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Abstract

We study solutions of the Ginzburg-Landau equations describing superconductors
in a magnetic field, just below the “second critical field”Hc2 . We thus bridge between
situations described in [SS2] and [P1]. We prove estimates on the energy, among
which one by an algebraic trick inspired by the Bogomoln’yi trick for self-duality.
We thus show how, for energy-minimizers, superconductivity decreases in average in
the bulk of the sample when the applied field increases to Hc2 .

I Introduction

Superconductivity is modelled by the 2D Ginzburg-Landau free energy

(I.1) J(u,A) =
1

2

∫

Ω

|∇Au|2 + |h− hex|2 +
κ2

2
(1− |u|2)2.

We are interested in studying critical points of this energy when the applied field hex gets
close (from below) to the “second critical field” Hc2.

Let us first explain the notations. Ω is a smooth, bounded, simply connected domain
of R2, corresponding to the section of an infinite cylindrical body. J is a function of u, the
“order parameter”, complex-valued function, and of the “vector-potential A : Ω 7→ R2. u

1supported by the CNRS
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indicates the local state of the material, |u|2 ≤ 1 being the local density of superconducting
electrons. Roughly speaking, where |u| ∼ 1 it is the “superconducting phase”, while where
|u| ∼ 0, it is the “normal phase”. A is the potential associated to the magnetic field
h = curlA = ∂1A2 − ∂2A1 (real-valued function) that exists in the sample. ∇A denotes
the covariant derivation ∇− iA : it is an abelian gauge theory, and everything is invariant
under gauge-transformations : u → ueiΦ, A → A+∇Φ. A configuration is really an orbit
of gauge-equivalent couples (u,A).

The parameter hex is the intensity of the applied magnetic field (assumed to be uniform,
parallel to the cylinder axis). Finally κ is the Ginzburg-Landau parameter, it is the ratio
of two characteristic lengthes of the material.
The equations associated to this functional are the Ginzburg-Landau equations

−∇2
Au = κ2u(1− |u|2) in Ω(I.2)

−∇⊥h =< iu,∇Au > in Ω(I.3)

h = hex on ∂Ω(I.4)

(∇u− iAu) · ν = 0 on ∂Ω,(I.5)

where ∇⊥ denotes (−∂2, ∂1) and < ., . > is the scalar product in C identified with R2.

When type-II superconductors are submitted to a magnetic field, they exhibit phase
transitions for certain critical fields, denoted Hc1, Hc2, and Hc3 . When hex ≤ Hc1, the
sample is in the superconducting phase everywhere and repels the magnetic field (it is called
the Meissner effect). At Hc1, there is a phase transition where vortices appear. Vortices
are zeros of the order parameter u around which u has a non-zero winding number. (For
a mathematical description of vortices in Ginzburg-Landau without magnetic field, see
[BBH] and subsequent works.) As hex increases, vortices get more and more numerous and
tend to arrange in a triangular lattice, called “Abrikosov lattice”. When Hc2 ≤ hex ≤ Hc3,
the material is in the normal phase everywhere except on a layer near the boundary where
superconductivity persists, while for hex ≥ Hc3, it is normal everywhere (u ≡ 0). For a
more thorough physical presentation, one may see [DeG, SST, T].

We are interested in the “London limit” κ → +∞. We will also write ε = 1
κ
. ε is

the lengthscale of a vortex. Letting ε → 0 corresponds to having vortices that are small
compared to the scale of the sample.

Mathematically, a lot of results have been proved on this functional. Let us start with
the situation around the third critical field Hc3. First, observe that there is always a trivial
normal solution (u ≡ 0, h ≡ hex), and that its energy is 1

4
|Ω|κ2. When the applied field

hex is decreased to Hc3, there is a bifurcation from that normal solution to a branch of
solutions with superconductivity on the boundary. This superconductivity actually first
appears at Hc3 near the point of maximal curvature of the boundary.

The story goes back to Saint James and DeGennes [SdG] and later Chapman [C] who
studied the bifurcation in the half-space, based on formal analysis. Rigorously, it was
proved by Giorgi and Phillips [GP] that Hc3 = O(κ2) and that above Hc3 the only solution
is the normal one. Then, in the particular case of a disc-domain, Bauman, Phillips and
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Tang [BPT] considered radially symmetric solutions bifurcating from eigenfunctions. In a
general domain, a formula relating Hc3 to the curvature of the boundary, as well as result
showing that eigenfunctions concentrate around the points of maximal curvature of the
boundary, were first given by Bernoff and Sternberg in [BS], through a formal analysis,
by Del-Pino-Felmer-Sternberg [DFS], and simultaneously by Lu and Pan in [LP3], based
on the linear analysis of [LP1, LP2]. Finally, Helffer and Pan obtained in [HP] the most
accurate result, using the analysis of [HM], that is that superconductivity first appears at
Hc3 near the point of maximum curvature of the boundary and that

(I.6) Hc3 ∼κ→∞
κ2

β0
+

(

C1

β
3/2
0

kmax

)

κ,

where β0 is the lowest eigenvalue of a Schrödinger operator with magnetic field in the
half-plane, and kmax is the maximum of the curvature on the boundary of Ω.

Let us now turn to the situation further below Hc3. Recently, Pan proved in [P1] a very
nice result describing global minimizers of the energy between Hc2 and Hc3 . He showed
that Hc2 can be defined as the infimum of hex such that global minimizers of J do not have
bulk-superconductivity but only surface-superconductivity, and that

(I.7) Hc2 ∼κ→∞ κ2.

Following his notations, we define b by

(I.8) hex = (b+ o(1))κ2,

and will also denote by JD the Ginzburg-Landau functional restricted to a subdomain D
of Ω.

He proved the following

Theorem (Pan [P1]) Let (u,A) be a minimizer of J . For 1 < b < 1
β0
, there exist positive

numbers Eb and κb such that for κ > κb,

(I.9) J(u,A) ∼κ→∞
|Ω|
4
κ2 − κEb|∂Ω| + o(κ),

where |Ω| denotes the volume of Ω and |∂Ω| denotes the length of ∂Ω. For any closed
subdomain D of Ω, for κ > κD,

(I.10) JD(u,A) ∼κ→∞
|D ∩ Ω|

4
κ2 − κEb|D ∩ ∂Ω| + o(κ).

Moreover, 1
κ
|∇Au| and |u| exponentially decay in the interior of Ω, in the sense that for all

α > 0, for κ > κ(α),

∫

Ω

(

|u|2 + 1

κ2
|∇Au|2

)

exp(ακdist(x, ∂Ω)) dx ≤ O(1)

κ
.
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He also proved results for the case b = 1. Let us point out that slightly stronger exponential-
decay results have been proved by Almog in [Al1] replacing the large-kappa limit by the
large-domain limit.

Thus, when hex is decreased and crosses Hc3, superconductivity first nucleates at the
points of maximal curvature of the boundary and u is a small perturbation of the normal
solution 0. As hex further decreases, a uniform superconducting sheath of scale ε = 1

κ

rapidly forms on the entire boundary of the sample while the bulk remains normal as
shown in the previous theorem. Superconductivity increases on the boundary as b→ 1.

On the other hand, the situation is also well understood for small applied fields : the
superconducting state below Hc1 has been studied in [S1, S3, SS1], the value of Hc1 being
asymptotic to C(Ω) log κ as proved in [S1, SS1, SS5]. Above Hc1, we showed vortices
appear first near the center of the domain [S1, S2], and a vortex region where the density
of vortices is uniform and proportional to hex, surrounded by a purely superconducting
region, forms and inflates (see [SS3]). As soon as hex ≫ log κ, the vortex region covers up
the whole sample, and we proved the following

Theorem (Sandier-Serfaty [SS2]) Assume hex is any function of κ such that log κ ≪
hex ≪ κ2 as κ→ ∞. If (u,A) is a corresponding minimizer of J then

(I.11) J(u,A) ∼κ→∞
1

2
|Ω|hex log

κ√
hex

where |Ω| denotes the volume of Ω; and if D is any closed subdomain of Ω, then

(I.12) JD(u,A) ∼κ→∞
1

2
|D|hex log

κ√
hex

.

Moreover, the density of vortices converges in some sense to the uniform density hex.

In this regime hex ≪ κ2, the superconducting phase surrounding the vortices still
dominates, in the sense that, from estimate (I.11),

∫

Ω
(1 − |u|2)2 = o(1). Essentially, one

can think of the vortices as of degree one and placed regularly, for example on a periodic
lattice, one per cell of size 1√

hex

, which remains much larger than their characteristic size ε

(as long as hex ≪ κ2).
The question is thus to bridge the gap between the situations of these two theorems

(that of hex ≪ κ2, i.e. b = 0, and that above Hc2 i.e. b > 1) in the only range of applied
fields which remained unstudied : b ∈ [0, 1]. How do the vortices disappear and how does
the bulk superconductivity disappear? Essentially two scenarii could be suggested. One
is that as hex increases, the distance between the vortices decreases and before it becomes
smaller than their size O(ε), the vortices merge into one “giant vortex” of large degree.
The other scenario is that max |u| decreases in the bulk, while the vortex array structure
remains unchanged, until |u| is close to 0 in the bulk, and superconductivity only remains
on the boundary, as described by Pan. It is considered by physicists that it is the second
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scenario rather than the first which occurs, at least in this limit κ → ∞, and the results
we prove confirm this. However, giant vortices do occur (and are observed) for smaller κ.

We start with a general lower bound result, proved through a very simple argument.
Introducing the operator DA = ∂1 + i∂2 − i(A1 + iA2), we have the identity

(I.13) |DAu|2 = |∇Au|2 − curl (iu,∇Au)− |u|2h.

This operator is the one that was used by Bogomoln’yi (see [JT]) to exhibit the self-duality
of the Ginzburg-Landau equations for κ = 1√

2
. By a purely algebraic manipulation quite

similar to the trick of Bogomoln’yi (the same kind of manipulation was also behind the
results of [M] and [GP]), we deduce from (I.13) the following nontrivial lower bound.

Proposition 1 Let (u,A) be any solution of the Ginzburg-Landau system (I.2)—(I.5)),
then, for all Rκ ≫ ε = 1

κ
and all balls BRκ in Ω,

JBR
(u,A)

|BR|
≥ κ2

4
+ o(κ2) if b ≥ 1;

=

(

b

2
− b2

4

)

κ2 +
1

2|BR|

∫

BR

|DAu|2 +
κ2

2
(1− b− |u|2)2 + |h− hex|2 + o(κ2)(I.14)

≥
(

b

2
− b2

4

)

κ2 + o(κ2) if b ≤ 1.

Observe that this estimate is true for any solution of the equations, not necessarily mini-
mizing or stable. It is in fact true for any configuration that satisfies the a priori estimates
‖u‖L∞(Ω) ≤ 1, ‖∇Au‖L∞(Ω) ≤ Cκ, ‖h− hex‖L∞(Ω) ≤ Cκ (see the proof).

Let us now turn to energy-minimizers. We denote by min JBR
the minimum of the

energy-functional on a ball BR i.e.

min JBR
= min

(u,A)

1

2

∫

BR

|∇Au|2 + |curlA− hex|2 +
κ2

2
(1− |u|2)2.

We also denote by (u,A) a minimizer for this problem.

Theorem 1 Let 0 ≤ b ≤ 1. There exists a continuous increasing function f from [0, 1] to
[0, 1

4
], such that, as κ → ∞, for (u,A) any minimizer of J , for all Rκ ≫ ε = 1

κ
, and all

balls BRκ in Ω,

JBR
(u,A)

κ2|BR|
∼

min JBR

κ2|BR|
−→ f(b)(I.15)

1

|BR|

∫

BR

|u|4 ∼ 1

|BR|

∫

BR

|u|4 −→ 1− 4f(b)(I.16)

|u|4 ⇀ 1− 4f(b) in L∞ weak - *(I.17)
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(I.18)
1− 4f(b)

1− b
− o(1) ≤ 1

|BR|

∫

BR

|u|2 ≤
√

1− 4f(b) + o(1),

and the following estimates hold : there exists universal constants 0 < α < 1 and c > 0
such that

(I.19)
b

2
− b2

4
≤ f(b) ≤ min

(

b

4
(log

1

b
+ c),

1− α(1− b)2

4

)

≤ 1

4
,

hence
α(1− b)2 ≤ 1− 4f(b) ≤ (1− b)2.

Corollary 1 For all D closed subdomain of Ω,

JD(u,A) ∼κ→∞ |D|f(b)κ2.

Corollary 2 f(0) = 0 and f(1) = 1
4
, therefore,

for b = 0, ∀Rκ ≫ ε, lim
κ→∞

JBR
(u,A)

κ2|BR|
= 0 (known from [SS2])

for b ≥ 1, ∀Rκ ≫ ε, lim
κ→∞

JBR
(u,A)

κ2|BR|
=

1

4
(known from [P1] and Proposition 1).

We thus show that the loss of superconductivity happens through a decrease of the average
of |u|4 like (1− b)2 in Ω, and that the energy-repartition remains uniform. Those two facts
go in the direction of the second scenario.

We have given asymptotic estimates of the minimal energy which extend that of (I.11).
We have proved that the energy is uniformly spread over Ω and that a minimizer almost
minimizes locally the energy, at any scale ≫ ε (ε being the characteristic scale of variation
of u). At scales O(ε) this ceases to be true, minimizers in regions of smaller sizes start
to depend greatly on the region-size, as seen in [AD]. We have also shown that for global
minimizers, some superconductivity remains in the bulk, as long as b < 1, since from (I.18)
the average of |u|2 remains larger than α(1− b).

This theorem relies on upper and lower bounds for the energy, in the spirit of Gamma-
convergence. It seems difficult to give a more explicit expression, or a finer estimate on f(b).
The lower bound is given by Proposition 1. The upper bound is obtained by constructing
test-configurations. They are chosen to be periodic with respect to a square lattice of

size
√

2π
b
ε, with a vortex of degree 1 in each cell. In view of (I.14), a minimizer (u,A)

should be an almost minimizer of 1
2

∫

Ω
|DAu|2 + |h− bκ2|2 + κ2

2
(1 − b − |u|2)2. We choose

our test-configuration to satisfy |u| ≤ C
√
1− b and also DAu = 0 (following somewhat

the construction of [JT] of vortex solutions in the self-dual case). This configuration has
of course no reason to be optimal (nor is the square-shape), but gives the right order of
energy.
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We get as a corollary of Proposition 1 and Theorem 1 that, for energy-minimizers,

lim sup
κ→∞

1

2κ2|BR|

∫

BR

|DAu|2+
κ2

2
(1− b−|u|2)2+ |h−hex|2 ≤ f(b)− b

2
+
b2

4
≤ 1− α

4
(1− b)2

and that

(I.20)
1

R2

∫

BR

(1− b− |u|2)2 ≤ (1− α)(1− b)2

from which one can deduce (I.18). It is also tempting, in view of (I.14), to think that
|u|2 ≤ C(1− b) in the bulk.

There remains many open questions on the behavior of minimizers, which all seem quite
delicate.

First of all, we conjecture that, next to an interior point of Ω, a minimizing solution
should converge, after blow-up at the scale ε, to a unique limiting profile in R2. A much
more difficult task would be to show that this limiting profile is periodic. For a study of
periodic solutions of Ginzburg-Landau, see [Du], [C] and [Al2].

We have not mentioned vortices of the minimizers. It is difficult to describe them and
even define them : |u| becomes uniformly small, so one can no longer define the vortices as
the regions where |u| is small. Nevertheless, there should be vortices (they appear in our
upper bound construction), with a total degree 2πhex on the boundary of Ω. Heuristically,
using the second Ginzburg-Landau equation

−∇⊥h

ρ2
+ h = ∇ϕ

where we write u = ρeiϕ in polar coordinates. Taking the curl of this equation, we are led
to

div

(∇h
ρ2

)

+ h = π
∑

i

diδai

where the ai are the zeros (or vortices) of u, and di their degrees or winding number. Since
h→ hex strongly, we should have, at least formally

2π
∑

i

diδai ∼ hex

(as we had for hex ≪ κ2). However, it seems difficult to give a rigorous meaning to
this statement. We can prove that on any subdomain D of volume R2 ≫ 1

κ2 such that
|u| > c > 0 independently of κ on ∂D, and such that the perimeter of D is less than O(R),
the total degree of u on ∂D is equivalent to hex|D|. But the existence of such a D is not
proved.

To conclude, it would be very nice, but certainly difficult, to prove a bifurcation at
Hc2 from the surface-superconductivity solution to one of the known periodic-like vortex
solution.
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II The algebraic trick

From now on, we denote h = curlA and u = ρeiϕ in polar coordinates. Then

|∇Au|2 = |∇ρ|2 + ρ2|∇ϕ− A|2.

We are interested in this section in studying families of solutions of Ginzburg-Landau, or
configurations which satisfy the following a priori estimates:

Lemma II.1 If (u,A) is a solution of Ginzburg-Landau, we have

‖h− hex‖C1(Ω) ≤ Cκ, ‖h− hex‖C2(Ω) ≤ Cκ2.(II.1)

‖∇Au‖L∞(Ω) ≤ Cκ ‖∇ρ‖L∞(Ω) ≤ Cκ(II.2)

eκ(u,A) := |∇Au|2 + |h− hex|2 +
κ2

2
(1− ρ2)2 ≤ Cκ2.(II.3)

These estimates are proved in [HP] Proposition 4.3, see also [P1] Lemma 7.1. They rely on
a blow-up at scale ε = 1

κ
, which leads to equations at scale 1, for which all the quantities

are uniformly bounded.

Proof of Proposition 1 : As already mentioned, it relies on the Bogomoln’yi identity on the
operator DA = ∂1 + i∂2 − i(A1 + iA2). One can check that, in polar coordinates,

(II.4) |DAu|2 = |ρ(∇ϕ− A)−∇⊥ρ|2.

Expanding the square on the right-hand side, one gets the crucial identity

(II.5) |DAu|2 = |∇Au|2 − curl j − ρ2h,

where j is the superconducting current < iu,∇Au >. Inserting (II.5) in J , we are led to

(II.6) JBR
(u,A) =

1

2

∫

BR

|DAu|2 + curl j + ρ2h+ |h− hex|2 +
κ2

2
(1− ρ2)2.

Moreover, using the fact that |j| ≤ |∇Au| ≤ Cκ with (II.2), we have

(II.7)

∣

∣

∣

∣

∫

BR

curl j

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

∂BR

j · τ
∣

∣

∣

∣

≤
∫

∂BR

|j| ≤ O(Rκ).

Also h = hex + O(κ) = bκ2 + o(κ2) in view of (II.1). Combining these facts with (II.6)
yields

JBR
(u,A) =

1

2

∫

BR

|DAu|2 + ρ2bκ2 +
κ2

2
(1− ρ2)2 + |h− hex|2 +O(Rκ) + o(R2κ2)

=
1

2

∫

BR

|DAu|2 + κ2
(

1

2
+ ρ2(b− 1) +

ρ4

2

)

+ |h− hex|2 +O(Rκ) + o(R2κ2).(II.8)
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If b ≥ 1, this immediately implies that

JBR
(u,A)

κ2|BR|
≥ 1

4
+ o(1).

(Thus, we see why the value b = 1 plays a particular role.)

If b ≤ 1, we observe that ρ2(b− 1) + ρ4

2
= 1

2
(ρ2 − (1− b))2 − 1

2
(1− b)2 and obtain

(II.9) JBR
(u,A) = |BR|

κ2

4
(1− (1− b)2) +

1

2

∫

BR

|DAu|2 +
κ2

2
(1− b− ρ2)2 + |h− hex|2

+ O(Rκ) + o(R2κ2).

We conclude that (I.14) holds. �

III Energy localisation and convergence

We are now interested in families of global minimizers of J . The following lemma allows
to localize all energy comparisons.

Lemma III.1 Let Rκ be such that Rκ ≫ ε. Then, for (u,A) minimizer of J , and any ball
BR of radius Rκ in Ω,

JBR
(u,A)

κ2|BR|
=

min JBR

κ2|BR|
+ o(1).

Proof : One inequality is obvious :

JBR
(u,A) ≥ min JBR

.

The converse relies on a comparison argument. Let (ũ, Ã) be a minimizer of JBR
. We

construct a test-configuration in Ω which coincides with (u,A) in Ω\BR, and with (ũ, Ã)
in BR−3ε.

Let χ be a C∞(Ω) function such that

(III.1)







































χ(x) = 1 in Ω\BR

χ(x) = 0 in BR− ε
2
\BR− 5

2
ε

χ(x) = 1 in BR−3ε

|∇χ| ≤ C

ε
∫

Ω

|∇χ|2 ≤ O(
R

ε
).

We define (u,A) by

(u,A) = (χu,A) in Ω\BR−ε

(u,A) = (χũ, Ã) in BR−2ε.
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There remains to extend (u,A) in BR−ε\BR−2ε. We take u = 0 there and may extend A
in such a way that

(III.2) ‖curlA− hex‖L∞(Ω) ≤ Cκ,

(indeed, this is true for A and Ã.) Then, (u,A) being a minimizer of J , we have

(III.3) 0 ≥ J(u,A)− J(u,A) =

∫

BR

eκ(u,A)− eκ(u,A)

=

∫

BR\BR−ε

+

∫

BR−ε\BR−2ε

+

∫

BR−2ε\BR−3ε

+

∫

BR−3ε

eκ(u,A)− eκ(u,A).

Then,

(III.4)

∣

∣

∣

∣

∣

∫

BR\BR−ε

eκ(u,A)− eκ(u,A)

∣

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

∣

∫

BR\BR−ε

|∇ρ|2 + ρ2|∇ϕ− A|2 + κ2

2
(1− ρ2)2

−
∫

BR\BR−ε

|∇(χρ)|2 + χ2ρ2|∇ϕ−A|2 + κ2

2
(1− ρ2χ2)2

∣

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

∣

∫

BR\BR−ε

(1− χ2)|∇Au|2 +
κ2

2

(

(1− ρ2)2 − (1− ρ2χ2)2
)

−
∫

BR\BR−ε

ρ2|∇χ|2
∣

∣

∣

∣

∣

≤ O(
R

ε
),

where we have used (II.3) and (III.1). Similarly, exchanging the roles of (u,A) and (ũ, Ã),
we find

(III.5)

∣

∣

∣

∣

∣

∫

BR−2ε\BR−3ε

eκ(u,A)− eκ(u,A)

∣

∣

∣

∣

∣

≤ O(
R

ε
).

In BR−ε\BR−2ε, u = 0, so with (II.3) again and (III.2),

(III.6)

∣

∣

∣

∣

∣

∫

BR−ε\BR−2ε

eκ(u,A)− eκ(u,A)

∣

∣

∣

∣

∣

≤ O(
R

ε
) +

1

2

∫

BR−ε\BR−2ε

|curlA− hex|2 ≤ O(
R

ε
).

By (II.3) again, we have
∫

BR−3ε

eκ(u,A) =

∫

BR

eκ(u,A) +O(
R

ε
)(III.7)

∫

BR−3ε

eκ(ũ, Ã) =

∫

BR

eκ(ũ, Ã) +O(
R

ε
).(III.8)
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But, since (ũ, Ã) minimizes JBR
, we have

(III.9)

∫

BR

eκ(u,A) ≥
∫

BR

eκ(ũ, Ã).

Combining this with (III.7) and (III.8), and using the fact that (u,A) is equal to (ũ, Ã) in
BR−3ε, we deduce that

∫

BR−3ε

eκ(u,A)− eκ(u,A) ≥ O(
R

ε
).

Combining this with (III.3)—(III.7), we get
∣

∣

∣

∣

∫

BR

eκ(u,A)− eκ(u,A)

∣

∣

∣

∣

≤ O(
R

ε
),

i.e.
JBR

(u,A) = JBR
(ũ, Ã) +O(Rκ)

which leads to the result. �

What we did with balls in the previous lemma can be done with squares KR of size R.

Lemma III.2 For all b ≥ 0, and Rκ ≥ R′
κ ≫ ε,

(III.10)
min JKR

κ2|KR|
=

min JKR′

κ2|KR′ | + o(1),

hence
minJKR

κ2|KR| does not depend on R≫ ε (up to a o(1)).

Proof : Let us denote by [.] the integer part of a real number. Assume first thatR′ ≪ R. KR

can be split into at least [R2/R′2] disjoint squares of size R′. Thus, for (u,A) a minimizer
of JKR

,

JKR
(u,A) ≥

[

R2

(R′)2

]

JKR′ (u,A)

≥
[

R2

(R′)2

]

min JK ′
R
.

We deduce that
min JKR

κ2|KR|
≥ min JKR′

κ2|KR′ | (1 + o(1)).

Conversely, let us split KR into [R2/(R′)2] + o(1) squares of size R′ with a layer of size
3ε between them. Using the pasting procedure of Lemma III.1, we can construct a test-
configuration (u,A) in KR that agrees with the minimizer of JKR′ in each subsquare of size
R′, and such that

JKR
(u,A) ≤ ([R2/(R′)2] + o(1))

(

min JKR′ + C
R′

ε

)

.
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We can check that the error terms are negligible and deduce that

min JKR

κ2|KR|
≤ min JKR′

κ2|KR′ | (1 + o(1)).

Since for all R,
minJKR

κ2|KR| ≤ 1
4
≤ O(1) (by comparison with the normal solution), we deduce

that (III.10) holds. If R and R′ are of the same order, one may introduce R′′ such that
R′ ≫ R′′ ≫ ε. From the above, one deduces that

min JK ′
R

κ2|K ′
R|

=
min JKR′′

κ2|KR′′ | + o(1)

and the same with R′ replaced by R, from which it follows that

min JKR

κ2|KR|
=

min JK ′
R

κ2|K ′
R|

+ o(1).

�

Lemma III.3 For all Rκ ≫ ε,
minJBR

κ2|BR| has a limit as κ → ∞, which depends only on b.

We denote it f(b). f is continuous, increasing in [0, 1].

Consider Rκ ≫ ε and (u,A) a minimizer of JBR
. We denote for a moment by Jκ,BR

the
functional for κ defined on BR (b being fixed, hex = bκ2). Let λ < 1, and define in BR

λ
,

v(x) = u(λx) B(x) = λA(λx).

Then, by change of variables, we have

(III.11) min Jκ,BR
= Jκ,BR

(u,A) =
1

2

∫

BR/λ

|∇Bv|2+
1

λ2
|curlB−κ2λ2b|2+ κ2λ2

2
(1−|v|2)2.

Since 1
λ
> 1, this implies that

min Jκ,BR

κ2R2
≥ 1

2κ2R2

∫

BR/λ

|∇Bv|2 +
1

λ2
|curlB − κ2λ2b|2 + κ2λ2

2
(1− |v|2)2

≥
Jκλ,BR/λ

(v, B)

κ2R2
+

1

2κ2R2

(

1

λ2
− 1

)
∫

BR/λ

|curlB − κ2λ2b|2

≥
min Jκλ,BR/λ

(κλ)2(R/λ)2
+

1

2κ2R2
(1− λ2)

∫

BR

|curlA− bκ2|2.

But from Lemma III.2, we have

min Jκλ,BR/λ

(κλ)2(R/λ)2
=

min Jκλ,BR

(κλ)2R2
+ o(1).
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Hence, we deduce that for all λ < 1,

(III.12)
min Jκ,BR

κ2R2
≥ min Jκλ,BR

(κλ)2R2
+ o(1) + (1− λ2)

1

2κ2R2

∫

BR

|curlA− bκ2|2.

Hence
min Jκ,BR

κ2R2
is monotonic (up to o(1)) with respect to κ, and must have a limit as

κ→ ∞, which depends only on b. We denote it by f(b). Letting then κ tend to infinity in
(III.12), yields

f(b) ≥ f(b) + lim sup
κ→∞

(1− λ2)
1

2κ2R2

∫

BR

|curlA− bκ2|2,

thus we also deduce that

(III.13)
1

2κ2R2

∫

BR

|h− hex|2 = o(1).

This means that, for energy-minimizers, the term
∫

Ω
|h− hex|2 is negligible in the energy.

This will be helpful later.
We now prove that f is monotonic. Let still λ < 1 and let Jb,BR

now denote the
functional restricted to BR for the value bκ2 of the applied field. Let us consider the same
v and B defined previously. By definition,

Jλ2b,BR/λ
(v, B) =

1

2

∫

BR/λ

|∇Bv|2 + |curlB − λ2bκ2|2 + κ2

2
(1− |v|2)2.

Using (III.11),

Jλ2b,BR/λ
(v, B) =

1

λ2
Jb,BR

(u,A)− (
1

λ2
− 1)

1

2

∫

BR/λ

|∇Bv|2 − (
1

λ4
− 1)

1

2

∫

BR/λ

|curlB − λ2bκ2|2

=
1

λ2
Jb,BR

(u,A)− (
1

λ2
− 1)

1

2

∫

BR

|∇Au|2 − o(1),(III.14)

where we have used (III.13). Therefore,

min Jλ2b,BR/λ

κ2(R/λ)2
≤ Jb,BR

(u,A)

λ2κ2(R/λ)2
.

In view of the previous results, the left-hand side of this inequality converges to f(λ2b)
while the right-hand side converges to f(b). We deduce that for all λ < 1,

f(λ2b) ≤ f(b),

thus f is nondecreasing. One can even deduce from (III.14) that f is increasing, because
lim inf 1

κ2R2

∫

BR
|∇Au|2 > 0. Taking now λ ≥ 1, we get as in (III.14) that

f(λ2b) ≤ f(b)− ψ(λ)

13



where ψ(λ) → 0 as λ→ 1. This implies that f is continuous. �

In view of the result of Proposition II.1, we have, for b ≤ 1,

(III.15)
b

2
− b2

4
≤ f(b) ≤ 1

4
.

We will prove the upper bound on f in the next section. Leaving it aside, let us now
complete the proof of the theorem.

End of the proof of Theorem 1 :
Taking the scalar product of the first Ginzburg-Landau equation (I.2) with u yields the
standard equation for ρ = |u| :
(III.16) −∆ρ+ ρ|∇ϕ−A|2 = κ2ρ(1− ρ2).

Then, we multiply it by ρ and integrate. We are led, after integration by parts (using
(I.5)), to

∫

Ω

|∇ρ|2 + ρ2|∇ϕ− A|2 =
∫

Ω

κ2ρ2(1− ρ2).

We deduce the following relation, true for any solution of Ginzburg-Landau :

(III.17) J(u,A) =
κ2

4

∫

Ω

(1− ρ4) +
1

2

∫

Ω

|h− hex|2.

In view of (III.13), if (u,A) is an energy-minimizer, this becomes

J(u,A) =
κ2

4

∫

Ω

(1− ρ4) + o(κ2).

If we integrate over BR instead of Ω, and use (II.2) to handle the boundary term, we find,
still for minimizers,

(III.18) JBR
(u,A) =

κ2

4

∫

BR

(1− ρ4) +O(κR) + o(κ2R2).

Applying (III.18) to u and u successively gives (I.16).
Then,

1

|BR|

∫

BR

|u|4 → 1− 4f(b)

for all R≫ ε, which implies the weaker conclusion that |u|4 ⇀ 1− 4f(b) in L∞ weak-*.
We also deduce from (I.14) combined (I.19) that (I.20) holds. Plugging (I.16) in (I.20), we
obtain

1

|BR|

∫

BR

|u|2 ≥ (1− b)2 + 1− 8f(b) + 2b− b2

2(1− b)

≥ 1− 4f(b)

1− b
≥ α(1− b),
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while 1
|BR|

∫

BR
|u|2 ≤

√

1
|BR|

∫

BR
|u|4 comes from the Cauchy-Schwartz inequality.

This completes the proof of the theorem. �

IV Contruction of test-configurations

The upper bound of Theorem 1 relies on the construction of two test-configurations, one
being more interesting when b → 1, the other one when b → 0. Let us start with the first
one, which follows somehow the construction of vortex solutions of [JT] in the self-dual
situation.

Proposition 2 With the notations of the previous section, there exists a universal constant
0 < α < 1 such that

(IV.1) f(b) ≤ 1− α(1− b)2+
4

.

Proof : Assume b ≤ 1 (otherwise the conclusion is trivial). We construct a test-configuration

which is periodic with respect to a square lattice of size
√

2π
b
ε. Let K√

2π
b
ε
denote an ele-

mentary square of the lattice and let K√
2π denote the square of size

√
2π centered at the

origin. We solve for

(IV.2)



























∆ log ρ0 + 1 = 2πδ0 in K√
2π

∂ log ρ0
∂n

= 0 on ∂K√
2π

∫

K√
2π

log ρ0 = 0.

There exists a (unique) solution to this system because the volume of K√
2π is 2π. Let

(r, θ) be the polar coordinates in the plane. We observe that log ρ0 − log r is smooth in
K√

2π, hence
ρ
r
too, and thus ρ0(0) = 0. We then define in K√

2π
b
ε
,

ρ(x) = Cρ0(
x
√
b

ε
)

where C minimizes
∫

K√
2π
b

ε

(1− b− C2ρ20(
x
√
b

ε
))2 i.e. (after a little computation)

(IV.3) ρ(x) =
√
1− b

√

√

√

√

∫

K√
2π
ρ20

∫

K√
2π
ρ40
ρ0(

x
√
b

ε
).

One can see that ρ is solution of

(IV.4)







∆ log ρ+ b
ε2

= 2πδ0 in K√
2π
b
ε

∂ log ρ

∂n
= 0 on ∂K√

2π
b
ε
.
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ρ0 is symmetric with respect to the axes of symmetry of the square and ∂ρ0
∂n

= 0 on ∂K√
2π,

thus we may extend ρ to any ball BR (R≫ ε) by periodicity and get a C1 function, which
vanishes on a lattice Λ.
We then pick A to solve

{

curlA = bκ2 in BR

div A = 0 in BR.

and ϕ to satisfy

(IV.5) ∇ϕ =
∇⊥ρ

ρ
+ A = ∇⊥ log ρ+ A.

To achieve this, we fix a point x0 of BR\Λ and define

ϕ(x) =

∫ x

x0

∂n log ρ+ A · τ.

This definition does not depend on the path joining x0 to x, modulo 2π. Indeed, if γ = ∂ω
is a closed path in BR\Λ with positive orientation, using (IV.4), we have
∫

γ

∂n log ρ+ A · τ =

∫

ω

∆ log ρ+ curlA =

∫

ω

∆ log ρ+ bκ2 = 2πcard(ω ∩ Λ) ∈ 2πZ.

Hence eiϕ(x) is well-defined in BR\Λ. We then take

u(x) = ρ(x)eiϕ(x)

which has a continuous extension inBR because ρ vanishes on Λ. Once this test-configuration
(u,A) is constructed, we evaluate its energy. In view of (II.9),

(IV.6) JBR
(u,A) = |BR|κ2

(

b

2
− b2

4

)

+
1

2

∫

BR

|DAu|2 +
κ2

2
(1− b− ρ2)2 +O(Rκ2).

But |DAu|2 = |ρ(∇ϕ−A)−∇⊥ρ|2 = 0 by construction, cf. (IV.5). Moreover, from (IV.3),

∫

K√
2π
b

ε

(1− b− ρ2)2 = (1− b)2
∫

K√
2π
b

ε

(

1−
∫

K√
2π
ρ20

∫

K√
2π
ρ40
ρ20(

x
√
b

ε
)

)

dx

= (1− b)2







2π

b
ε2 − ε2

b

(

∫

K√
2π
ρ20

)2

∫

K√
2π
ρ40






.(IV.7)

Let us write

α =

(

∫

K√
2π

ρ20

)2

2π

∫

K√
2π

ρ40

.
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Since ρ0 is not a constant function (see (IV.2)), we have a strict Cauchy-Schwartz inequality
(

∫

K√
2π

ρ20

)2

< 2π

∫

K√
2π

ρ40,

and hence 0 < α < 1. Then, from (IV.7),

(IV.8)

∫

BR

(1− b− ρ2)2 = |BR|(1− b)2(1− α) + o(R2).

Combining (IV.6) and (IV.8), we are led to

JBR
(u,A) = |BR|κ2

(

b

2
− b2

4
+

(1− b)2(1− α)

4

)

+ o(κ2R2).

We conclude that

f(b) ≤ lim sup
κ→∞

min JBR

κ2|BR|
≤ lim sup

κ→∞

JBR
(u,A)

κ2|BR|
≤ 1− α(1− b)2

4
.

�

Proposition 3 There exists a universal constant c such that for b ≤ 1,

(IV.9) f(b) ≤ b

4

(

log
1

b
+ c

)

.

Proof: This estimate is stronger than (IV.1) when b → 0, and corresponds to a regime
in which the distance between vortices is rather large compared to their core size ε, i.e. is
close to the regime described in [SS2]. In order to prove this estimate, we just adjust the
construction of a test-function that we did in [SS2].

This test-function is again periodic with respect to a square lattice of size
√

2π
b
ε. Let

us consider an elementary square K√
2π
b
ε
centered at the origin, and Bε the ball of radius ε

centered at the origin, which is included in K√
2π
b
ε
for all b ≤ 1. The centers of the squares

of the lattice will be denoted ai. We take a ρ ≤ 1 which satisfies

(IV.10)



























ρ ≡ 1 in K√
2π
b
ε
\Bε

ρ ≡ 0 in Bε/2

∫

K√
2π
b

ε

|∇ρ|2 + κ2

2
(1− ρ2)2 ≤ C.

Then, we take h such that

(IV.11)







−∆h + h = 8
ε2
1Bε/2

in K√
2π
b
ε

∂h

∂n
= 0 on ∂K√

2π
b
ε
.
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where 1 denotes a characteristic function. We extend ρ and h by periodicity to BR (R ≫ ε)
and pick A such that curlA = h and div A = 0. Then we take ϕ such that

(IV.12) ∇ϕ = −∇⊥h+ A,

i.e. by choosing a point x0 in BR\ ∪i Bε/2(ai) and setting

ϕ(x) =

∫ x

x0

−∂h
∂n

+ A · τ.

This integral does not depend on the path joining x0 to x in BR\ ∪i Bε/2(ai), modulo 2π.
Thus can be seen from (IV.11). Thus eiϕ is well-defined in BR\ ∪i Bε/2(ai), and

u(x) = ρ(x)eiϕ(x)

has a meaning on all of BR (since ρ ≡ 0 in ∪iBε/2(ai)). Exactly as in [SS2], one shows that

(IV.13)
1

2

∫

K√
2π
b

ε

|∇h|2 + |h− hex|2 ≤ π log

√

1
b
ε

b
+ C =

π

2
log

1

b
+ C.

There remains to evaluate the energy of (u,A) per square. From (IV.12), we have ρ2|∇ϕ−
A|2 ≤ |∇h|2, hence

JK(u,A) =

∫

K√
2π
b

ε

|∇ρ|2 + ρ2|∇ϕ−A|2 + |h− hex|2 +
κ2

2
(1− ρ2)2

≤ π

2
log

1

b
+ c.

Multiplying this estimate by the number of squares in BR,
|BR|b
2πε2

, we find

JBR
(u,A) ≤ |BR|κ2

(

b

4
log

1

b
+ cb

)

.

We then conclude, as in the previous proposition, that (IV.9) holds. �
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