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141 INTRODUCTION

Blood isaviscousincompressible fluid which is propelled through the
arteries, capillaries, and veins of the circulation by a collection of elastic and
contractile fibers known as the heart. The |eft side of the heart receives bright
red oxygenated blood from the lungs, and it pumps this blood into the aorta
through which it is distributed to al of the tissues of the body, including the
heart muscle (viathe coronary arteries). Asit flows through these varioustis-
sues, part of the oxygen is removed, and the color changes from bright red to
bluish red. At the sametime, carbon dioxide that has been generated by tissue
metabolism is picked up by the blood. The deoxygenated blood returns to the
right side of the heart, which pumps it through the pulmonary arterial tree to
the lungs, where the carbon dioxide is removed and the blood becomes once
more saturated with oxygen.

Each side of the heart has two chambers, an atrium and a ventricle.
Each ventricle has an inflow (atrioventricular) and an outflow (arterial) valve.
The valves are primarily passive structures that move in response to the flow
of blood, although the atrioventricular valves are supported by muscles that
prevent prolapse when those valves are closed. Both types of valves are con-
structed in such a way that they open freely to allow forward flow but close
to prevent backflow. When the ventricles are relaxed (diastole), their inflow
valves are open and their outflow valvesare closed: during thistime period the
ventricular pressures are low, and each ventricle fills with blood from the cor-
responding atrium. When the ventricles contract (systole), the inflow valves
close first, and then the outflow valves open as the ventricular pressures rise.
Once the outflow valves are open, each ventricle gects blood into its corre-
sponding artery.

Thefamiliar heart sounds are associated with the closure of the valves
and the subsequent vibration of the cardiac and arterial chambers. The lower
pitch “Lub” is associated with the nearly synchronous closure of the two atri-
oventricular valves, and the higher pitched “Dup” is associated with the nearly
synchronous closure of the two arterial valves. Valve opening is normally
silent but may produce sounds in disease states. Heart murmurs are associated
with turbulence that may be generated by jets of fluid that form when valves
fail to open fully or fail to close properly.

For further detail concerning the physiology of the heart, see Guy-
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ton (1991). The anatomy of the heart will be described in Section 14.6 of the
present chapter.

Our concern here iswith the mathematical formulation and computer
solution of the coupled equations of motion of the blood, the muscular heart
walls, and the flexible heart valve leaflets. The goa of the work described
hereinisto provide arealistic computer model of the heart which can be used
in applied studies concerning normal cardiac physiology, diseasesaffecting the
mechanical function of the heart and its valves, and the computer-assisted de-
sign of prosthetic cardiac valves. For examples of such studies conducted in
an earlier, two-dimensional model of the left heart only, see McQueen et al.
(1982); McQueen and Peskin (1983); McQueen and Peskin (1985); Meis-
ner et a. (1985). The present chapter, however, is concerned with a three-
dimensional whole-heart model (Peskin and McQueen 1992; Peskin and Mc-
Queen 1993; Peskin and McQueen 1995).

142 IMMERSED ELASTIC FIBERSIN A VISCOUS
INCOMPRESSIBLE FLUID

In this section we formulate the fiber-fluid problem of cardiac dynam-
ics. The formulation that we give involves both fluid dynamics and elasticity
theory, coupled together in an unusual way. For backgroundinthesetwofields,
see Chorin and Marsden (1993); Green and Adkins (1970).

Consider an idealized composite material made of elastic fibers em-
bedded in aviscousincompressible fluid. Thefibers occupy zero volume frac-
tion, and they have no mass, yet they are so finely divided that a continuum
description of the material may be used. Thefibers stick to the fluid and move
at the local fluid velocity u. At each point of the fiber-fluid composite thereis
awell-defined fiber direction given by the unit vector +.

Let (q,r, s) be curvilinear coordinates chosen in such a way that a
fixed value of the triple (q, r, s) denotes a material point, and also in such a
way that afixed value of the pair (q, r) designates afiber. Let

X = X(q,r,s,t) (14.1)

betheposition at timet of thematerial point that carriesthelabel (g, r, s). Then
the unit tangent to the fibersis given by

X /ds
T = .
|0X /93|
Let T(q,r, s, t) bethefiber tension, in the sense that Tdqdr isthe force trans-
mitted by the fibers corresponding to the patch dgdr of the (q, r) parameter
plane. Thisforce pointsin the fiber direction +7.

Sincethefibersareelastic, thefiber tensionisrelated to thefiber strain,
whichisdetermined by |0X/3s|. Weuseageneralized Hooke'slaw of theform

T =0(|0X/8s|;q,r1,S,1). (14.3)

(14.2)

Note in particular the explicit time dependence of the stress-strain relation
(14.3). It isthis explicit time dependence that makes it possible for the heart
to act as a pump and to do net work on the blood over a cardiac cycle.
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We now determine the force applied by thefibersto the fluid in which
they are immersed. Consider the collection S of fiber segments defined by
(q.r) € Q,s1 <s < s, Where Q isan arbitrary region of the (q, r) parameter
plane, and wheres; and s, (with s; < sp) are arbitrary values of the parameter
s. Let F denote the total force applied by the fiber segmentsin S to the fluid.
Then —F isthe force of the fluid on S. The only other forces acting on S are
the fiber forces transmitted across the surfacess = s, and s = ;.

Note that the total force acting on S must be zero, since the fibers are
massless. (As described above, all of the mass is carried by the fluid, which
permeates the same space that is occupied by the fibers.) Thisyieldsthe equa-
tion

S=%
0=-F+ / (TT)dqdr (14.9)
Q S=5
or, by the fundamental theorem of calculus,
= a
}‘:/ / —(T7)dqdr ds. (14.5)
s Jo s
Let
f= i(T ) (14.6)
= s T). .

Since sy, s, and 2 are arbitrary, (14.5) showsthat f isthe density (with respect
to the measure dqdrds) of the force applied by the fibers to the fluid in which
they are immersed.

For the sake of interpretation, one may expand the derivativein (14.6)
to obtain

AT oT

f=l T
as” T ' %s

(14.7)

Notethat thesetwo termsare orthogonal: T isthe unit tangent to the fibers, and
a7 /0s isthe vector whose direction defines the principal normal to the fibers.
There is no component of f in the binormal direction.

In the following, we shall need an expression for the force density in
Cartesian coordinates. That is, we require avector field F(x, t) such that

/F(x,t)dx:/ . f(@,r,s t)ydgdrds, (14.8)
v X7 v

where V isan arbitrary region in the physical space, and where
XLV, t) ={@,r,s) : X(@.T, s, 1) € V} (14.9)

This can be achieved by setting

Fix,t) = /f(q, r,s,t)é(x — X(q,r,s,t))dgdr ds,
(14.10)
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in which the integral extends over the entire (g, r, s) parameter space, and in
which §(x) is the three-dimensional Dirac delta function. To recover (14.8)
from (14.10), integrate over thevolumeV, interchangethe order of integration,
and recall that

1,XeV
(X —X)ydx = ’ ' 14.11
JREES { 0 X o (14.12)
Notethat F(x, t) = 0 unlessthe point x happens to be within the region that is
occupied by thefibers at timet.

Equation (14.10) is not the only way to write the rel ationship between
F and f. Another possibility, which follows directly from (14.8), is

F(X(q,r,s,t),t)J(q,r,s) =f(q,r,s,t), (14.12)
where
aX X\ aX
==—x =] - — 14.1
J@.r,s) <8qxar> P (14.13)

is the Jacobian of the map (q,r,s) — X(q,r,s,t). J isindependent of t be-
causethefluidisincompressible. Theadvantages of using the Dirac deltafunc-
tionasin (14.10) arethat it avoidstheintroduction of J, that it givesan explicit
formulafor F(x, t), and that it generalizes easily to the situation in which the
fibers are confined to a (moving) surface embedded in the three-dimensional
space, as in the case of a fiber-reinforced heart-valve leaflet. To obtain this
generalization, we simply drop one of the two parameters (q or r) that label
the fibers. Then the surface in question is given at any particular timet by an
equation of the form x = X(r, s, t), and we have

Fx,t) = /f(r, S)8(X — X(r, s, t))dr ds. (14.19)

In this expression there are only two integrals, but the delta function is still
three-dimensional, so F(x, t) is singular like a one-dimensiona delta func-
tion. Despite thisimportant difference between the relations given by (14.10),
wherein F isfinite, and (14.14), the use of the Dirac delta function provides a
unified framework for modeling the thick heart walls and the thin heart-valve
leaflets.

143 EQUATIONSOF MOTION

Our purpose hereis to state the equations of motion of the fiber-fluid
system described in the previous section. These equations are as follows
au 5
pl—+u-vu} = —-Vp+uVu+F, (14.15)

at
V-u 0, (14.16)
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Fx,t) = /f(q, r,s t)s(x — X(q,r,s,t))dqdr ds, (14.17)
X
E(q,r,s,t) = uX(,r,s,t),t) (14.18)
= /u(x,t)S(x—X(q,r,s,t))dx, (14.19)
f = i(T) (14.20)
T as ) '
X
T = 7. 14.21
0(’33 ,q,r,s,t), ( )
aX/ds
= ) 14.22
T 10X /93| (14.22)

Equations (14.15)—(14.16) arethefluid equations, (14.20)—(14.22) are
the fiber equations, and (14.17)—(14.19) are the interaction eguations of the
fiber-fluid system.

Note that the fluid equations are in Eulerian form: they involve sev-
eral unknown functions of (x,t), where x = (xg, Xo, x3) are fixed Cartesian
coordinates and t is the time. These unknown functions are the fluid vel ocity,
u(x, t), the fluid pressure, p(x, t), and the Eulerian fiber force density F(x, t).
The constants p and . are the density and viscosity of the fluid. Equations
(14.15)—14.16) are the familiar Navier-Stokes equations of aviscous, incom-
pressible fluid. The only novel feature is the use of the applied-force density
F(x, t) for the representation of the fiber force.

The fiber equations derived in Section 14.2 are in Lagrangian form:
they involve several unknown functions of (q, r, s, t), where (g, r, s) are mov-
ing curvilinear coordinates attached to the material points of the fibers. These
unknown functions are the fiber configuration X(q, r, s, t), the unit tangent to
thefibers(q,r, s, t), thefiber tension T(q, r, s, t) and the Lagrangian form of
the fiber force density f(q,r, s, t). The fiber equations may be used to deter-
mine the fiber force density at any given time t from the fiber configuration
at that sametimet. Thisis done by substituting (14.21)—(14.22) into (14.20).
Thefact that the fiber forces can be determined from the fiber configuration is
an expression of the elasticity of the fibers.

The interaction equations connect the Lagrangian and Eulerian vari-
ables. Note that both of the interaction equations take the form of integral
transformationsinwhichthekernel iss (x—X(q, r, s, t)). In(14.17) theintegra-
tion (dgdrds) is over the fiber parameter space, but in (14.19) the integration
(dx) is over the physical space. The latter may be thought of as an integration
over thefluid, sincethe volume fraction occupied by thefibersiszero (see Sec-
tion 14.2).

The first of the interaction equations (14.17) has aready been dis-
cussed in Section 14.2. The second interaction equation (14.18)—14.19) isthe
no-dlip condition of a viscous fluid. In the present context, it states that the
fibers move at the local fluid velocity, and it serves as an equation of motion
for the fibers, not as a constraint on the fluid motion, since the motion of the
fibersis unknown.
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The structure of (14.15)—14.22) is as follows. At any given time
t, the state of the system is determined by the fiber configuration X(, , ,t)
and the fluid velocity u( , t). Given these quantities, 9X/at may be found di-
rectly from (14.18)—(14.19), and du/at may be determined as follows. First
use (14.21) and (14.22) to find T and 7, substitute these results into (14.20) to
find f, and then use (14.17) to find F. With F known, the Navier-Stokes equa-
tions, (14.15)—(14.16) may be used to find du/at. (Asiswell known, thisre-
quires the elimination of p through the solution of a Poisson equation.) In ef-
fect, then, (14.15)14.22) are afirst-order system in the state variables X and
u. The numerical solution of this system will be discussed in the following
section.

144 THE IMMERSED-BOUNDARY METHOD

Equations (14.15)—<14.22) are solved by the immersed-boundary
method, see Peskin and McQueen (1992); Peskin and McQueen (1993); Pe-
skin and McQueen (1995), and references therein.

The philosophy underlying theimmersed-boundary method isthat the
fluid equations (14.15)—(14.16), which are in Eulerian form, should be dis-
cretized on afixed cubic lattice, whereas the fiber equations (14.20)—14.22),
which are in Lagrangian form, should be discretized on a moving collection
of points that need not coincide with the lattice points of the fluid equations.
This immediately raises the question of how to handle the fiber-fluid interac-
tion (14.17)—(14.19), aquestion which will be answered below through thein-
troduction of a smoothed approximation to the Dirac delta function.

L et time proceed in discrete steps of duration At, and use asuperscript
asthetime step index: X"(q,r,s) = X(q,r, s, nAt). Let adiscrete collection
of fibers be chosen, e.g., (g, r) = (kAq, £Ar), wherek and ¢ are integers, and
let each fiber be represented by adiscrete collection of points: s = mAs, where
misaninteger. It is convenient to define the fiber tension and the unit tangent
T at the “haf-integer” pointsgivenby s = (m+ %)As.

Thisisdone as follows. For any function ¢ (s), let

s AS (s As)
o( +7)—¢ —7.

(Dsp)(s) = e (14.23)
Then make the definitions
T" = o(DsX"|;q,r1,8,nAb), (14.24)
DX"
n = = 14.2
DX’ (14.25)

both of which hold for s = (m+ %)As. Finally, wecanuse T" and 7" to define
f" at the points s = mAs:

f" = Dg(T ") (14.26)

Notethat f" isdefined at the samevalues of sasX". Equations (14.24)—(14.26)
are discrete approximations to (14.21), (14.22), and (14.20), respectively.
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Let the fluid velocity and pressure be defined on the cubic lattice of
pointsx = jh, where h isthe meshwidthand ] = (ji, j», j3) isavector within-
teger components. Our next task isto construct aforce-field F, defined on this
cubic lattice, to represent the effect of the fibersin the fluid-dynamics compu-
tation. Thisdone using (14.17) asaguide. The formulafor F isas follows:

F'(x) = Zf”(q, r,s)6h(x — X"(q, r, S)) AQATr AS,
i (14.27)

The notation 3 | ¢ is here understood to mean the sum over the discrete col-
lection of points of theform (g, r, s) = (kAq, £Ar, mAs), wherek, £, marein-
tegers. The function 8y, is a smoothed approximation to the three-dimensional
Dirac delta-function. The choice of 8, will be discussed in the following sec-
tion.

With F" defined, we are ready to solve the Navier-Stokes equations
(14.15)—14.16) on the cubic lattice of meshwidth h introduced above. Note
that the Navier-Stokes solver does not need to know anything about the com-
plicated time-dependent geometry of the cardiac fibers, since the influence of
those fibers on the fluid is completely described by the forcefield F, which is
defined on the regular cubic lattice of the fluid computation. Thisisthe central
idea of the immersed-boundary method.

There are many different schemes that could be used to integrate the
Navier-Stokes equations. The one that we currently employ isimplicitly de-
fined asfollows:

p (WL + X3, ugDgur) — DOt
=uY®  DFD U4 F", (14.28)
DO.url =0. (14.29)

In (14.28)—(14.29), D° isthe central-difference approximation to v, defined by
D% = (DY, DY, DY) (14.30)

where

¢ (X+he&,) — (X —hey)

0 —
(Dgp)(X) = on

(14.31)

and where {e1, &, €3} isthe standard basis of R3. Thus D° p approximates v p,
and D° - u approximates V - u. The operators D are forward and backward
difference approximationsto 9/9x,, defined as follows:

(X +hey) — ¢(X)

(DFp)(x) = - , (14.32)
(Dy$)(x) = ‘b(x)_‘prfx_he“). (14.33)

3
Thus, the expression Z D, D, , which appearsin the viscous term of (14.28),

a=1
isadifference approximationto the L aplace operator. Similarly, theexpression
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3
Z u, D, which appearsin the convection term, is adifference approximation
=1

tou - V. In thislatter case, the plus or minus sign is chosen to yield upwind
differencing:
U,DF, u, <0,

u,DT =
o u,D;, U, > 0.

(14.34)

The motivation for this choice of sign can be understood by considering the
stability of the difference equation

¢n+l _ ¢n 3
A (14.35)
a=1

which is a difference approximation to the transport (or advection) equation

% +u-Ve¢ =0. (14.36)

With the upwind choice of sign, (14.35) takes the form

n+1 At > n n
P00 = (1= = 3 IGe0l ) 6"x)

a=1
+§i|u”(x)| "(x + he,) (14.37)
h a=1 ¢ ¢ & .
Provided that
3
At Y Ul <h (14.38)
a=1

for al n, x, the righthand side of (14.37) is a weighted average. Because of
this, we can derive the inequality

max 4" ()| < max ¢" ()| (14.39)

which saysthat (14.35) isa stable difference scheme. The condition (14.38) is
known as the Courant-Friedrichs-Lewy or CFL condition.

It should be mentioned that the upwind difference approximation to
u-Vu used aboveisonly first-order accurate and isjust the simplest of avariety
of available upwind schemes. For asecond-order-accurate upwind scheme, see
Bell et a. (1989).

It is important to note that (14.28)—(14.29) provide only an implicit
definition of (u"*t?, p"+1) given u" and F". Surprisingly, these equations are
linear (with constant coefficients)in the unknowns u™! and p™**; the non-
linear terms of the Navier-Stokes equations are present but have been en-
tirely expressed in terms of u". It is therefore natural to use Fourier meth-
ods, implemented by the Fast Fourier Transform (FFT) algorithm, to solve for
(U™, p"t1), see Presset al. (1986).
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Since Fourier methods are most easily applied in the context of pe-
riodic functions, we choose a periodic cube (3—torus) with period L, as the
domain that is occupied by the fluid. The meshwidth h is chosen to be of
theform h = L/N, where N is an integer, and the computational lattice of
points Xj = jh = (j1h, j2h, jsh) is chosen to be the set of points given by
j« €{0,1,...,N -1}, fora = 1, 2, 3. Arithmetic involving the j, is under-
stood to be performed modulo N. To accommodate the simplest form of the
FFT agorithm, N is chosen to be a power of 2.

Thus, the problem we actually consider isthat of a heart immersed in
fluid, the fluid being contained in a cubic box with periodic boundary condi-
tionsimposed. The fluid external to the model heart may be regarded as rep-
resenting (in asimplified way) the tissues of the thorax that are adjacent to the
heart. These tissues must move when the heart walls move, and they therefore
have a (modest) influence on cardiac dynamics. As for the periodic bound-
ary conditions, it should be noted that these are far less restrictive than rigid
walls, since they do alow fluid to flow freely through any face of the cube,
provided only that such fluid must return instantaneously through the opposite
face. Sinceall pointsof a3-torus are equivalent, we do not have to worry about
peculiar behavior near thefacesof the cube, aswewouldif rigid-wall boundary
conditions had been used. The periodic box does, however, enforce aconstant-
volume constraint, which is unwanted in the present context, since the volume
of the heart changes during the cardiac cycle. Thisistaken care of through the
provision of sources and sinks (including an external source/sink). For ease of
exposition, however, we omit the sources and sinks from the present discus-
sion.

The Fourier solution of (14.28) and (14.29) is accomplished as fol-
lows. First we rewrite these equationsin the form

At S At
(I e > by Da) umt 4 ZpOprtl = v, (14.40)
=1

p s P
D°.u™t = 0, (14.41)
where
At S A
v - A Z unDIu" + Alen (14.42)
b= p

The three-dimensional discrete Fourier transform is defined as fol-
lows. Let ¢ (X) be a periodic function with period L in al three space direc-
tions. Only the value of ¢ at mesh points will be used in the following defini-
tion. Let

oK)

é > ¢ exp <—i2nk—|'_x> h3
X
1 . 21
= ijqb(jh)exp(qu.]). (14.43)

The sums in (14.43) are over the N2 points given by j, € {0,1,... , N — 1}
fora = 1,2,3. Herek = (kg, ko, kg) is a vector with integer components.
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Note that (k) is periodic in all the components of k with period N. In the
following, we shall restrict k, to be chosen from the same set as j,, namely
{0,1,---, N —1}.

The inversion formula, which is exact at mesh points, is given by

- 2rik -
¢><x>=Z¢>(k>exp< = X) (14.44)
k
or
: . 2mi |
o => "¢k exp <Wk ~j> . (14.45)
k

By considering displacementsin X, it is easy to find the Fourier transforms of
the difference operators appearing in (14.40)—<14.41). They are

4 . 7k,
——sn=—2,
h2 N

D0 — iﬁsin<%k>. (14.47)

D+(k)D; (k) = (14.46)

In the latter formula, the expression si n(ZW” k) denotes the vector with compo-

nents sin(ZW” ky),a = 1,2, 3. Using these results, we may write the discrete
Fourier transformation of (14.40)—14.41) asfollows:

A" (k) + ipﬂ sin(ﬁk) k) = "(K), (14.48)

h N
i ; 2 nn+1 _
; <s1n <Wk>> 0"k, = 0 (14.49)
where
Ak = 14 AL > (sn ™’ (14.50)
B ’th a=1 N . .

Note that the different values of k are now uncoupled. Thisisthe (usual) ben-
efit of applying a Fourier transformation to a tranglation-invariant problem.
For each k, the system (14.48)—14.49) can be solved for the four un-

knowns (0" k), p"*t1(k)). The solution may be expressed as follows:

(k) — iiht(s'n 2W”k) (k)

k) = (14.51)

Ak) ’
where

i . 2 ~n
E(ska) -V'(k)

-2 6nZky - snZky
oh? N N

k) = (14.52)
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and where A(k) isgiven by (14.50)

The values of k at which sin(2-k) = (0, 0, 0) require special consid-
eration. There are eight such pointsin the k-lattice; they are given by k, = 0
or N/2,fora = 1, 2, 3. At these special values of the wave vector k,(14.49) is
automatically satisfied, and (14.48) reduces to

A (k) = ¥"(k), (14.53)

wherek, € {0,N/2}, « = 1,2,3. Thereis no danger of A(k) being zero,
since A(k) > 1 for al k, see (14.50). Thus, (14.53) determines 0"*(k) at the
eight special wave vectorsk that are under consideration here. Asfor ph+1(k),
its values at these eight wave vectors are completely arbitrary, so we may set
p"t1 equal to zero at these eight wave vectors in order to have awell-defined
pressure.

Once u™*(x) has been determined (by applying theinverse FFT algo-
rithm to 0"+ (k)), the fiber points are moved at the local fluid velocity in this
new velocity field. Thisdone according to thefollowing interpol ation scheme:

X", r, 5 —X"@,r,9)
At

= Y u 08— X"(@. 1. s)h’,
X (14.54)

whichisadiscretization of (14.20). Here ) "y denotesthe sum over the compu-
tational latticex = jh, j, € {0,1,...,N — 1}, a = 1, 2, 3. Note that the same
8-function weights which are here used for interpolation were previously em-
ployed in the application of the fiber force to the computational lattice of the
fluid, see (14.27). The construction of the function 8, will be described in the
next section.

In summary, the immersed-boundary method proceeds as follows.
Given thefiber configuration X"(q, r, s) and the fluid velocity u"(x), begin by
evaluating the fiber forcesf"(q, r, s):

T" = o(DsX"[;q,r, s, nAt), (14.55)
szn

n_

P R DX (14.56)

f" = Dg(T"r"). (14.57)

Next apply the fiber forces to the computational lattice of the fluid:
F') =Y (.1, 98n(X — X"(0. 1. 5) AGAT As
e (14.58)

Then update the fluid vel ocity by solving the following system of equationsfor
(Un+1, pn+1):

untl —yn 3 0 1
p(T + ZUE Dju”) +D pn+
a=1

3
=p Y DfD U4+ P, (14.59)

a=1

DO .u™t =0. (14.60)
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Finaly, interpolate the new velocity field and move the fibers

X", r,5) = X"(@.1.9) + (A > u™ 08 (x — X (g, 1. )h®
X (14.61)

Since X" and u™+! have been found, the time step is complete.

145 CONSTRUCTION OF A SMOOTHED
5-FUNCTION

The function 8, (x), which plays a prominent role in the immersed-
boundary method, isasmoothed approximation to the three-dimensional Dirac
s-function. Let

s (o(2)e(2)., we

where X = (X, X2, X3), and where ¢ has the following properties:
(i) ¢ isacontinuous function.

(i) ¢(r) =0for|r| > 2.

(iii) Forallr,
, 1

j;encﬁ(r -h= j%:dczb(r -h=53 (14.63)

(iv) Foralr,
> = e —j)=0. (14.64)

j

(v) Foradlr,

> (¢ —jn?=cC, (14.65)
j

where C isindependent of r.

We shall show presently that these five postul ates uniquely determine
the function ¢, including the specific numerical value of the constant C, and
hence (via (14.62)) that they uniquely determine the function §,. Before doing
s0, however, we give an informal discussion of the motivation for proposing
these five postulates in the first place.

Continuity of ¢ implies continuity of §,, and this avoids sudden
changes as the fiber points move in space. An aternative strategy (for exam-
ple) would beto let each fiber point interact only with the nearest lattice point,
but this would introduce spurious discontinuities as the fiber points cross the
planes that are equidistant between lattice points.
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As a practical matter, bounded support of the function ¢ is essential
for the efficient operation of the immersed-boundary method. In the interac-
tion steps, where the function &, is used, each fiber point X interacts with all
lattice pointsx that liewithinthe support of §,(x—X). Withthechoice¢(r) =0
for |r| > 2, each fiber point interacts with exactly 4° = 64 lattice points, al-
ready a substantial number. From this standpoint, the support of ¢ should be
assmall aspossible. In postulate (ii), we have made the smallest choice that is
consistent with the other postulates.

The third postulate (14.63) immediately implies that, for all r

d e —j=1 (14.66)
j

When §j, is used for interpolation, this means that the interpolation of constant
functions is exact; when it is used for spreading the force to the fluid lattice,
this implies conservation of momentum: that the total force is not atered by
the spreading process. These considerations do not, however, explain why we
need to impose the stronger conditions given by (14.63).

The motivation for these stronger conditions comes from a peculiar
property of the central difference operator D° that is used in this work as an
approximation to the vector differential operator V. Of course, V¢ = 0 =
¢ =constant, but the analogous statement is not true for D. Asan example,
suppose ¢ (jh) = (—=1)'1, independent of j, and j3. Thisfunction is certainly
not constant, it oscillates in the x; direction from one lattice point to the next,
but D% = 0 anyway. Theeffect of thisisthat spurious|ong-range oscillations
can be introduced into the computed solution by the action of localized forces
unlessthe conditions (14.63) areimposed. These conditions guarantee that the
force field F will have a discrete Fourier transform F(k) that vanishes for any
wave vector k having any component k,, equal to N/2.

The fourth postulate, (14.64), when combined with (14.66), guaran-
teesthat theinterpolation scheme based on &, will be exact for any linear func-
tion. When 8y, is used for spreading the forceto thefluid lattice, these equations
guarantee conservation of angular momentum: that the correct total torqueis
applied to the fluid by each element of the fiber force.

Thefifth postulate, (14.65), is motivated an inequality which follows
from it by an application of the Schwarz inequality:

Y er1—jerz—j) <C (14.67)
j

for all r1, ro. Expressions like the one on the lefthand side of this inequality
arise when a fiber quantity is applied to the fluid lattice and then interpolated
back to thefiber points According to (14.66) and itscorollary (14.67), theinflu-
ence of afiber point onitself during such an operation is constant, independent
of the location of that fiber point with regard to the fluid lattice, and the influ-
ence of onefiber point on another isno bigger than theinfluence of afiber point
on itself.

We now turn to the actual determination of the function ¢. First note
that (14.64) can be simplified through the use of (14.63). Theresult is

Y e —j=r. (14.69)
i
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Forr € [0, 1], (14.63), (14.68), and (14.65) read as follows:

or —2)+¢(r) = % (14.69)
pr -1 +o0r+1 = % (14.70)
2000 —2)+¢0r -1 —op(r+1) = r, (14.71)

@ =22+ @ —1)*+ @M’ + (@ +1)* = C. (1472

where we have made use of the postulate that ¢(r’) = Ofor |r’/| > 2. The
constant C can now be determined by settingr = 0, and noticing that ¢ (—2) =
0. Withr = 0, (14.69) yields ¢(0) = 3, (14.70)(14.71) imply ¢(-1) =
¢(1) = 1, and (14.72) therefore states that C = 3.

With C known, we can solve for the function ¢ on [0, 1]. Equations
(14.69)—14.71) can be used to express ¢ (r — 2), ¢(r — 1), and ¢(r + 1) in
termsof ¢ (r). Theseresults can be substituted with (14.72) to yield aquadratic
equation for ¢ (r). This eguation has two solutions, and it might seem that the
choice could be made arbitrarily and separately for eachr e [0, 1], but the
postulate of continuity together with the requirement that ¢ (0) = % (derived
above) determines uniquely which solution must be chosen. Once ¢ isknown
on [0, 1], it can be extended to [—2, 2] by using the abovementioned expres-
sionsfor ¢p(r —2), ¢(r — 1), and ¢(r + 1) interms of ¢ (r). Theresultis as

follows:
_ _ 2
3 2|r|+,/é+4|r| 4y , <1
¢p)=1 5-2Ir| —/=7+12Ir| — 4r2
8 » l=Irl=2 (1473
0, 2<r|.

Notethat ¢ isan evenfunction, and that not only ¢ but alsoitsderivativeiscon-
tinuous. Thislast fact isa pleasant surprise, since the continuity of the deriva-
tive of ¢ was not one of our postulates.

This completes the construction of ¢ and hence of §,. The function ¢
isplotted in Figure 14.1.

14.6 THREE-DIMENSIONAL HEART MODEL

Theforegoing sections have described ageneral numerical method for
solving the equations of motion of aviscousincompressiblefluid containing an
immersed system of elastic or contractile fibers. Our purpose hereisto apply
that method to the heart. To do so, we must first create an arrangement of fibers
in space that mimics the actual layout of muscle fibersin the heart wall and of
collagen fibers in the heart-valve ledflets. Elastic parameters, time dependent
in the case of the muscle fibers, must also be specified.

We shall not attempt a complete technical description of the heart
model here, but the general principles on which it is based will be broadly de-
scribed. Many of these principles werelaid down in the pioneering anatomical
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Figure 14.1. One-dimensional delta function.

research of Carolyn Thomas (Thomas 1957), who has given a global qualita-
tive description of the layout of muscle fibersin the left and right ventricles of
the mammalian heart. We have also been influenced by Streeter and his col-
leagues (Streeter, Jr. et a. 1969; Streeter, Jr. et al. 1978) who have made de-
tailed quantitative measurements concerning the distribution of fiber anglesin
the left ventricular wall.

The two ventricles of the heart together form a somewhat conical
structure, with a base and an apex. In the body, the axis of this cone slopes
downward, forward, and leftward as it passes from base to apex. When an
anatomical discussion is confined to the heart itself, however, it is customary
to think of this axis as though it were vertical, with the base at the top and the
apex below. Inthisviewpoint, which isthe one that we shall adopt, the baseis
ahorizontal plane at the top of the venticles. All four valveslie (more or |ess)
within the plane of the base. Above the base one finds the structures to which
the ventricles are attached: theleft and right atria, the ascending aorta, and the
main pulmonary artery.

The conical description of the ventricles that we have given would
seem to imply that the ventricles are widest at the base, but this is not quite
correct. In fact, there is a plane paralel to the base and dlightly below it in
which the ventricles achieve their maximum diameter. This is known as the
equatorial plane of the heart.

A horizontal cross section of the heart cutting through theleft and right
ventricles reveals striking asymmetry. The left ventricle is thick walled and
roughly circular, whereastheright ventricleisthin walled and crescent shaped.
These differences are related to the fact that the pressure devel oped by the left
ventricle is considerably greater (by afactor of about 6) than that of the right
ventricle, though the two sides of the heart pump equal volumes of blood per
unit time.

According to Thomas (1957), the muscle fibers of the cardiac ventri-
clesbegin and end at the valve rings, in the plane of the base of the heart. She
describes the fibers as being organized in layers. Each layer has two sheets:
one on which the fibers spiral away from the base and another on which they
return. The following is a somewhat simplified description of the layers that
Thomas found.

Outer/inner layer: The outer sheet of thislayer surrounds both ven-
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tricles, and theinner sheet formstheinnermost lining of theleft ventricle. The
two sheets meet at the apex of the heart. The fibers of the outer/inner layer
have very little swirl. Almost like the rays of a cone, they run nearly directly
to the apex aong the outer sheet, penetrate the left ventricular wall at the apex
(where the wall is very thin), and run amost directly back to the base of the
heart aong the inner sheet.

Right-inner/left-outer layer: This layer is atypical in that its two
sheets lie side by side instead of one inside the other. One sheet formsthe in-
ner lining of theright ventricle and the other surroundstheleft ventricular wall.
The two sheets coincide along the right-ventricular surface of the interventric-
ular septum. On the right-ventricular sheet of this layer, fibers leave the base
and spiral clockwise (viewed from above). In the septum, they make a smooth
transition to theleft-ventricul ar sheet, after which they spiral counterclockwise
(viewed from above) around the left ventricle back to the base of the heart.

Internal left-ventricular layers. These layers make up the bulk of
the left-ventricular wall. They are nested, one inside another. As before, each
layer has two sheets. Fibers spiral away from the base along the outer sheet,
make a smooth transition to the inner sheet where the two sheets meet, and
spiral back to the base along the inner sheet.

Although Thomas gives a qualitative discussion of how the fibersrun
(as summarized above), she does not enunciate a mathematical principle that
would determinethefiber paths once thefiber surfacesare known. Suchaprin-
ciple does, however, emerge from the work of Streeter, Jr. et a. (1978), who
made detailed measurements of fiber angle in the left ventricular wall.

According to Streeter and his colleagues, the fibers follow geodesic
curves on the fiber surfaces. Since the left ventricle has (approximate) axial
symmetry, the term “fiber surface” has a well-defined meaning: it is the sur-
face of revolution that one gets by rotating afiber about the axis of symmetry.
Whether the fibers are geodesi cs on these surfaces or not can be tested by using
Clairaut’ stheorem, that ageodesic on asurface of revolution hasr cos¢ = con-
stant, wherer isthe radial coordinate (in cylindrical coordinates) and ¢ is the
angle between the tangent direction to the geodesic and the circumferential (8)
direction. What Streeter and his colleagues actually did was to determine loci
of constant r cos¢, and then to check that these loci were tangent to the fibers.
Satisfactory agreement was found, confirming the principle that the fibers are
geodesics on the fiber surfaces.

The general method that we use to construct the initial configuration
of themodel ventricles may now be described. First, we define doubl e-sheeted
surfaces on which the fibers lie (see below). In typical cases, the two sheets
meet along a common boundary curve somewhere in the interior of the heart
wall. The surfaces are generally not tangent where they meet, so the only way
that afiber can make asmooth transition from the sheet to the other is by being
locally tangent to the common boundary curve of thetwo-sheeted surface. This
defines an initial direction for each fiber at the common boundary curve, and
the fiber can then be continued as a geodesic in both directions along each of
the two sheets, until it encounters the valve rings at the base of the heart.

An exception the above description occurs in the case of the right-
inner/left-outer layer, where the two sheets of the layer lie side by side and
actually share a common surface along the right-ventricular face of the inter-
ventricular septum. We think of the transition between the two sheets as be-
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ing made at the vertical midline of the common surface, and we assume that
the fibers are horizontal there (i.e., perpendicular to the midlineg). This defines
an initial direction, and the fibers can then be contained in both directions as
geodesics along the two sheets until they encounter the valve rings at the base
of the heart as before.

Below the equator, of the heart, we take all of the surfaces to be por-
tions of cones, although not necessarily cones with circular cross section. In
the case of the outer/inner layer and of the right-inner/left-outer layer these
conical surfaces extend all the way to the apex of the heart, which is also the
common apex of the two cones forming the two sheets of the layer. For thein-
terior layersof theleft-ventricular wall, however, we use truncated cones, with
the two sheets of the layer meeting along the common curve where this trun-
cation occurs. (Thisis aso the curve aong which the fibers make a smooth
transition from one sheet to the other.)

All of these conical surfaces must somehow be continued above the
equator of the heart, so that they can connect with valve rings in the plane of
the base. This process generally involves a bifunction, since a given sheet of
agiven ventricular layer has a cross section which is a single closed curve in
the equatorial plane but which becomes apair of closed curvesin the plane of
the valve rings (each ventricle has both an inflow and an outflow valve).

To deal with thissituation, we haveintroduced afairly general method
for constructing a surface whose cross-section in the plane z = z;, consists
of ny given rings (with nonoverlapping interiors) and whose cross section in
the plane z = z, consists of n, given rings (with non-overlapping interiors).
By “ring” we just mean a smple closed curve. Note that n;, and n, may be
different. If they are, the topology of the cross section necessarily changes as
we pass from z; to z,

Let the np ringsin the plane z = z,, with p = 1, 2, be given in the
form g (x,y) = 0, i = 1---ny,, with gpi(x,y) < O denoting the interior
of the ring and with g, (x, y) > 0 denoting its exterior. Since the interiors
are nonoverlapping, any point in the plane belongs to at most one of them. It
follows that the function

Gp(, Y) =[] o,y
i=1

has the property that G,(x, y) < 0 onthe union of the interiors of the various
ringsin plane p, whereas G(x, y) > 0 on the intersection of the exteriorsin
that plane.

Now consider the surface

Z— 7
-7

Z
0=0G(,y,2 =Gi1(x,y) . + Gao(x,y)

2

Zp — Z
This has the required cross section in the planesz = z and z = 2z, and
we can hope that it defines a plausible means of interpolating between these
cross sections. Unfortunately, this is not guaranteed: sometimes the surface
G(X, Yy, 20 = 0 has two disconnected components and makes no connection at
all between z = z and z = z,. We have managed to avoid this possibility in
the construction of the heart, and we have therefore been able to use thisin-
terpolation scheme to connect the ventricular fiber surfacesto the valve rings.
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The surfaces G(x, y, z) = 0do not join smoothly with the conical surfacesthat
we have constructed bel ow the equator of the heart (the surface normal isdis-
continuous at the equator), but there is no difficulty continuing ageodesicin a
uniqueway across such an edge, and thislack of smoothnesstendsto disappear
in any case as the heart is pressurized.

The construction that we havejust described for determining asurface
connecting specified ringsin two given planesis also used to build the atria of
the model heart. Here, the rings in question are those of the atrioventricular
valves and those at which the various veins connect to the atria. Finaly the
arteriesand veinsthat connect to the heart areinitially defined ascylinderswith
hemispherical caps, on which geodesic fibers are wrapped.

Since the model vessels have blind ends, it is necessary to provide
sources and sinks in the hemispherical caps, to simulate the connection of the
heart to therest of thecirculation. At present, each such sourceand sink is con-
nected to a pressure reservoir through afixed hydraulic resistance. These pro-
vide appropriate pressure loads for the model heart. An external source/sink
allows for changes in volume as the heart fills and gjects.

The valves of the model heart are also constructed out of fibers. In
the case of the atrioventricular valves this is done in much the same style as
has been previously described: by defining rather arbitrary initial surfacesand
then wrapping fibers as geodesics on these surfaces. For the arterial valves,
however, we have found aless arbitrary procedure in which the both the fibers
and the surfaces are simultaneously defined by solving a system of partial dif-
ferential equations. These equations describe the mechanical equilibrium of a
one-parameter family of fibers under tension, and their numerical solution de-
termines the closed configuration of the arterial valves (Peskin and McQueen
1994). A futuregoa isto formulate and solve partial differential equationsfor
the fiber architecture of the heart as a whole. For preliminary results in this
direction, see (Peskin 1989).

Finally, we have to consider the elasticity of the model fibers. Let R
be the length of ashort fiber segment and let T be the tension in that segment.
We use a nonlinear length-tension relationship of the form

R— Rp\?
(BB ren

0, R =< Ro,

where Ry istherest length of the segment and § isa stiffness parameter. Both
Ry and S may be time dependent to simulate active, contractile muscle.

Thetime dependence Ry and § can be programmed differently in dif-
ferent parts of the heart, in such away as to simulate the waves of activation
and deactivation that propagate through the cardiac tissue and coordinate the
heartbeat. At present, however, we do this only in a rudimentary way: First
the atrial muscle contracts synchronously, and then, after arealistic delay, the
ventricular muscle contracts synchronously. This procedureignoresthe delays
that occur within the atria or within the ventricles.

The construction of the model heart is shown in Figures 14.2 through
14.11, and its dynamics are depicted in Figures 14.12 through 14.19.
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Figure 14.2. Computer model of the heart and the nearby great vessels. The heart is
viewed from the front, so the left ventricle is at the lower right, and the thin-walled
right ventricleis at the lower left. The vertical vessels at the top of the figure from left
to right are the pulmonary artery (in front), the aorta, and two of the four pulmonary
veins. The pulmonic and aortic valves (outflow valves of the right and left ventricles,
respectively) can be seen within the pulmonary artery and the aorta, and the tricuspid
valve (inflow valve of theright ventricle) can just barely be seen at the top of the right
ventricle. The mitral valve (inflow valve of the left ventricle) is obscured by the dense
left-ventricular wall. Theleft atrium is visible below the pulmonary veins, and the | eft-
atrial appendage (auricle) is prominently seen hanging over the left-ventricular wall at
theright side of thefigure. Theright atrium isbehind the aortaand cannot be seeninthis
view. Themodel veinsand arteries have blind ends, but sources and sinks are provided,
with properties chosen to establish realistic pressure loads on the model heart.
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Figure 14.3. The outer/inner layer of the model ventricles. Again, the heart is viewed
fromthefront, so theleft ventricleison theright side of thefigure. Thefour valverings
at the top of the figure form the base of the heart. The larger rings are the locations at
which the atriajoin the ventricles, and the smaller rings are the locations at which the
arteries are attached. The fibers of the outer/inner layer form the outermost layer of the
ventricles as well as the innermost layer of the eft ventricle only.

Figure 14.4. Theright-inner/left-outer layer of the model ventricles. The fibers of this
layer form theinner lining of theright ventricle and the outer lining of theleft ventricle.
Viewed from the base, these fibers follow afigure-eight trajectory, spiraling clockwise
around theright ventricle and then counterclockwise around theleft ventricle. Thetran-
sition is made on the right-ventricular face of the interventricular septum.
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Figure 14.5. The internal left-ventricular layers of the model heart are shown in this
and the following three figures. The smaller of the two rings at the top of each figureis
the aortic-valve ring and the larger is the mitral-valve ring. Each layer is composed of
two sheets of fiberswhich meet at the two valverings and a so at athird ring that forms
the lower boundary of that layer. The fibers are tangent to thislower ring and therefore
make a smooth transition there from one sheet to the other. The layers are nested, so
that both sheets of the smallest layer lie between the two sheets of the next larger layer
and so on. Both sheets of the largest of theseinternal left-ventricular layerslie between
the left-ventricular parts of the outer/inner layer and the right-inner/left-outer layer.

Figure 14.6. Aninternal left-ventricular layer (see legend of Figure 14.5).
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Figure 14.7. Aninternal left-ventricular layer (see legend of Figure 14.5).

Figure 14.8. Aninternal left-ventricular layer (see legend of Figure 14.5).
147 SUMMARY AND CONCLUSION

This chapter has described the mathematical formulation of the fiber-
fluid problem of cardiac mechanics, a technique known as the immersed-
boundary method which is suitable for the numerical solution of that problem,
and adetailed three-dimensional model of the heart for use in conjunction with
the immersed-boundary method.

Both the mathematical formulation and the numerical method de-
scribed in this chapter are based on the notion that the blood, valves, and mus-
cular heart walls can all be modeled within a common framework. Thus, we
think of the cardiac tissues as though they were a part of the fluid, in which,
however, there are additional tissue stresses besides those that would normally
be present in afluid. Alternatively, one might say that we think of the blood as
apart of the heart, where the stesses that characterize the muscular walls and
the elastic heart-valve leaflets happen to be zero.

The computational consequence of this point of view isthat we solve
the fluid equations on afixed cubic lattice, unencumbered by the complicated
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Figure 14.9. Inflow structures of the model heart. At the left side of the figure one
seesthe superior venacava (above), theinferior venacava (bel ow), and theright atrium
between them. The right atrium empties through the tricuspid valve, which is seen just
to the right of the inferior vena cava. The corresponding structures on the left side of
the heart are seen on the right side of the figure. They are the four pulmonary veins,
of which two are visible at the top, the left atrium, and the mitral valve. The left-atrial

appendage (auricle) is seen at the far right side of the figure.

Figure 14.10. The four valves of the model heart. The outflow (aortic and pulmonic)
valves are seen above and the inflow (mitral and tricuspid) valves are seen below. Note
that theinflow valves are supported by fans of chordae tendineae, which insert into pap-
illary muscles, two for the mitral and three for the tricuspid valve. The outflow valves,

by contrast, are self-supporting.
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Figure 14.11. Detail of an outflow (aortic or pulmonic) valve of the model heart.

Figure 14.12. Cutaway view of the model heart during early ventricular diastole (re-
laxation). In this and the figures that follow, the heart model is shown in action. Fluid
flow is represented by streaklines, which were computed by tracing the trajectories of
particlesimmersed in the flow. The current position of each such particle is shown as
asmall blob, and the recent past positions are shown by afading tail. In this particular
figure, only the markers that were initially in the atria are shown. Note the ring vortex
visible in the left ventricle (right side of the figure) below the mitral valve.
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Figure 14.13. Cutaway view of the model heart during early ventricular diastole show-
ing markers that were initially in the ventriclesin addition to the atrial markers shown
previously in Figure 14.12.

Figure 14.14. Cutaway view of the model heart during ventricular systole (contrac-
tion). Only markers that wereinitialy in the ventricles are shown.
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Figure 14.15. Flow pattern in the model right ventricle during early ventricular dias-
tole.

e

———

Figure 14.16. Flow patternin the model right ventricle during late ventricular diastole.
Note the prominent vortex that formsin the right ventricle during diastole.
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Figure 14.17. Flow pattern in the model right ventricle during ventricular systole.

Figure 14.18. Detail of the mitral and aortic valves of the model during ventricular
diastole.
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Figure 14.19. Detail of the mitral and aortic valves of the model during ventricular
systole.

time-dependent geometry of the heart and itsvalves. The spatial configuration
of those tissues istracked separately, by means of a collection of tissue marker
pointsthat move at thelocal fluid velocity while simultaneously exerting force
on the fluid in which they are immersed. The tissue-fluid interaction is medi-
ated by a smoothed approximation to the Dirac §-function, which is used both
in spreading the fiber forces out onto the computational lattice of the fluid and
also in the interpolation of the fluid-velocity field to the marker points of the
cardiac tissue fibers.

The computer model that has been created in thisway isnow ready for
use in applied studies concerning the normal and pathological physiology of
the heart, and also as atest chamber in the design of prosthetic cardiac valves.
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