

∫
(B̄∩Ω)\V0

|∇A+Gv|2 . (4.20)

Summing (4.19) and (4.20) over all balls in B then yields the estimate

1

2

∫
V \V0

|∇Av|2 +
∑
B̄∈B

r(B̄)λ

2

∫
B̄∩Ω

(curl A)2 −
∑
B∈B0

r(B)λ

2

∫
B∩Ω

(curl A)2

≥ 1

2

∫
V \V0

|∇A+Gv|2 +

∫ s

0

∑
B̄∈B

B̄⊂Ωε

∑
B∈B̄∩B(t)

πd2
B

(
2βB − β2

B −
β2

Br(B(t))

2λ

)
dt. (4.21)

We insert λ = r− r(B0) into (4.21) and λ = r(C(σ))− r(C0) = 3r(B0)
8

− r(C0) into (4.6) and
add the estimates together. Noting that

3r(B0)

8
− r(C0)− r + r(B0) ≤ Cεα/2 − r ≤ 0, (4.22)

we arrive at the estimate (4.17).
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4.3 Degree analysis and selection of the βB values

We will now select the values of the βB used to define G. Ultimately, later in Theorem 2,
we will get rid of G altogether by bounding its L2,∞ norm by a term of the order D2. This
bound, the proof of which is Proposition 6.4, requires the values of the βB to be small.
However, since they play a role in the lower bounds of Proposition 4.4, we can not choose
the βB to be too small. We balance these two demands by introducing a parameter η to
measure when βB must be small and when it can assume the natural choice for its value,
1.

The next two results establish that for a ball B̄ ∈ B(s) there is a transition time
(depending on η) in the family B̄ ∩B(t) before which we can take βB = 1, and after which
we must use something more complicated.

Lemma 4.5. Let B0 be a finite collection of disjoint, closed balls. Suppose further that the
collection B0 has the degree covering property that for all balls B ⊂ Ω\(∪S∈B0S), it is the
case that dB = 0. In other words, the collection B0 covers all of the vortices. Let B(t),
t ∈ [0, s], be a t-parameterized family of finite collections of disjoint, closed balls. Suppose
that B0 = B(0) and that ⋃

B∈B(t1)

B ⊆
⋃

B∈B(t2)

B for t1 ≤ t2. (4.23)

Fix B̄ ∈ B(s). Define the negative and positive vorticity masses by

N(t) :=
∑

B∈B̄∩B(t)
dB<0

|dB|

P (t) :=
∑

B∈B̄∩B(t)
dB>0

dB.
(4.24)

Then for any η ∈ (0, 1), the following hold.
1. If dB̄ ≥ 0 and the inequality

N(s0) ≤ ηP (s0) (4.25)

holds for some s0 ∈ [0, s], then N(t) ≤ ηP (t) for all t ∈ [s0, s].
2. If dB̄ < 0 and the inequality

P (s0) ≤ ηN(s0) (4.26)

holds for some s0 ∈ [0, s], then P (t) ≤ ηN(t) for all t ∈ [s0, s].

Proof. Take dB̄ ≥ 0; the following proves (4.25), and a similar argument with dB̄ < 0 proves
(4.26). Let n(t) = #B(t). Then by the inclusion property (4.23), n(t) is a decreasing N-
valued function. Hence there exist finitely many times 0 = t0 < · · · < tK = s such that
n(t) is constant on (ti, ti+1). This implies that for ti < s < t < ti+1 and B ∈ B(t), there
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exists exactly one ball B′ ∈ B(s) such that B′ ⊆ B, and by the degree covering property,
dB = dB′ . It follows that N(t) and P (t) are also constant on each (ti, ti+1). Then it suffices
to show that if N(tk) ≤ ηP (tk), then N(tk+1) ≤ ηP (tk+1).

Given a ball C ∈ B(tk+1), the inclusion property guarantees that there is a finite
collection {B1, . . . , Bj} ⊆ B(tk) such that Bi ⊆ C for i = 1, . . . , j. We then get

|dC | = −
∑

i∈{1,...,j}
dBi

≥0

dBi
+

∑
i∈{1,...,j}

dBi
<0

|dBi
| if dC < 0, and

|dC | =
∑

i∈{1,...,j}
dBi

≥0

dBi
−

∑
i∈{1,...,j}

dBi
<0

|dBi
| if dC ≥ 0.

(4.27)

We must now subdivide the collection B̄ ∩ B(tk) according to the degrees of balls in B̄ ∩
B(tk+1). Define the collections

I−,− = {B ∈ B̄ ∩ B(tk) | dB < 0,∃B′ ∈ B̄ ∩ B(tk+1) s.t. B ⊂ B′, dB′ < 0}
I−,+ = {B ∈ B̄ ∩ B(tk) | dB < 0,∃B′ ∈ B̄ ∩ B(tk+1) s.t. B ⊂ B′, dB′ ≥ 0}
I+,− = {B ∈ B̄ ∩ B(tk) | dB ≥ 0,∃B′ ∈ B̄ ∩ B(tk+1) s.t. B ⊂ B′, dB′ < 0}
I+,+ = {B ∈ B̄ ∩ B(tk) | dB ≥ 0,∃B′ ∈ B̄ ∩ B(tk+1) s.t. B ⊂ B′, dB′ ≥ 0}.

Now we can estimate

η
∑

B∈I−,+

|dB|+
∑

B∈I−,−

|dB| ≤
∑

B∈I−,+

|dB|+
∑

B∈I−,−

|dB| = N(tk)

≤ ηP (tk) = η
∑

B∈I+,−

dB + η
∑

B∈I+,+

dB ≤
∑

B∈I+,−

dB + η
∑

B∈I+,+

dB. (4.28)

After regrouping terms according to containment and using (4.27) and (4.28) we conclude

N(tk+1) =
∑

B∈I−,−

|dB| −
∑

B∈I+,−

dB ≤ η
∑

B∈I+,+

dB − η
∑

B∈I−,+

|dB| = ηP (tk+1). (4.29)

We use this lemma to define the transition times.

Corollary 4.6. Assume the hypotheses and notation of Lemma 4.5. If dB̄ ≥ 0 then there
exists t0 ∈ [0, s] such that ηP (t) < N(t) for t ∈ [0, t0) and N(t) ≤ ηP (t) for t ∈ [t0, s].
Similarly, if dB̄ < 0 then there exists t0 ∈ [0, s] such that ηN(t) < P (t) for t ∈ [0, t0) and
P (t) ≤ ηN(t) for t ∈ [t0, s]. We call these times, t0, the transition times.

Proof. Assume dB̄ ≥ 0. Since there is only one ball in B̄ ∩ B(s), and the degree in B̄ is
nonnegative, the inequality N(s) ≤ ηP (s) is satisfied trivially. An application of Lemma
4.5 proves the existence of t0. A similar argument works for the case when dB̄ < 0.
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With the transition times defined we can finally set the values of the βB. Define the
collection {D(t)}t∈[0,s+σ] by

D(t) =

{
C(t), t ∈ [0, σ)

B(t− σ), t ∈ [σ, s + σ].
(4.30)

Let η ∈ (0, 1). For each B̄ ∈ B let tB̄ ∈ [0, s+σ] denote the transition time for the collection
B̄ ∩D(t) obtained from Corollary 4.6 (the times depend on η). We now specify the values
of βB in the definition of G. Note that the construction of G only requires specifying the
values of βB for those balls B such that B ⊂ B̄ ∈ B with B̄ ⊂ Ωε. Then for B ∈ B̄ ∩D(t)
for some B̄ ∈ B, we define

βB =


1, if t ∈ [0, tB̄)

|dB̄|
1
2

( ∑
B′∈B̄∩D(t)

d2
B′

)− 1
2

, if t ∈ [tB̄, s + σ].
(4.31)

Note that if ∑
B′∈B̄∩D(t)

d2
B′ = 0,

then dB̄ = 0 as well, and we take the second case in (4.31) to equal 0. Further, note that
in the second case, the βB are chosen so that for t ∈ [tB̄, s + σ]∑

B∈B̄∩D(t)

d2
Bβ2

B = |dB̄| . (4.32)

The following proposition shows that G is still useful for the lower bounds with these
values of βB.

Proposition 4.7. With G defined as above, and under the assumptions of Proposition 4.4,
we have the estimate

1

2

∫
V \ω3/2

1/2

|∇Av|2+r2

2

∫
V

(curl A)2 ≥ 1

2

∫
V \ω3/2

1/2

|∇A+Gv|2+πD

(
log

r

rΩε(ω
3/2
1/2)

− C

)
. (4.33)

Proof. To prove (4.33) we must deal with the sums in the integrands in (4.17). We begin by
showing that the terms in parentheses are nonnegative. Since r(B0) = Cεα/2 and βB ≤ 1,
we can estimate

2βB − β2
B −

β2
Br(B(t))

2(r − r(B0))
= β2

B

(
2

βB

− 1− r(B(t))

2(r − r(B0))

)
≥ β2

B

(
1− r(B(t))

2(r − r(B0))

)
≥ β2

B

(
r − 2r(B0)

2(r − r(B0))

)
≥ 0.

(4.34)
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By construction,

r(C0) <
3

2
r(ω

3/2
1/2 ∩ Ω̃) ≤ 3

2
R =

1

2
r(C(σ)), (4.35)

and so we can similarly conclude that

2βB − β2
B −

β2
Br(B(t))

2(r(C(σ))− r(C0))
≥ 0. (4.36)

A simple change of variables t 7→ t + σ allows us to rewrite∫ s

0

∑
B̄∈B

B̄⊂Ωε

∑
B∈B̄∩B(t)

πd2
B

(
2βB − β2

B −
β2

Br(B(t))

2(r − r(B0))

)
dt

+

∫ σ

0

∑
B̄∈C(σ)
B̄⊂Ωε

∑
B∈B̄∩C(t)

πd2
B

(
2βB − β2

B −
β2

Br(C(t))

2(r(C(σ))− r(C0))

)
dt

=
∑
B̄∈B

B̄⊂Ωε

∫ s+σ

0

∑
B∈B̄∩D(t)

πd2
B

(
2βB − β2

B −
β2

Br(D(t))

2λ(t)

)
dt,

(4.37)

where

λ(t) =

{
r(C(σ))− r(C0), t ∈ [0, σ)

r − r(B0), t ∈ [σ, s + σ].

Fix B̄ ∈ B such that B̄ ⊂ Ωε. For t ∈ [0, tB̄) we have that βB = 1, and hence∑
B∈B̄∩D(t)

πd2
B

(
2βB − β2

B −
β2

Br(D(t))

2λ(t)

)
≥ πdB̄

(
1− r(D(t))

2λ(t)

)
. (4.38)

For t ∈ [tB̄, s + σ] we similarly estimate

∑
B∈B̄∩D(t)

d2
B

(
2βB − β2

B −
β2

Br(D(t))

2λ(t)

)
= 2 |dB̄|

1
2

 ∑
B∈B̄∩D(t)

d2
B

 1
2

− |dB̄|
(

1 +
r(D(t))

2λ(t)

)

≥ 2 |dB̄|
1
2 |dB̄|

1
2 − |dB̄|

(
1 +

r(D(t))

2λ(t)

)
= |dB̄|

(
1− r(D(t))

2λ(t)

)
.

(4.39)
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This proves that ∑
B̄∈B

B̄⊂Ωε

∫ s+σ

0

∑
B∈B̄∩D(t)

πd2
B

(
2βB − β2

B −
β2

Br(D(t))

2λ(t)

)
dt

≥ π
∑
B̄∈B

B̄⊂Ωε

|dB̄|
∫ s+σ

0

(
1− r(D(t))

2λ(t)

)
dt

= πD(s + σ − 1),

(4.40)

where the last equality follows since r(D(t))′ = r(D(t)) for t ∈ [0, s + σ]\{σ} and λ(t) is
piecewise constant.

An application of Lemma 4.2 and the bound (4.35) show that

r(C0) ≤
3

2
rΩε(ω

3/2
1/2). (4.41)

Recall that r(C(σ)) = 3r(B0)/8. This and (4.41) provide the bound

s + σ − 1 =

(
log

r

r(B0)
+ log

r(C(σ))

r(C0)
− 1

)
≥

(
log

r

r(B0)
+ log

r(B0)

4rΩε(ω
3/2
1/2)

− 1

)

=

(
log

r

rΩε(ω
3/2
1/2)

− C

)
.

(4.42)

Plugging (4.40) and (4.42) into (4.17) yields (4.33).

5 Proof of the main results

With our technical tools sufficiently developed, we may now assemble them for use in
proving the main theorems.

We begin with a lemma on the use of the co-area formula in conjunction with sub- and
super-level sets.

Lemma 5.1. Let u : Ω → C and A : Ω → R2 both be C1 and write (at least locally) u = ρv
with ρ = |u| . Fix t0 > 0 and V ⊂ Ω to be compact. Then

1

2

∫
V ∩{ρ≥t0}

ρ2 |∇Av|2 =

∫ ∞

t0

−t2
d

dt

(
1

2

∫
V ∩{ρ≥t}

|∇Av|2
)

dt

=
t20
2

∫
V ∩{ρ≥t0}

|∇Av|2 +

∫ ∞

t0

2t

(
1

2

∫
V ∩{ρ≥t}

|∇Av|2
)

dt

(5.1)
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and

1

2

∫
V ∩{ρ≤t0}

ρ2 |∇Av|2 =

∫ t0

0

−t2
d

dt

(
1

2

∫
V ∩{ρ≥t}∩{ρ≤t0}

|∇Av|2
)

dt

=

∫ t0

0

2t

(
1

2

∫
V ∩{ρ≥t}∩{ρ≤t0}

|∇Av|2
)

dt.

(5.2)

Proof. The first equality in (5.1) follows from the co-area formula, and the second follows
by integrating by parts. The same argument proves (5.2).

5.1 Proof of Theorem 1

Theorem 1 is an improvement on Theorem 4.1 of [8] that incorporates the G term into
the lower bounds on the vortex balls. The crucial difference between this result and those
in the previous section is that this one bounds the energy of the function u : Ω → C,
whereas the previous results were for the S1-valued map v = u/ |u| : Ω → S1 ↪→ C. The
statement made in the introduction of Theorem 1 should be understood with G : Ω → R2

the function defined in item 4 of Proposition 4.4 with βB values given by (4.31).
Proposition 4.4 produces the collection B and guarantees items 1 and 2. The rest of

the proof is devoted to showing that (1.9) holds. By Lemma 3.1 we have, writing u = ρv,

1

2

∫
V

|∇Au|2 +
1

2ε2
(1− |u|2)2 + r2(curl A)2

=
1

2

∫
V

|∇ρ|2 +
1

2ε2
(1− ρ2)2 + ρ2 |∇Av|2 + r2(curl A)2.

(5.3)

An application of the co-area formula and integration by parts, the same as that used in
Lemma 5.1, shows that

1

2

∫
V

ρ2 |∇Av|2 =

∫ ∞

0

2t

(
1

2

∫
V \ωt

|∇Av|2
)

dt. (5.4)

Then

1

2

∫
V

ρ2 |∇Av|2 + r2(curl A)2

≥
∫ ∞

0

2t

(
1

2

∫
V \ωt

|∇Av|2
)

dt +

∫ 1−δ

0

2t

(
r2

2

∫
V

(curl A)2

)
dt

=

∫ 1
2

0

2t

(
1

2

∫
V \ωt

|∇Av|2 +
r2

2

∫
V

(curl A)2

)
dt +

∫ ∞

1−δ

2t

(
1

2

∫
V \ωt

|∇Av|2
)

dt

+

∫ 1−δ

1
2

2t

(
1

2

∫
V \ωt

|∇Av|2 +
r2

2

∫
V

(curl A)2

)
dt

:= A1 + A2 + A3.

(5.5)
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We further break up the first term on the right side of (5.5):

A1 =

∫ 1
2

0

2t

(
1

2

∫
V \ωt

|∇Av|2 +
r2

2

∫
V

(curl A)2

)
dt

=

∫ 1
2

0

2t

(
1

2

∫
ω

3/2
1/2

\ωt

|∇Av|2
)

dt +

∫ 1
2

0

2t

(
1

2

∫
V \ω3/2

1/2

|∇Av|2 +
r2

2

∫
V

(curl A)2

)
dt.

(5.6)

Then, by writing ω
3/2
1/2\ωt = ω3/2 ∪ ω1/2\ωt, noting that ω1/2 ⊂ V , and applying (5.2) with

t0 = 1/2, we may conclude that∫ 1
2

0

2t

(
1

2

∫
ω

3/2
1/2

\ωt

|∇Av|2
)

dt =

∫ 1
2

0

2t

(
1

2

∫
ω3/2

|∇Av|2 +
1

2

∫
ω1/2\ωt

|∇Av|2
)

dt

=
1

8

∫
ω3/2

|∇Av|2 +
1

2

∫
ω1/2

ρ2 |∇Av|2 .

(5.7)

Since the integrand does not depend on t, we have∫ 1
2

0

2t

(
1

2

∫
V \ω3/2

1/2

|∇Av|2 +
r2

2

∫
V

(curl A)2

)
dt =

1

4

(
1

2

∫
V \ω3/2

1/2

|∇Av|2 +
r2

2

∫
V

(curl A)2

)
.

(5.8)
From (5.1), applied with t0 = 1− δ, we bound the second term in (5.5)

A2 =

∫ ∞

1−δ

2t

(
1

2

∫
V \ωt

|∇Av|2
)

dt =
1

2

∫
V \ω1−δ

(ρ2 − (1− δ)2) |∇Av|2

≥ 1

2

∫
ω3/2

(ρ2 − 1) |∇Av|2 .

(5.9)

When ρ ≥ 3
2
, the inequality ρ2 − 3

4
≥ 2

3
ρ2 holds; hence,

1

2

∫
ω3/2

(ρ2 − 1) |∇Av|2 +
1

8

∫
ω3/2

|∇Av|2 ≥ 1

3

∫
ω3/2

ρ2 |∇Av|2 . (5.10)

We now combine (5.5) – (5.10), leaving A3 as it was, and arrive at the bound

1

2

∫
V

ρ2 |∇Av|2 + r2(curl A)2 ≥ 1

4

(
1

2

∫
V \ω3/2

1/2

|∇Av|2 +
r2

2

∫
V

(curl A)2

)

+

∫ 1−δ

1
2

2t

(
1

2

∫
V \ωt

|∇Av|2 +
r2

2

∫
V

(curl A)2

)
dt +

1

3

∫
ω

3/2
1/2

ρ2 |∇Av|2 . (5.11)

Recalling the notation

Fε(ρ, V ) =
1

2

∫
V

|∇ρ|2 +
1

2ε2
(1− ρ2)2
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and the decomposition (5.3), we can use (5.11) to see that

1

2

∫
V

|∇Au|2 +
1

2ε2
(1− |u|2)2 + r2(curl A)2 = Fε(ρ, V ) +

1

2

∫
V

ρ2 |∇Av|2 + r2(curl A)2

≥ B1 + B2 + B3,

(5.12)

where

B1 :=
1

4

(
Fε(ρ, V ) +

1

2

∫
V \ω3/2

1/2

|∇Av|2 +
r2

2

∫
V

(curl A)2

)
,

B2 :=
3β

4
Fε(ρ, V ) +

∫ 1−δ

1
2

2t

(
1

2

∫
V \ωt

|∇Av|2 +
r2

2

∫
V

(curl A)2

)
dt,

B3 :=
3(1− β)

4
Fε(ρ, V ) +

1

3

∫
ω

3/2
1/2

ρ2 |∇Av|2 ,

and β ∈ (0, 1) is to be chosen later in the proof.
To bound B1, we employ Proposition 4.7 to see that

1

2

∫
V \ω3/2

1/2

|∇Av|2 +
r2

2

∫
V

(curl A)2 +
1

2

∫
V

|∇ρ|2 +
1

2ε2
(1− ρ2)2

≥ 1

2

∫
V \ω3/2

1/2

|∇A+Gv|2 + πD

(
log

r

rΩε(ω
3/2
1/2)

− C

)
+ Fε(ρ, V ).

(5.13)

Then, an application of Lemma 2.8 shows that

πD

(
log

r

rΩε(ω
3/2
1/2)

− C

)
+ Fε(ρ, V ) ≥ πD

(
log

r

CεFε(ρ, V )
− C

)
+ Fε(ρ, V )

≥ πD
(
log

r

εD
− C

)
+ Fε(ρ, V )− πD log

Fε(ρ, V )

πD

≥ πD
(
log

r

εD
− C

)
,

(5.14)

where the last line follows from the inequality x− a log x
a
≥ 0. On the set V \ω3/2

1/2 it is the

case that 1/2 ≤ ρ ≤ 3/2, and so 1 ≥ 4ρ2/9. Hence, from this bound, (5.13), and (5.14),
we may conclude that

B1 ≥
1

4

(
1

2

∫
V \ω3/2

1/2

|∇A+Gv|2 + πD
(
log

r

εD
− C

))

≥ 1

18

∫
V \ω3/2

1/2

ρ2 |∇A+Gv|2 +
πD

4

(
log

r

εD
− C

)
.

(5.15)
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To control B2, we begin by using (2.10) and Lemma 2.5 to find the bound

3β

4
Fε(ρ, V ) ≥ 3

√
2β

8ε

∫ ∞

0

∣∣1− t2
∣∣H1({ρ = t})dt

≥ 3
√

2β

4ε

∫ 1−δ

1
2

(1− t2)rΩε(ωt)dt.

(5.16)

Then (5.16) and (4.15) prove that

B2 ≥
∫ 1−δ

1
2

(
2tπD

(
log

r

rΩε(ωt)
− C

)
+

3
√

2β

4ε
(1− t2)rΩε(ωt)

)
dt. (5.17)

As rΩε(ωt) varies, the integrand on the right hand side of (5.17) achieves its minimum at

rΩε(ωt) =
8πDtε

3
√

2β(1− t2)
.

Plugging this in, we get the estimate

B2 ≥
∫ 1−δ

1
2

2πDt

(
log

3
√

2rβ(1− t2)

8πDtε
− C + 1

)
dt

=

∫ 1−δ

1
2

2πDt

(
log

r

εD
+ log

3
√

2β(1− t2)

8πt
− C

)
dt

= πD

((
(1− δ)2 − 1

4

)
log

r

εD
− C

)
.

(5.18)

We now choose β = 23
27

so that 3(1−β)
8

= 1
18

. Then

B1 + B3 ≥
1

18

∫
V

|∇A+Gu|2 +
1

2ε2
(1− |u|2)2 +

πD

4

(
log

r

εD
− C

)
. (5.19)

Using (5.18) and (5.19) in (5.12) then shows that

1

2

∫
V

|∇Au|2 +
1

2ε2
(1− |u|2)2 + r2(curl A)2

≥ πD
(
(1− δ)2 log

r

εD
− C

)
+

1

18

∫
V

|∇A+Gu|2 +
1

2ε2
(1− |u|2)2.

(5.20)

Now, by assumption r ≤ 1 ≤ D, so log r
D
≤ 0. Since δ = εα/4, we have that for ε ≤ ε0 =

ε0(α), the inequalities

δ2 − δ ≤ 0

(2δ − δ2) log ε ≥ −1
(5.21)
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both hold. Hence, for ε ≤ ε0,

(1− δ)2 log
r

εD
− C = log

r

εD
− C + (δ2 − 2δ) log

r

D
+ (2δ − δ2) log ε

≥ log
r

εD
− C − 1.

(5.22)

Combining (5.20) with (5.22) gives (1.9).

5.2 Proof of Theorem 2 and corollaries

Proof of Theorem 2. Theorem 2 justifies the selection of the function G. It has been chosen
so that ‖G‖L2,∞ only depends on the final data of Theorem 1, that is on natural quantities.
This estimate of ‖G‖L2,∞ , Proposition 6.4, is quite technical and is thus reserved for the
next section. A more thorough discussion of the space L2,∞, also known as weak-L2, is
also reserved for the next section.

We begin by noting that ∇Au = ∇A+Gu + iGu. This and the fact that ‖f‖L2,∞(V ) ≤
‖g‖L2,∞(V ) if |f | ≤ |g| allow us to estimate

1

2
‖∇Au‖2

L2,∞(V ) ≤ ‖∇A+Gu‖2
L2,∞(V ) + ‖iGu‖2

L2,∞(V )

≤ ‖∇A+Gu‖2
L2(V ) +

9

4
‖G‖2

L2,∞(V ) .
(5.23)

The second inequality follows since |u| ≤ 3
2

on the support of G. Write

F r
ε (u, A, V ) =

1

2

∫
V

|∇Au|2 +
1

2ε2
(1− |u|2)2 + r2(curl A)2.

We now employ Theorem 1 to bound

‖∇A+Gu‖2
L2(V ) ≤ 18

(
F r

ε (u, A, V )− πD
(
log

r

εD
− C

))
. (5.24)

We will show in Proposition 6.4 that

9

4
‖G‖2

L2,∞(V ) ≤
216(1 + η)

2η − 1

(
F r

ε (u, A, V )− πD
(
log

r

εD
− C

))
+ π

9(1 + η)

1− η

∑
B̄∈B

B̄⊂Ωε

d2
B̄.

(5.25)

Now choose η = 5+
√

2785
60

≈ .962 so that

18 +
216(1 + η)

2η − 1
=

9(1 + η)

1− η
.

Combining (5.23) – (5.25) yields (1.11) with constant C = (1− η)/(18(1 + η)) ≈ 1/951.
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The previous theorem dealt with the energy content of the set V ⊂ Ω. We can deduce
a slightly stronger version of Corollary 1.2.

Corollary 5.2. Assume the hypotheses of Theorem 1. Then

C ‖∇Au‖2
L2,∞(Ω) ≤ F r

ε (u, A, Ω)− πD
(
log

r

εD
− C

)
+ π

∑
B∈B

B⊂Ωε

d2
B. (5.26)

Proof. Add F r
ε (u, A, Ω\V ) to both sides of (1.11). We then bound

C ‖∇Au‖2
L2,∞(V ) + F r

ε (u, A, Ω\V )

≥ C ‖∇Au‖2
L2,∞(V ) + ‖∇Au‖2

L2(Ω\V )

≥ C ‖∇Au‖2
L2,∞(V ) + ‖∇Au‖2

L2,∞(Ω\V )

≥ C ‖∇Au‖2
L2,∞(Ω) ,

(5.27)

where the last inequality follows by using the convexity of norms, and C is a different
constant. The result follows.

Proof of Proposition 1.3. It is proved in Theorem 0.5 of [1] that minimizers of Eε with this
constraint have exactly d zeroes of degree 1 which converge to d distinct points a1, . . . , ad,
minimizing Wg. They also prove that their energy is

min Eε = πd |log ε|+ min Wg + dγ + o(1), (5.28)

where γ is a universal constant. Let us apply the vortex-ball construction to these solutions,
choosing for final radius r = 1

4
mini,j (dist(ai, ∂Ω), |ai − aj|) . Since the final balls B ∈ B

cover all the zeroes of u, and there is exactly one zero bε
i with nonzero degree, converging

to each ai, there is one ball Bi in the collection containing bε
i . Since di = deg(uε, ∂Bi) = 1,

and there are no other zeroes of uε, we have D = d (with our previous notation) and
Corollary 1.2 (taken with A ≡ 0) gives us

Eε(uε) + πd ≥ C ‖∇uε‖2
L2,∞(Ω) + πd(|log ε| − C − log d),

where C is a universal constant. In view of (5.28), this implies that

C ‖∇uε‖2
L2,∞(Ω) ≤ min Wg + dγ + Cd + πd log d + o(1),

and the first result follows.
Since L2,∞ is a dual Banach space, we deduce from this bound that, as ε → 0, up to

extraction, ∇uε converges weakly-∗ in L2,∞, to its distributional limit. But it is proved in
[1] that ∇uε → ∇u? uniformly away from a1, · · · , ad (in fact in Ck

loc), where u? is given by

u?(x) = eiH(x)

d∏
k=1

x− ak

|x− ak|
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with H a harmonic function. Note in particular that u? ∈ W 1,p(Ω) for p < 2.
We claim that ∇uε → ∇u? in the sense of distributions on Ω. Indeed, let X be a

smooth compactly supported test vector field. Fix ρ > 0 and let us write∫
Ω

(∇uε −∇u?) ·X =

∫
Ω\∪iB(ai,ρ)

(∇uε −∇u?) ·X +
∑

i

∫
B(ai,ρ)

(∇uε −∇u?) ·X.

The first term in the right-hand side tends to 0 by uniform convergence of ∇uε to ∇u?

away from the ai’s. The second term is bounded by Hölder’s inequality by C‖X‖L∞‖∇uε−
∇u?‖Lp(Ω)ρ

2/q, where p < 2 and 1/p + 1/q = 1. This is bounded by Cρ2/q‖X‖L∞ since
∇u? ∈ Lp(Ω) for all p < 2 and ∇uε is bounded in Lp(Ω) for all p < 2 (L2,∞(Ω) embeds in
Lp(Ω) for all p < 2). Letting ρ tend to 0 we conclude that

∫
Ω
(∇uε − ∇u?) · X → 0 and

finally that ∇uε ⇀ ∇u? weakly-∗ in L2,∞(Ω).

6 The L2,∞ norm of G

6.1 Definitions and preliminary results

We begin with a discussion of the various quantities needed to define and norm the space
L2,∞. For a function f : Ω → Rk, k ≥ 1, we define the distribution function of f by

λf (t) = |{x ∈ Ω | |f(x)| > t}| . (6.1)

This allows us to define the decreasing rearrangement of f as f ∗ : R+ → R+, where

f ∗(t) = inf{s > 0 | λf (s) ≤ t}. (6.2)

We then define the quantity

|||f |||L2,∞ =
√

sup
t>0

t2λf (t) = sup
t>0

tλf (t)
1
2 = sup

t>0
t

1
2 f ∗(t), (6.3)

and L2,∞(Ω) = {f | |||f |||L2,∞ < ∞}. Unfortunately, this does not define a norm, but rather
a quasi-norm. That is, |||·|||L2,∞ satisfies

|||αf |||L2,∞ = |α| |||f |||L2,∞

|||f |||L2,∞ = 0 if and only if f = 0 a.e.

|||f + g|||L2,∞ ≤ C(|||f |||L2,∞ + |||g|||L2,∞) for some C ≥ 1.

It can be shown that with |||·|||L2,∞ , L2,∞ is a quasi-Banach space, i.e. a linear space in
which every quasi-norm Cauchy sequence converges in the quasi-norm. However, as the
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next lemma shows, the space can, in fact, be normed. We define

‖f‖L2,∞ = sup
|E|<∞

|E|−1/2

∫
E

|f(x)| dx

= sup
t>0

1

t
1
2

sup
|E|=t

∫
E

|f(x)| dx

= sup
t>0

1

t
1
2

∫ t

0

f ∗(s)ds,

(6.4)

which is obviously a norm.

Lemma 6.1. L2,∞ is a Banach space with norm ‖·‖L2,∞, and

|||f |||L2,∞ ≤ ‖f‖L2,∞ ≤ 2|||f |||L2,∞ . (6.5)

Proof. Since f ∗ is decreasing, we see that

‖f‖L2,∞ = sup
t>0

1

t
1
2

∫ t

0

f ∗(s)ds ≥ sup
t>0

1

t
1
2

tf∗(t) = sup
t>0

t
1
2 f ∗(t) = |||f |||L2,∞ . (6.6)

For the second inequality we note that

1

t
1
2

∫ t

0

f ∗(s)ds =
1

t
1
2

∫ t

0

(s
1
2 f ∗(s))

ds

s
1
2

≤ |||f |||L2,∞
2t

1
2

t
1
2

= 2|||f |||L2,∞ . (6.7)

This also shows how to construct a function that makes the inequalities sharp: any f so
that f ∗(s) = c√

s
will do. This is the case for f(x) = 1/ |x| in R2.

We now present the

Proof of Proposition 1.4. First rewrite the L2 integral using the distribution function:∫
Ω

|f |2 =

∫ ∞

0

2tλf (t)dt. (6.8)

We break this integral into two parts and utilize the boundedness of f and the trivial
inequality λf (t) ≤ |Ω| for all t > 0. Indeed,∫ ∞

0

2tλf (t)dt =

∫ C

0

2tλf (t)dt +

∫ C
ε

C

2tλf (t)dt

≤ |Ω|
∫ C

0

2tdt + 2 sup
t>0

(t2λf (t))

∫ C
ε

C

dt

t

≤ |Ω|C2 + 2 ‖f‖2
L2,∞(Ω) log

C

Cε
,

(6.9)

where we have used Lemma 6.1 in the last inequality. The result follows by dividing both
sides by 2 |log ε|.
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6.2 The calculation

Before proving the main result we prove some quasi-norm estimates for simplified versions
of G. The main result breaks G into various simplified components in order to utilize these
estimates.

Lemma 6.2. Suppose we are given a collection of disjoint annuli {Ai}, i = 1, . . . , n, where

Ai = {ri < |x− ci| ≤ si} ⊂ R2,

ci denotes the center of Ai, and ri and si are the inner and outer radii respectively. Let

f(x) =
n∑

i=1

χAi
(x)vi(x)

ai

|x− ci|
, (6.10)

where vi : Ai → Rk is a vector field so that |vi| = 1 and ai is a constant for i = 1, . . . , n.
Write τi = log si

ri
for the conformal factor of Ai. Then for t > 0,

t2λf (t) ≤ π

n∑
i=1

a2
i

(
1− e−2τi

)
. (6.11)

Proof. We begin by noting that on the annulus Ai it is the case that

|ai|
si

≤ |f | < |ai|
ri

. (6.12)

Then for any t > 0 and any annulus Ai, the measure of the set in Ai where f > t is simple
to calculate. Indeed, if t ≤ |ai| /si, then f > t on the whole annulus, which has measure
π(s2

i −r2
i ). If t ≥ |ai| /ri, then f < t everywhere on the annulus, and so the measure is zero.

Finally, if |ai| /si < t < |ai| /ri, then f > t exactly on the subannulus {ri < |x− ci| ≤ ρi},
where

ρi =
|ai|
t

, (6.13)

which has measure π(a2
i /t

2 − r2
i ).

Combining these, for any t > 0 we may then write

λf (t) =
∑

{i | |ai|
si

<t<
|ai|
ri
}

π

(
a2

i

t2
− r2

i

)
+

∑
{i | t≤|ai|

si
}

π(s2
i − r2

i ). (6.14)

Then

t2λf (t) =
∑

{i | |ai|
si

<t<
|ai|
ri
}

π(a2
i − t2r2

i ) +
∑

{i | t≤|ai|
si
}

π(s2
i − r2

i )t
2

≤
∑

{i | |ai|
si

<t<
|ai|
ri
}

πa2
i

(
1− r2

i

s2
i

)
+

∑
{i | t≤|ai|

si
}

πa2
i

(
1− r2

i

s2
i

)

≤
n∑

i=1

πa2
i

(
1− r2

i

s2
i

)
.

(6.15)
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Plugging in τi = log si

ri
proves the result.

The next lemma tells us that a collection of annuli with uniformly bounded degrees
and the property that they can be rearranged to fit concentrically inside each other can,
for the purposes of estimating the L2,∞ quasi-norm, be regarded as a single annulus.

Lemma 6.3. Suppose {Ai}, i = 1, . . . , n, is a collection of disjoint annuli, where

Ai = {ri < |x− ci| ≤ si} ⊂ R2,

ci denotes the center of Ai, and ri and si are the inner and outer radii respectively. Suppose
further that the annuli can be arranged concentrically without overlap. That is, suppose
that

r1 < s1 ≤ r2 < s2 ≤ r3 ≤ · · · < sn−1 ≤ rn < sn.

Let

f(x) =
n∑

i=1

χAi
(x)vi(x)

ai

|x− ci|
, (6.16)

where the ai are constants such that |ai| ≤ |a| and vi : Ai → Rk is a vector field so that
|vi| = 1 for i = 1, . . . , n. Then

t2λf (t) = t2
n∑

i=1

|Ai ∩ {|f | > t}| ≤ πa2. (6.17)

Proof. Since the distribution function is invariant under translations, without loss of gen-
erality we may assume that the annuli are concentric with common center c. This reduces
f to the form

f(x) =
n∑

i=1

χAi
(x)vi(x)

ai

|x− c|
. (6.18)

Consider the function
g(x) =

ae1

|x− c|
, (6.19)

where e1 = (1, 0, . . . , 0) ∈ Rk. The pointwise bound |f(x)| ≤ |g(x)| yields the bound
λf (t) ≤ λg(t) for all t > 0. It is a simple matter to see that

λg(t) = π
a2

t2
, (6.20)

and hence,
t2λf (t) ≤ t2λg(t) = πa2. (6.21)

We are now ready to prove the main result of this section.
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Proposition 6.4. Let G : Ω → R2 be the function defined in Proposition 4.4 with η ∈ (0, 1)
fixed and the βB values given by (4.31). Write

F r
ε (u, A, V ) =

1

2

∫
V

|∇Au|2 +
1

2ε2
(1− |u|2)2 + r2(curl A)2.

Then

‖G‖2
L2,∞(V ) ≤

96(1 + η)

2η − 1

(
F r

ε (u, A, V )− πD
(
log

r

εD
− C

))
+ π

4(1 + η)

1− η

∑
B̄∈B

B̄⊂Ωε

d2
B̄.

(6.22)

Proof. Step 1
To begin we must translate the notation used to define G into different notation that is

more cumbersome but that will allow a more exact enumeration of the objects generated
by the ball construction. Recall that to define G, the collection {D(t)}t∈[0,s+σ] defined
by (4.30) is refined to the subcollection {G(t)}t∈[0,s+σ] that consists of all balls that stay
entirely inside Ωε. Let N be the number of balls in G(s + σ) = {B̄1, . . . , B̄N}, i.e. the
number of final balls. Let T be the finite set of merging times in the growth of G(t), where
here we count t = σ, the time when the collection shifts from C(σ) to B(0), as a merging
time. Let 0 = t0 < t1 < · · · < tK−1 < tK = s + σ be an enumeration of T ∪ {0, s + σ}. For
k = 1, . . . , K and t ∈ [tk−1, tk) we call all balls in G(t) members of the kth generation. We
write G(t−k ) for the collection of balls obtained as t → t−k , i.e. the collection of pre-merged
balls at time t = tk. Similarly, when we write G(tk) we refer to the post-merged balls. For
k = 1, . . . , K and n = 1, . . . , N we enumerate

{Bi,k,n}
Mk,n

i=1 = {B ∈ G(t−k ) | B ⊂ B̄n}, and

{B̃i,k,n}
Mk,n

i=1 = {B ∈ G(tk−1) | B ⊂ B̄n},

in such a way that B̃i,k,n ⊂ Bi,k,n. We define the annuli Ai,k,n = Bi,k,n\B̃i,k,n and write
di,k,n = deg(u, ∂Bi,k,n) for the degree of u in the annulus Ai,k,n. For fixed k = 1, . . . , K
we say the annuli {Ai,k,n} are kth generation annuli. Without loss of generality we may
assume that the indices are ordered so that |di,k,n| is a decreasing sequence with respect
to i for k and n fixed. Write Dn = dB̄n

. We define the conformal growth factor in the kth

generation, denoted τk, by

τk = log
r(G(t−k ))

r(G(tk−1))
.

Recall that for each B̄n, n = 1, . . . , N , Corollary 4.6 provides a transition time tB̄n

(depending on η). In the current setting, the more natural notion is that of transition
generation, and in fact, the proof of Lemma 4.5 shows that the transition time actually
occurs at one of the tk for k = 0, . . . , K−1. We then define the transition generation kn as
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the unique k such that tB̄n
∈ [tk−1, tk). If we define generational versions of the negative

and positive vorticity masses N(t) and P (t) from (4.24) by

N(k, n) :=
∑

1≤i≤Mk,n

di,k,n<0

|di,k,n|

P (k, n) :=
∑

1≤i≤Mk,n

di,k,n≥0

di,k,n,

then the definition of kn and Corollary 4.6 allow us to conclude

Dn ≥ 0 ⇒

{
ηP (k, n) < N(k, n) for 1 ≤ k ≤ kn − 1

N(k, n) ≤ ηP (k, n) for kn ≤ k ≤ K
(6.23)

Dn < 0 ⇒

{
ηN(k, n) < P (k, n) for 1 ≤ k ≤ kn − 1

P (k, n) ≤ ηN(k, n) for kn ≤ k ≤ K.
(6.24)

Translating the definition of the βB from (4.31) into the new notation, we see that

βi,k,n =


1 for 1 ≤ k < kn, 1 ≤ i ≤ Mk,n

|Dn|1/2

(
Mk,n∑
i=1

d2
i,k,n

)−1/2

for kn ≤ k ≤ K, 1 ≤ i ≤ Mk,n.
(6.25)

This means that G can be written

G(x) =
N∑

n=1

K∑
k=1

Mk,n∑
i=1

χAi,k,n
(x)

di,k,nβi,k,n

|x− ci,k,n|
τi,k,n(x), (6.26)

where τi,k,n is the unit tangent vector field in Ai,k,n. In order to somewhat ease the nota-
tional burden, we define the following sets of indices. The early and later generations are
given respectively by

Se = {(n, k) | 1 ≤ n ≤ N, 1 ≤ k ≤ kn − 1}
Sl = {(n, k) | 1 ≤ n ≤ N, kn ≤ k ≤ K},

and we similarly define the sets of early and later annuli by

Te = {(n, k, i) | (n, k) ∈ Se, 1 ≤ i ≤ Mk,n}
Tl = {(n, k, i) | (n, k) ∈ Sl, 1 ≤ i ≤ Mk,n}.

Step 2.
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In this step we will prove an intermediate bound on t2λG(t). We begin by breaking the
distribution function for G up into two components determined by the value of kn. Indeed,

λG(t) =
∑
n,k,i

|Ai,k,n ∩ {|G| > t}|

=
∑
Te

|Ai,k,n ∩ {|G| > t}|+
∑
Tl

|Ai,k,n ∩ {|G| > t}|

:= A1 + A2.

(6.27)

Applying Lemma 6.2 to A1, we see that

t2A1 ≤ π
∑
Te

d2
i,k,n(1− e−2τk). (6.28)

To analyze the A2 term we must take advantage of all of the notation created in the
first step. Particular attention must be paid to the generations after kn that come about as
the result of mergings in which balls of nonzero degree are merged only with balls of zero
degree. These generations, which we call zero-merging generations, throw off a counting
argument that we will use to bound the number of later generations (after kn) in terms
of the degrees of the balls in the kth

n generation. Generations that are not zero-merging
generations we call effective-merging generations. The degrees of the annuli are not changed
in a zero-merging generation, and the annuli of such a generation can be rearranged to fit
concentrically outside the annuli of the previous generation. Our strategy for dealing with
zero-merging generations, then, is to collect successive zero-merging generations, group
them with the preceding effective-merging generation, and utilize Lemma 6.3 to regard the
group as a single collection of annuli.

To this end, for each n we define the sets

Zn = {k ∈ {kn, . . . , K} | each ball in G(tk) contains at most one ball in

G(t−k ) of nonzero degree},

and
In = {kn, . . . , K}\Zn.

The generations in Zn are the zero-merging generations, and those in In are the effective-
merging generations.

Since |di,k,n| is a decreasing sequence with respect to i for k, n fixed, there must exist
an integer Pk,n ∈ {1, . . . ,Mk,n} so that di,k,n 6= 0 for i = 1, . . . , Pk,n and di,k,n = 0 for
i = Pk,n + 1, . . . ,Mk,n. Since the annuli of a zero-merging generation have the same
degrees as the previous generation, we have that Pk,n = Pk−1,n. We may assume, without
loss of generality, that the ball ordering is such that Bi,k−1,n ⊂ Bi,k,n and di,k,n = di,k−1,n for
k ∈ Zn and i = 1, . . . , Pk,n. To identify sequences of zero-merging generations that happen
one after the other we write Zn = Z1

n ∪ · · · ∪ Zmn
n , where the Zj

n are maximal subsets of
sequential integers, i.e. the integer connected components of Zn. All of the generations in
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Zj
n will be grouped with the generation preceding Zj

n and analyzed as a single entity with
Lemma 6.3. This preceding effective generation occurs at generation ljn := min(Zj

N) − 1.
We group it together with the generations in Zj

n by forming the collections Z̃j
n = Zj

n∪{ljn}.
Write the modified collection Z̃n = Z̃1

n ∪ · · · ∪ Z̃mn
n , and Ĩn = In\Z̃n. Note that Pk,n is

constant for k ∈ Z̃j
n; we call this common value P j

n.
We now split A2 again:

A2 =
∑
Tl

|Ai,k,n ∩ {|G| > t}|

=
N∑

n=1

∑
k∈Ĩn

Pk,n∑
i=1

|Ai,k,n ∩ {|G| > t}|+
N∑

n=1

∑
k∈Z̃n

Pk,n∑
i=1

|Ai,k,n ∩ {|G| > t}|

:= B1 + B2.

(6.29)

Applying Lemma 6.2 to B1, we get

t2B1 ≤ π
N∑

n=1

∑
k∈Ĩn

Pk,n∑
i=1

(di,k,nβi,k,n)2(1− e−2τk) ≤ π
N∑

n=1

∑
k∈Ĩn

Pk,n∑
i=1

(di,k,nβi,k,n)2. (6.30)

Upon inserting the values of βi,k,n from (6.25), we find that

t2B1 ≤ π
N∑

n=1

∑
k∈Ĩn

|Dn| = π

N∑
n=1

#(Ĩn) |Dn| , (6.31)

where #(Ĩn) denotes the cardinality of Ĩn.
To handle the B2 term we note that

{(n, k, i) | 1 ≤ n ≤ N, k ∈ Z̃n, 1 ≤ i ≤ Pk,n}

=
⋃

1≤n≤N
1≤j≤mn

{(n, k, i) | 1 ≤ i ≤ P j
n, k ∈ Z̃j

n}, (6.32)

and hence

B2 =
N∑

n=1

mn∑
j=1

P j
n∑

i=1

∑
k∈Z̃j

n

|Ai,k,n ∩ {|G| > t}| . (6.33)

When a zero-merging happens to a ball B of nonzero degree, it is merged with a number
of balls of zero degree. The resulting ball has the same degree as B, and its radius is strictly
larger than the radius of B. Thus, we see that the radii hypothesis of Lemma 6.3 is satisfied
by {Ai,k,n} for k ∈ Z̃j

n, i = 1, . . . , Pk,n. Moreover, for k ∈ Z̃j
n, we have that di,k,n = di,ljn,n

and βi,k,n = βi,ljn,n. All hypotheses of Lemma 6.3 are thus satisfied; applying it, for each
j, n we may bound

t2
∑
k∈Z̃j

n

|Ai,k,n ∩ {|G| > t}| ≤ π(di,ljn,nβi,ljn,n)2. (6.34)
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Plugging in the values of βi,k,n from (6.25) then shows that

t2B2 ≤
N∑

n=1

mn∑
j=1

π |Dn| =
N∑

n=1

πmn |Dn| . (6.35)

Recall that In = Ĩn ∪ {l1n, . . . , lmn
n }. Hence #(In) = #(Ĩn) + mn. We then combine

(6.29), (6.31), and (6.35) to get the estimate

t2A2 ≤ π
N∑

n=1

#(In) |Dn| . (6.36)

Together, (6.27), (6.28), and (6.36) prove that

t2λG(t) ≤ π
∑
Te

d2
i,k,n

(
1− e−2τk

)
+ π

N∑
n=1

#(In) |Dn| , (6.37)

where #(In) is the cardinality of In.

Step 3.
In this step we will utilize the η inequalities (6.23) and (6.24) to show that the energy

excess, Fε(u, A)− πD
(
log r

εD
− C

)
, controls the first term on the right side of (6.37). To

begin we modify an argument from the beginning of the proof of Theorem 1. Define V to
be the union of the balls in G(s + σ). Then, copying (5.5), we can bound

F r
ε (u, A, V ) =

1

2

∫
V

ρ2 |∇Av|2 +
1

2ε2
(1− ρ2)2 + |∇ρ|2 + r2(curl A)2

≥ Fε(ρ, V ) +

∫ 1
2

0

2t

(
1

2

∫
V \ωt

|∇Av|2
)

dt +
r2

8

∫
V

(curl A)2

+

∫ 1−δ

1
2

2t

(
1

2

∫
V \ωt

|∇Av|2 +
r2

2

∫
V

(curl A)2

)
dt.

(6.38)

For t ∈ [0, 1/2] the inclusions

V \ωt ⊇ V \ω1/2 ⊇ V \ω3/2
1/2 (6.39)

hold, and hence∫ 1
2

0

2t

(
1

2

∫
V \ωt

|∇Av|2
)

dt ≥
∫ 1

2

0

2t

(
1

2

∫
V \ω3/2

1/2

|∇Av|2
)

dt

=
1

8

∫
V \ω3/2

1/2

|∇Av|2 .

(6.40)
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We now use (5.18) and (5.22) from Theorem 1 to bound∫ 1−δ

1/2

2t

(
1

2

∫
V \ωt

|∇Av|2 +
r2

2

∫
V

(curl A)2

)
dt +

3

4
Fε(ρ, V )

≥ πD

(
3

4
log

r

εD
− C

)
.

(6.41)

Here we have used D =
∑N

n=1 Dn. Assembling the bounds (6.38), (6.40), and (6.41)
produces the bound

F r
ε (u, A, V )− πD

(
log

r

εD
− C

)
≥ 1

4

(
Fε(ρ, V ) +

1

2

∫
V \ω3/2

1/2

|∇Av|2 +
r2

2

∫
V

(curl A)2 − πD log
r

εD

)
.

(6.42)

The argument in (5.14) shows that

Fε(ρ, V )− πD
(
log

r

εD
− C

)
≥ πD

(
log

r

rΩε(ω
3/2
1/2)

− C

)
. (6.43)

In order to use the logarithm terms they must be translated into the new notation. Re-
calling (4.42) and changing the constant C (larger but still universal), we see that

log
r

rΩε(ω
3/2
1/2)

− C = log
r

r(B0)
+ log

3r(B0)

16rΩε(ω
3/2
1/2)

≤ log
r

r(B0)
+ log

r(C(σ))

r(C0)
=

K∑
k=1

τk.

(6.44)

Combining (6.42) - (6.44) and again changing the constant, we arrive at

F r
ε (u, A, V )− πD

(
log

r

εD
− C

)
≥ 1

4

(
1

2

∫
V \ω3/2

1/2

|∇Av|2 +
r2

2

∫
V

(curl A)2 − πD
K∑

k=1

τk

)
.

(6.45)

We now translate the term on the right side of inequality (6.45) into the new notation
and break it into two parts according to whether the generation is before or after generation
kn. Indeed,

1

2

∫
V \ω3/2

1/2

|∇Av|2 +
r2

2

∫
V

(curl A)2 − πD

K∑
k=1

τk ≥
1

2

∑
Te

∫
Ai,k,n

|∇Av|2 − π
∑
Se

|Dn| τk

+
1

2

∑
Tl

∫
Ai,k,n

|∇Av|2 + r2(curl A)2 − π
∑
Sl

|Dn| τk +
N∑

n=1

∑
B∈B̄n∩G(tB̄n

)

r2

2

∫
B

(curl A)2.

(6.46)
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For each B̄n ∈ G(s + σ) we consider B̄n to have been grown from B̄n ∩ G(tB̄n
) and apply

Corollary 3.4; summing over n gives

1

2

∑
Tl

∫
Ai,k,n

|∇Av|2 + r2(curl A)2 ≥ πD

(
log

r

r(G(tB̄n
))
− log 2

)
. (6.47)

Note that if tB̄n
≥ σ, then

K∑
k=kn

τk = log
r

r(G(tB̄n
))

,

whereas if tB̄n
< σ, then

K∑
k=kn

τk = log
r

r(B0)
+ log

r(G(σ))

r(G(tB̄n
))

= log
r

r(G(tB̄n
))

+ log
3

8

since r(G(σ)) = r(C(σ)) = 3r(B0)/8 (see item 4 of Proposition 4.3). Then

1

2

∑
Tl

∫
Ai,k,n

|∇Av|2 + r2(curl A)2 − π
∑
Sl

|Dn| τk ≥ −πCD, (6.48)

where C is universal.
It remains to control the term corresponding to the early generations:

Q :=
1

2

∑
Te

∫
Ai,k,n

|∇Av|2 − π
∑
Se

|Dn| τk +
N∑

n=1

∑
B∈B̄n∩G(tB̄n

)

r2

2

∫
B

(curl A)2.

We apply Lemma 3.5 to each B ∈ B̄n ∩ G(tB̄n
) and sum to get

Q ≥ π
∑
Se

τk

2

3

Mk,n∑
i=1

d2
i,k,n − |Dn|

 . (6.49)

In order to control the difference in (6.49) we must now turn to the η inequalities for
generations before kn. If Dn ≥ 0, 1 ≤ k < kn, the inequality (6.23) allows us to estimate

Mk,n∑
i=1

d2
i,k,n ≥

Mk,n∑
i=1

|di,k,n| =
∑

1≤i≤Mk,n

di,k,n≥0

di,k,n +
∑

1≤i≤Mk,n

di,k,n<0

|di,k,n|

> (1 + η)
∑

1≤i≤Mk,n

di,k,n≥0

di,k,n

≥ (1 + η)Dn = (1 + η) |Dn| .

(6.50)
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If Dn < 0, we similarly get
Mk,n∑
i=1

d2
i,k,n > (1 + η) |Dn| ,

and so in either case we arrive at the estimate

− |Dn| ≥ − 1

1 + η

Mk,n∑
i=1

d2
i,k,n. (6.51)

Putting (6.51) into (6.49) then shows that

Q ≥ π
2η − 1

3(1 + η)

∑
Te

τkd
2
i,k,n

≥ π
2η − 1

6(1 + η)

∑
Te

d2
i,k,n(1− e−2τk),

(6.52)

where in the last inequality we have used the fact that

x ≥ 1

2
(1− e−2x) for x ≥ 0.

Finally, we use (6.45) – (6.48) and (6.52) to conclude

Fε(u, A, V )− πD
(
log

r

εD
− C

)
≥ π

2η − 1

24(1 + η)

∑
Te

d2
i,k,n(1− e−2τk). (6.53)

Step 4.
In this step we use the η inequalities to provide an upper bound for the second term

on the right side of (6.37) by bounding #(In) in terms of |Dn| and η. Fix n and suppose
that kn ≤ k ≤ K. For now take Dn ≥ 0. The inequality (6.23) allows us to bound∑

1≤i≤Mk,n

di,k,n≥0

di,k,n = Dn +
∑

1≤i≤Mk,n

di,k,n<0

|di,k,n| ≤ Dn + η
∑

1≤i≤Mk,n

di,k,n≥0

di,k,n,

and so we can conclude that ∑
1≤i≤Mk,n

di,k,n≥0

di,k,n ≤
|Dn|
1− η

. (6.54)

We can use this estimate to bound #(In). Each generation in In is an effective-merging
generation. As such, the mergings of that generation include at least one ball of nonzero
degree merging with another ball of nonzero degree, resulting in a decrease in the number
of balls of nonzero degree. So, the number of effective generations, #(In), is bounded

46



by the number of nonzero degree balls in the kn generation. This quantity can then be
bounded in terms of Dn and η. Indeed,

#(In) ≤ # of nonzero degree balls in generation kn

≤
Mkn,n∑

i=1

|di,kn,n| =
∑

1≤i≤Mkn,n

di,kn,n≥0

|di,kn,n|+
∑

1≤i≤Mkn,n

di,kn,n<0

|di,kn,n|

≤ (1 + η)
∑

1≤i≤Mkn,n

di,kn,n≥0

di,kn,n

≤ 1 + η

1− η
|Dn| .

(6.55)

If Dn < 0 then (6.24) and a similar argument show that (6.55) still holds. Hence

π
N∑

n=1

#(In) |Dn| ≤ π
1 + η

1− η

N∑
n=1

|Dn|2 . (6.56)

Step 5.
We now conclude the proof by combining (6.37), (6.53), and (6.56) to get the inequality

t2λG(t) ≤ π
1 + η

1− η

N∑
n=1

|Dn|2 +
24(1 + η)

2η − 1

(
F r

ε (u, A, V )− πD
(
log

r

εD
− C

))
. (6.57)

Using Lemma 6.1 and switching back to our original notation then proves (6.22).

7 Jerrard’s construction

In the above results we have modified and improved the vortex ball construction of Sandier,
introduced in [6], and presented in an updated form in [8]. The purpose of this section is
to show that the methods of this paper can be applied equally well to the other version of
the vortex ball construction, developed by Jerrard in [3]. The two constructions are not
at all dissimilar, so it is no surprise that the above methods still work. For completeness,
though, we highlight the differences in the two constructions and outline the modifications
necessary to make the above ideas work with Jerrard’s construction. In the interest of
brevity we discuss only the case without magnetic field.

There are three main differences between the ball construction employed above and
that of [3]. The Jerrard construction grows finite collections of disjoint balls from an initial
small collection to a final large collection, employing mergings when grown balls become
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tangent. However, a collection of disjoint balls {Bi} is not grown uniformly, as we grow
them above, but instead according to the parameter

s = min
i

ri

|di|
,

where di = deg(u, ∂Bi) and ri is the radius of Bi. There is no guarantee that this parameter
is uniform throughout the collection (hence the minimum in the definition of s), and as
a result, only balls for which the minimum s is achieved are grown. Note that as a ball
is grown without merging, its degree does not vary, so increasing s amounts to increasing
the radius of the ball. Moreover, for the subcollection of balls in {Bi} that achieve s, if we
write snew for the increased parameter and rnew

i for the increased radii, we see that

snew

s
=

rnew
i

di

di

ri

=
rnew
i

ri

,

and so all of the annuli formed by deleting the old balls from the new ones have the same
conformal type. The use of this parameter causes trouble above since r(B(t)) 6= etr(B0).

The second major difference in the two methods is in how they pass from lower
bounds on circles, which in both methods are most conveniently calculated by estimat-
ing 1

2

∫
∂B(a,r)

|∇v|2 from below, to lower bounds of 1
2

∫
|∇u|2 on annuli and balls. Above we

employ the co-area formula in Lemma 5.1 and in (5.5) of Theorem 1 to accomplish this.
The Jerrard method writes u = ρv, with ρ = |u|, and expands the energy as

1

2

∫
∂B(a,r)

|∇u|2 +
1

2ε2
(1− |u|2)2 =

1

2

∫
∂B(a,r)

|∇ρ|2 +
1

2ε2
(1− ρ2)2 +

1

2

∫
∂B(a,r)

ρ2 |∇v|2 .

Lemmas 2.4 and 2.5 of [3] then show that

1

2

∫
∂B(a,r)

ρ2 |∇v|2 ≥ π
m2d2

r
,

and
1

2

∫
∂B(a,r)

|∇ρ|2 +
1

2ε2
(1− ρ2)2 ≥ 1

cε
(1−m)2,

where c is a universal constant and m = min{1, inf
∂B(a,r)

ρ}. These two bounds are combined

with the energy expansion to find

1

2

∫
∂B(a,r)

|∇u|2 +
1

2ε2
(1− |u|2)2 ≥ inf

m∈[0,1]

(
π

m2d2

r
+

1

cε
(1−m)2

)
=: λε(r, d).

One readily verifies that λε(r, d) ≥ λε(r/ |d| , 1) and that

λε(r, 1) =
π

r + cεπ
. (7.1)
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The function Λε(s) =
∫ s

0
λε(r, 1)dr = π log(1 + s

cεπ
) is then introduced, and lower bounds

on annuli are calculated by integrating on circles:

1

2

∫
B(a,r1)\B(a,r0)

|∇u|2 +
1

2ε2
(1− |u|2)2 ≥

∫ r1

r0

λε(r, d)dr ≥ |d|
∫ r1/|d|

r0/|d|
λε(r, 1)dr

= |d| (Λε(r1/ |d|)− Λε(r0/ |d|)).

Note that this bound justifies the use of s = r/d as the growth parameter.
The third major difference is in the nature of the lower bounds. The method above

produces lower bounds on the total collection of balls but can not say much about the
energy content of any given ball in the collection. Because of its use of the Λε function,
which only depends on the parameter s, the Jerrard construction can localize the lower
bounds to each ball in the collection. In particular, Proposition 4.1 of [3], the analogue of
our Theorem 1, shows that there exists a σ0 such that for any 0 ≤ σ ≤ σ0 there exists a
collection of disjoint balls {Bi} with radii ri and degrees di such that

1

2

∫
Bi∩Ω

|∇u|2 +
1

2ε2
(1− |u|2)2 ≥ ri

s
Λε(s),

where s = min
i

(ri/ |di|) ∈ [σ/2, σ]. In particular this implies that

1

2

∫
Bi∩Ω

|∇u|2 +
1

2ε2
(1− |u|2)2 ≥ π |di| log

(
1 +

σ

2cπε

)
.

The proof of this result follows from a line of reasoning similar to what led to Theorem 1.
An initial collection of balls {Bi} with radii ri ≥ ε is found (Proposition 3.3 of [3]) that
covers {|u| ≤ 1/2} and on which

1

2

∫
Bi∩Ω

|∇u|2 +
1

2ε2
(1− |u|2)2 ≥ c0

ri

ε
≥ ri

s
Λε(s), (7.2)

where c0 is a universal constant. These balls are then grown into the final balls according
to the ball growth lemma, but used with the parameter s as the growth parameter. It
is then shown that growth and merging preserves the form of the lower bound (7.2), i.e.
that if the bound holds with one value of s, it also holds with the value of s obtained after
growing the balls.

In order to utilize our completion of the square trick to extract the new term we must
only present a modification of Lemma 3.2 designed to work with the minimization of m
trick. The rest of the argument follows from simple modifications of the arguments in [3]
that we will only sketch.

Lemma 7.1. Let B = B(a, r) and suppose that u : ∂B → C is C1 and that |u| > c ≥ 0 on
∂B. Write u = ρv with ρ = |u|, and define the function

G =
dm2β

ρ2r
τ, (7.3)
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where d = deg(u, ∂B), m = min{1, inf
∂B(a,r)

ρ}, τ is the oriented unit tangent vector field to

∂B, and β ∈ [0, 1] is a constant. Then

1

2

∫
∂B

ρ2 |∇v|2 ≥ 1

2

∫
∂B

ρ2 |∇v −G|2 + π
d2m2β

r
. (7.4)

Proof. Arguing as in Lemma 3.2, we find that

1

2

∫
∂B

ρ2 |∇v|2 =
1

2

∫
∂B

ρ2 |∇v −G|2 + 2πd
dm2β

r
− d2m4β2

2r2

∫
∂B

1

ρ2
. (7.5)

Then the definition of m implies that

2πd
dm2β

r
− d2m4β2

2r2

∫
∂B

1

ρ2
≥ π

d2m2

r
(2β − β2) ≥ π

d2m2β

r
, (7.6)

where the last inequality follows from the fact that 0 ≤ β ≤ 1. This proves the result.

This result may be used in conjunction with Lemma 2.5 of [3], borrowing half of that
energy to absorb into the novel term, to arrive at the lower bound

1

2

∫
∂B

|∇u|2+ 1

2ε2
(1−|u|2)2 ≥ 1

4

∫
∂B

|∇u− iuG|2+ inf
m∈[0,1]

(
π

m2d2β

r
+

1

cε
(1−m)2

)
. (7.7)

In order to gain the ability to localize the estimates in each ball, we must have that λε(r, d)
is independent of β and that the homogeneity inequality λε(r, d) ≥ λε(r/ |d| , 1) holds. The
first of these requires us to set β = 1 in the above, which precludes the special choice of β
needed to make Proposition 6.4 work. The second requires us to throw away the d2 terms
in favor of |d|. So, there is a tradeoff: the price we pay for localizing the estimates is a
loss of control of the L2,∞ norm of the auxiliary function G. This choice leads to the lower
bound on circles

1

2

∫
∂B

|∇u|2 +
1

2ε2
(1− |u|2)2 ≥ 1

4

∫
∂B

|∇u− iuG|2 + λε(r/ |d| , 1), (7.8)

where λε is as defined in (7.1), but with the universal constant doubled, and G = dm2

ρ2r
τ .

The bound on circles leads to bounds on annuli by integrating; indeed,

1

2

∫
B(a,r1)\B(a,r0)

|∇u|2 +
1

2ε2
(1− |u|2)2 ≥ 1

4

∫
B(a,r1)\B(a,r0)

|∇u− iuG|2

+ |d| (Λε(r1/ |d|)− Λε(r0/ |d|)),
(7.9)

where now we take G(x) = dm2

ρ(x)2|x−a|τ(x).

Now, to achieve a bound of the form (7.2) but with the L2 difference with iuG included,
we use Lemma 7.1 in the Jerrard construction. As above, we define the function G to vanish
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in the initial collection of balls obtained in Proposition 3.3 of [3]. Then we trivially modify
(7.2) to read (since G = 0 there)

1

2

∫
Bi∩Ω

|∇u|2 +
1

2ε2
(1− |u|2)2 ≥ c0ri

2ε
+

1

4

∫
Bi∩Ω

|∇u|2

≥ ri

s
Λε(s) +

1

4

∫
Bi∩Ω

|∇u− iuG|2 .

(7.10)

We then take G to vanish in all of the non-annular regions of the balls constructed in
Proposition 4.1 of [3]. The estimates in these balls, like the original Sandier estimates,
discard the energy of the non-annular regions. We retain it and rewrite it as a

∫
|∇u− iuG|2

term, which is possible since G = 0 there. Then, adding in the extra G term in the annular
regions, we arrive at the modification.

Proposition 7.2. There exists a σ0 such that for any 0 ≤ σ ≤ σ0 there exists a collection
of disjoint balls {Bi} with radii ri and degrees di such that

1

2

∫
Bi∩Ω

|∇u|2 +
1

2ε2
(1− |u|2)2 ≥ 1

4

∫
Bi∩Ω

|∇u− iuG|2 +
ri

s
Λε(s),

where s = min
i

(ri/ |di|) ∈ [σ/2, σ]. In particular this implies that

1

2

∫
Bi∩Ω

|∇u|2 +
1

2ε2
(1− |u|2)2 ≥ 1

4

∫
Bi∩Ω

|∇u− iuG|2 + π |di| log
(
1 +

σ

2cπε

)
.
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