
14. FLUID DYNAMICS OF THE
HEART AND ITS VALVES

Charles S. Peskin and David M. McQueen

14.1 INTRODUCTION

Blood is a viscous incompressible fluid which is propelled through the
arteries, capillaries, and veins of the circulation by a collection of elastic and
contractile fibers known as the heart. The left side of the heart receives bright
red oxygenated blood from the lungs, and it pumps this blood into the aorta
through which it is distributed to all of the tissues of the body, including the
heart muscle (via the coronary arteries). As it flows through these various tis-
sues, part of the oxygen is removed, and the color changes from bright red to
bluish red. At the same time, carbon dioxide that has been generated by tissue
metabolism is picked up by the blood. The deoxygenated blood returns to the
right side of the heart, which pumps it through the pulmonary arterial tree to
the lungs, where the carbon dioxide is removed and the blood becomes once
more saturated with oxygen.

Each side of the heart has two chambers, an atrium and a ventricle.
Each ventricle has an inflow (atrioventricular) and an outflow (arterial) valve.
The valves are primarily passive structures that move in response to the flow
of blood, although the atrioventricular valves are supported by muscles that
prevent prolapse when those valves are closed. Both types of valves are con-
structed in such a way that they open freely to allow forward flow but close
to prevent backflow. When the ventricles are relaxed (diastole), their inflow
valves are open and their outflow valves are closed: during this time period the
ventricular pressures are low, and each ventricle fills with blood from the cor-
responding atrium. When the ventricles contract (systole), the inflow valves
close first, and then the outflow valves open as the ventricular pressures rise.
Once the outflow valves are open, each ventricle ejects blood into its corre-
sponding artery.

The familiar heart sounds are associated with the closure of the valves
and the subsequent vibration of the cardiac and arterial chambers. The lower
pitch “Lub” is associated with the nearly synchronous closure of the two atri-
oventricular valves, and the higher pitched “Dup” is associated with the nearly
synchronous closure of the two arterial valves. Valve opening is normally
silent but may produce sounds in disease states. Heart murmurs are associated
with turbulence that may be generated by jets of fluid that form when valves
fail to open fully or fail to close properly.

For further detail concerning the physiology of the heart, see Guy-
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ton (1991). The anatomy of the heart will be described in Section 14.6 of the
present chapter.

Our concern here is with the mathematical formulation and computer
solution of the coupled equations of motion of the blood, the muscular heart
walls, and the flexible heart valve leaflets. The goal of the work described
herein is to provide a realistic computer model of the heart which can be used
in applied studies concerning normal cardiac physiology, diseases affecting the
mechanical function of the heart and its valves, and the computer-assisted de-
sign of prosthetic cardiac valves. For examples of such studies conducted in
an earlier, two-dimensional model of the left heart only, see McQueen et al.
(1982); McQueen and Peskin (1983); McQueen and Peskin (1985); Meis-
ner et al. (1985). The present chapter, however, is concerned with a three-
dimensional whole-heart model (Peskin and McQueen 1992; Peskin and Mc-
Queen 1993; Peskin and McQueen 1995).

14.2 IMMERSED ELASTIC FIBERS IN A VISCOUS
INCOMPRESSIBLE FLUID

In this section we formulate the fiber-fluid problem of cardiac dynam-
ics. The formulation that we give involves both fluid dynamics and elasticity
theory, coupled together in an unusual way. For background in these two fields,
see Chorin and Marsden (1993); Green and Adkins (1970).

Consider an idealized composite material made of elastic fibers em-
bedded in a viscous incompressible fluid. The fibers occupy zero volume frac-
tion, and they have no mass, yet they are so finely divided that a continuum
description of the material may be used. The fibers stick to the fluid and move
at the local fluid velocity u. At each point of the fiber-fluid composite there is
a well-defined fiber direction given by the unit vector τ .

Let (q, r, s) be curvilinear coordinates chosen in such a way that a
fixed value of the triple (q, r, s) denotes a material point, and also in such a
way that a fixed value of the pair (q, r) designates a fiber. Let

x = X(q, r, s, t) (14.1)

be the position at time t of the material point that carries the label (q, r, s). Then
the unit tangent to the fibers is given by

τ = ∂X/∂s

|∂X/∂s| . (14.2)

Let T (q, r, s, t) be the fiber tension, in the sense that T dqdr is the force trans-
mitted by the fibers corresponding to the patch dqdr of the (q, r) parameter
plane. This force points in the fiber direction ±τ .

Since the fibers are elastic, the fiber tension is related to the fiber strain,
which is determined by |∂X/∂s|. We use a generalized Hooke’s law of the form

T = σ(|∂X/∂s|; q, r, s, t). (14.3)

Note in particular the explicit time dependence of the stress-strain relation
(14.3). It is this explicit time dependence that makes it possible for the heart
to act as a pump and to do net work on the blood over a cardiac cycle.
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We now determine the force applied by the fibers to the fluid in which
they are immersed. Consider the collection S of fiber segments defined by
(q, r) ∈ �, s1 ≤ s ≤ s2, where � is an arbitrary region of the (q, r) parameter
plane, and where s1 and s2 (with s1 < s2) are arbitrary values of the parameter
s. Let F denote the total force applied by the fiber segments in S to the fluid.
Then −F is the force of the fluid on S. The only other forces acting on S are
the fiber forces transmitted across the surfaces s = s1, and s = s2.

Note that the total force acting on S must be zero, since the fibers are
massless. (As described above, all of the mass is carried by the fluid, which
permeates the same space that is occupied by the fibers.) This yields the equa-
tion

0 = −F +
∫
�

(Tτ ) dq dr

∣∣∣∣s=s2

s=s1

(14.4)

or, by the fundamental theorem of calculus,

F =
∫ s2

s1

∫
�

∂

∂s
(Tτ ) dq dr ds. (14.5)

Let

f = ∂

∂s
(Tτ ). (14.6)

Since s1, s2 and � are arbitrary, (14.5) shows that f is the density (with respect
to the measure dqdrds) of the force applied by the fibers to the fluid in which
they are immersed.

For the sake of interpretation, one may expand the derivative in (14.6)
to obtain

f = ∂T

∂s
τ + T

∂τ

∂s
. (14.7)

Note that these two terms are orthogonal: τ is the unit tangent to the fibers, and
∂τ/∂s is the vector whose direction defines the principal normal to the fibers.
There is no component of f in the binormal direction.

In the following, we shall need an expression for the force density in
Cartesian coordinates. That is, we require a vector field F(x, t) such that∫

V
F(x, t) dx =

∫
X−1

(V,t)
f(q, r, s, t) dq dr ds, (14.8)

where V is an arbitrary region in the physical space, and where

X−1(V, t) = {(q, r, s) : X(q, r, s, t) ∈ V } (14.9)

This can be achieved by setting

F(x, t) =
∫

f(q, r, s, t)δ(x−X(q, r, s, t)) dq dr ds,
(14.10)
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in which the integral extends over the entire (q, r, s) parameter space, and in
which δ(x) is the three-dimensional Dirac delta function. To recover (14.8)
from (14.10), integrate over the volume V , interchange the order of integration,
and recall that ∫

V
δ(x−X) dx =

{
1,X ∈ V,

0,X 6∈, V
(14.11)

Note that F(x, t) = 0 unless the point x happens to be within the region that is
occupied by the fibers at time t .

Equation (14.10) is not the only way to write the relationship between
F and f. Another possibility, which follows directly from (14.8), is

F(X(q, r, s, t), t)J (q, r, s) = f(q, r, s, t), (14.12)

where

J (q, r, s) =
(
∂X
∂q
× ∂X
∂r

)
· ∂X
∂s

(14.13)

is the Jacobian of the map (q, r, s) → X(q, r, s, t). J is independent of t be-
cause the fluid is incompressible. The advantages of using the Dirac delta func-
tion as in (14.10) are that it avoids the introduction of J , that it gives an explicit
formula for F(x, t), and that it generalizes easily to the situation in which the
fibers are confined to a (moving) surface embedded in the three-dimensional
space, as in the case of a fiber-reinforced heart-valve leaflet. To obtain this
generalization, we simply drop one of the two parameters (q or r) that label
the fibers. Then the surface in question is given at any particular time t by an
equation of the form x = X(r, s, t), and we have

F(x, t) =
∫

f(r, s)δ(x−X(r, s, t)) dr ds. (14.14)

In this expression there are only two integrals, but the delta function is still
three-dimensional, so F(x, t) is singular like a one-dimensional delta func-
tion. Despite this important difference between the relations given by (14.10),
wherein F is finite, and (14.14), the use of the Dirac delta function provides a
unified framework for modeling the thick heart walls and the thin heart-valve
leaflets.

14.3 EQUATIONS OF MOTION

Our purpose here is to state the equations of motion of the fiber-fluid
system described in the previous section. These equations are as follows

ρ

(
∂u
∂t
+ u · ∇u

)
= −∇ p + µ∇2u+ F, (14.15)

∇ · u = 0, (14.16)
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F(x, t) =
∫

f(q, r, s, t)δ(x−X(q, r, s, t)) dq dr ds, (14.17)

∂X
∂t
(q, r, s, t) = u(X(q, r, s, t), t) (14.18)

=
∫

u(x, t)δ(x−X(q, r, s, t)) dx, (14.19)

f = ∂

∂s
(Tτ ), (14.20)

T = σ

(∣∣∣∣∂X
∂s

∣∣∣∣ ; q, r, s, t

)
, (14.21)

τ = ∂X/∂s

|∂X/∂s| . (14.22)

Equations (14.15)–(14.16) are the fluid equations, (14.20)–(14.22) are
the fiber equations, and (14.17)–(14.19) are the interaction equations of the
fiber-fluid system.

Note that the fluid equations are in Eulerian form: they involve sev-
eral unknown functions of (x, t), where x = (x1, x2, x3) are fixed Cartesian
coordinates and t is the time. These unknown functions are the fluid velocity,
u(x, t), the fluid pressure, p(x, t), and the Eulerian fiber force density F(x, t).
The constants ρ and µ are the density and viscosity of the fluid. Equations
(14.15)–(14.16) are the familiar Navier-Stokes equations of a viscous, incom-
pressible fluid. The only novel feature is the use of the applied-force density
F(x, t) for the representation of the fiber force.

The fiber equations derived in Section 14.2 are in Lagrangian form:
they involve several unknown functions of (q, r, s, t), where (q, r, s) are mov-
ing curvilinear coordinates attached to the material points of the fibers. These
unknown functions are the fiber configuration X(q, r, s, t), the unit tangent to
the fibers τ (q, r, s, t), the fiber tension T (q, r, s, t) and the Lagrangian form of
the fiber force density f(q, r, s, t). The fiber equations may be used to deter-
mine the fiber force density at any given time t from the fiber configuration
at that same time t . This is done by substituting (14.21)–(14.22) into (14.20).
The fact that the fiber forces can be determined from the fiber configuration is
an expression of the elasticity of the fibers.

The interaction equations connect the Lagrangian and Eulerian vari-
ables. Note that both of the interaction equations take the form of integral
transformations in which the kernel is δ(x−X(q, r, s, t)). In (14.17) the integra-
tion (dqdrds) is over the fiber parameter space, but in (14.19) the integration
(dx) is over the physical space. The latter may be thought of as an integration
over the fluid, since the volume fraction occupied by the fibers is zero (see Sec-
tion 14.2).

The first of the interaction equations (14.17) has already been dis-
cussed in Section 14.2. The second interaction equation (14.18)–(14.19) is the
no-slip condition of a viscous fluid. In the present context, it states that the
fibers move at the local fluid velocity, and it serves as an equation of motion
for the fibers, not as a constraint on the fluid motion, since the motion of the
fibers is unknown.
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The structure of (14.15)–(14.22) is as follows. At any given time
t , the state of the system is determined by the fiber configuration X( , , , t)
and the fluid velocity u( , t). Given these quantities, ∂X/∂t may be found di-
rectly from (14.18)–(14.19), and ∂u/∂t may be determined as follows. First
use (14.21) and (14.22) to find T and τ , substitute these results into (14.20) to
find f, and then use (14.17) to find F. With F known, the Navier-Stokes equa-
tions, (14.15)–(14.16) may be used to find ∂u/∂ t . (As is well known, this re-
quires the elimination of p through the solution of a Poisson equation.) In ef-
fect, then, (14.15)–(14.22) are a first-order system in the state variables X and
u. The numerical solution of this system will be discussed in the following
section.

14.4 THE IMMERSED-BOUNDARY METHOD

Equations (14.15)–(14.22) are solved by the immersed-boundary
method, see Peskin and McQueen (1992); Peskin and McQueen (1993); Pe-
skin and McQueen (1995), and references therein.

The philosophy underlying the immersed-boundary method is that the
fluid equations (14.15)–(14.16), which are in Eulerian form, should be dis-
cretized on a fixed cubic lattice, whereas the fiber equations (14.20)–(14.22),
which are in Lagrangian form, should be discretized on a moving collection
of points that need not coincide with the lattice points of the fluid equations.
This immediately raises the question of how to handle the fiber-fluid interac-
tion (14.17)–(14.19), a question which will be answered below through the in-
troduction of a smoothed approximation to the Dirac delta function.

Let time proceed in discrete steps of duration1t , and use a superscript
as the time step index: Xn(q, r, s) = X(q, r, s, n1t). Let a discrete collection
of fibers be chosen, e.g., (q, r) = (k1q, `1r), where k and ` are integers, and
let each fiber be represented by a discrete collection of points: s = m1s, where
m is an integer. It is convenient to define the fiber tension and the unit tangent
τ at the “half-integer” points given by s = (m + 1

2 )1s.
This is done as follows. For any function φ(s), let

(Dsφ)(s) =
φ(s + 1s

2
)− φ(s − 1s

2
)

1s
. (14.23)

Then make the definitions

T n = σ(|DsXn|; q, r, s, n1t), (14.24)

τ n = DsXn

|DsXn| , (14.25)

both of which hold for s = (m+ 1
2 )1s. Finally, we can use T n and τ n to define

fn at the points s = m1s:

fn = Ds(T
nτ n) (14.26)

Note that fn is defined at the same values of s as Xn . Equations (14.24)–(14.26)
are discrete approximations to (14.21), (14.22), and (14.20), respectively.
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Let the fluid velocity and pressure be defined on the cubic lattice of
points x = jh, where h is the meshwidth and j = ( j1, j2, j3) is a vector with in-
teger components. Our next task is to construct a force-field F, defined on this
cubic lattice, to represent the effect of the fibers in the fluid-dynamics compu-
tation. This done using (14.17) as a guide. The formula for F is as follows:

Fn(x) =
∑
q,r,s

f n(q, r, s)δh(x−Xn(q, r, s))1q1r1s,
(14.27)

The notation
∑

q,r,s is here understood to mean the sum over the discrete col-
lection of points of the form (q, r, s) = (k1q, `1r,m1s), where k, `,m are in-
tegers. The function δh is a smoothed approximation to the three-dimensional
Dirac delta-function. The choice of δh will be discussed in the following sec-
tion.

With Fn defined, we are ready to solve the Navier-Stokes equations
(14.15)–(14.16) on the cubic lattice of meshwidth h introduced above. Note
that the Navier-Stokes solver does not need to know anything about the com-
plicated time-dependent geometry of the cardiac fibers, since the influence of
those fibers on the fluid is completely described by the forcefield F, which is
defined on the regular cubic lattice of the fluid computation. This is the central
idea of the immersed-boundary method.

There are many different schemes that could be used to integrate the
Navier-Stokes equations. The one that we currently employ is implicitly de-
fined as follows:

ρ
(

un+1−un

1t +∑3
α=1 un

αD±α un
)
−D0 pn+1

= µ∑3
α=1 D+α D−α un+1 + Fn, (14.28)

D0 · un+1 = 0. (14.29)

In (14.28)–(14.29), D0 is the central-difference approximation to∇, defined by

D0 = (D0
1, D0

2, D0
3) (14.30)

where

(D0
αφ)(x) =

φ(x+ heα)− φ(x− heα)
2h

. (14.31)

and where {e1, e2, e3} is the standard basis of R3. Thus D0 p approximates ∇ p,
and D0 · u approximates ∇ · u. The operators D±α are forward and backward
difference approximations to ∂/∂xα, defined as follows:

(D+α φ)(x) =
φ(x+ heα)− φ(x)

h
, (14.32)

(D−α φ)(x) =
φ(x)− φ(x− heα)

h
. (14.33)

Thus, the expression
3∑
α=1

D+α D−α , which appears in the viscous term of (14.28),

is a difference approximation to the Laplace operator. Similarly, the expression
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3∑
α=1

uαD±α , which appears in the convection term, is a difference approximation

to u · ∇ . In this latter case, the plus or minus sign is chosen to yield upwind
differencing:

uαD±α =
{

uαD+α , uα < 0,
uαD−α , uα > 0.

(14.34)

The motivation for this choice of sign can be understood by considering the
stability of the difference equation

φn+1 − φn

1t
+

3∑
α=1

un
αD±α φ

n = 0, (14.35)

which is a difference approximation to the transport (or advection) equation

∂φ

∂t
+ u · ∇φ = 0. (14.36)

With the upwind choice of sign, (14.35) takes the form

φn+1(x) =
(

1− 1t

h

3∑
α=1

|un
α(x)|

)
φn(x)

+1t

h

3∑
α=1

|un
α(x)|φn(x± heα). (14.37)

Provided that

1t
3∑
α=1

|un
α(x)| ≤ h (14.38)

for all n, x, the righthand side of (14.37) is a weighted average. Because of
this, we can derive the inequality

max
x
|φn+1(x)| ≤ max

x
|φn(x)| (14.39)

which says that (14.35) is a stable difference scheme. The condition (14.38) is
known as the Courant-Friedrichs-Lewy or CFL condition.

It should be mentioned that the upwind difference approximation to
u·∇u used above is only first-order accurate and is just the simplest of a variety
of available upwind schemes. For a second-order-accurate upwind scheme, see
Bell et al. (1989).

It is important to note that (14.28)–(14.29) provide only an implicit
definition of (un+1, pn+1) given un and Fn . Surprisingly, these equations are
linear (with constant coefficients)in the unknowns un+1 and pn+1; the non-
linear terms of the Navier-Stokes equations are present but have been en-
tirely expressed in terms of un . It is therefore natural to use Fourier meth-
ods, implemented by the Fast Fourier Transform (FFT) algorithm, to solve for
(un+1, pn+1), see Press et al. (1986).
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Since Fourier methods are most easily applied in the context of pe-
riodic functions, we choose a periodic cube (3–torus) with period L , as the
domain that is occupied by the fluid. The meshwidth h is chosen to be of
the form h = L/N , where N is an integer, and the computational lattice of
points xj = jh = ( j1h, j2h, j3h) is chosen to be the set of points given by
jα ∈ {0, 1, . . . , N − 1}, for α = 1, 2, 3. Arithmetic involving the jα is under-
stood to be performed modulo N . To accommodate the simplest form of the
FFT algorithm, N is chosen to be a power of 2.

Thus, the problem we actually consider is that of a heart immersed in
fluid, the fluid being contained in a cubic box with periodic boundary condi-
tions imposed. The fluid external to the model heart may be regarded as rep-
resenting (in a simplified way) the tissues of the thorax that are adjacent to the
heart. These tissues must move when the heart walls move, and they therefore
have a (modest) influence on cardiac dynamics. As for the periodic bound-
ary conditions, it should be noted that these are far less restrictive than rigid
walls, since they do allow fluid to flow freely through any face of the cube,
provided only that such fluid must return instantaneously through the opposite
face. Since all points of a 3-torus are equivalent, we do not have to worry about
peculiar behavior near the faces of the cube, as we would if rigid-wall boundary
conditions had been used. The periodic box does, however, enforce a constant-
volume constraint, which is unwanted in the present context, since the volume
of the heart changes during the cardiac cycle. This is taken care of through the
provision of sources and sinks (including an external source/sink). For ease of
exposition, however, we omit the sources and sinks from the present discus-
sion.

The Fourier solution of (14.28) and (14.29) is accomplished as fol-
lows. First we rewrite these equations in the form(

I − µ1t

ρ

3∑
α=1

D+α D−α

)
un+1 + 1t

ρ
D0 pn+1 = vn, (14.40)

D0 · un+1 = 0, (14.41)

where

vn = un − 1t

ρ

3∑
α=1

un
αD±α un + 1t

ρ
Fn. (14.42)

The three-dimensional discrete Fourier transform is defined as fol-
lows. Let φ(x) be a periodic function with period L in all three space direc-
tions. Only the value of φ at mesh points will be used in the following defini-
tion. Let

φ̂(k) = 1
L3

∑
x
φ(x) exp

(
−i2π

k · x
L

)
h3

= 1
N 3

∑
j
φ(jh) exp

(
−i

2π
N

k · j
)
. (14.43)

The sums in (14.43) are over the N 3 points given by jα ∈ {0, 1, . . . , N − 1}
for α = 1, 2, 3. Here k = (k1, k2, k3) is a vector with integer components.
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Note that φ̂(k) is periodic in all the components of k with period N . In the
following, we shall restrict kα to be chosen from the same set as jα, namely
{0, 1, · · · , N − 1}.

The inversion formula, which is exact at mesh points, is given by

φ(x) =
∑
k
φ̂(k) exp

(
2π ik · x

L

)
(14.44)

or

φ(jh) =
∑
k
φ̂(k) exp

(
2π i

N
k · j

)
. (14.45)

By considering displacements in x, it is easy to find the Fourier transforms of
the difference operators appearing in (14.40)–(14.41). They are

D̂+α (k)D̂−α (k) = − 4
h2

sin
πkα
N
, (14.46)

D̂0 = i

h
sin

(
2π
N

k
)
. (14.47)

In the latter formula, the expression sin( 2π
N k) denotes the vector with compo-

nents sin( 2π
N kα), α = 1, 2, 3. Using these results, we may write the discrete

Fourier transformation of (14.40)–(14.41) as follows:

A(k)ûn+1
(k)+ i1t

ρh
sin
(

2π
N

k
)

p̂n+1(k) = v̂n
(k), (14.48)

i

h

(
sin

(
2π
N

k
))
· ûn+1

(k), = 0 (14.49)

where

A(k) = 1+ 4µ1t

ρh2

3∑
α=1

(
sin

πkα
N

)2

. (14.50)

Note that the different values of k are now uncoupled. This is the (usual) ben-
efit of applying a Fourier transformation to a translation-invariant problem.

For each k, the system (14.48)–(14.49) can be solved for the four un-
knowns (ûn+1

(k), p̂n+1(k)). The solution may be expressed as follows:

ûn+1
(k) =

v̂n(k)− i1t

ρh
(sin

2π
N

k) p̂n+1(k)

A(k)
, (14.51)

where

p̂n+1(k) =
i

h
(sin

2π
N

k) · v̂n(k)

− 1t

ρh2
(sin

2π
N

k) · (sin
2π
N

k)
(14.52)
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and where A(k) is given by (14.50)
The values of k at which sin( 2π

N k) = (0, 0, 0) require special consid-
eration. There are eight such points in the k-lattice; they are given by kα = 0
or N/2, for α = 1, 2, 3. At these special values of the wave vector k,(14.49) is
automatically satisfied, and (14.48) reduces to

A(k)ûn+1
(k) = v̂n

(k), (14.53)

where kα ∈ {0, N/2}, α = 1, 2, 3. There is no danger of A(k) being zero,
since A(k) ≥ 1 for all k, see (14.50). Thus, (14.53) determines ûn+1

(k) at the
eight special wave vectors k that are under consideration here. As for p̂n+1(k),
its values at these eight wave vectors are completely arbitrary, so we may set
p̂n+1 equal to zero at these eight wave vectors in order to have a well-defined
pressure.

Once un+1(x) has been determined (by applying the inverse FFT algo-
rithm to ûn+1

(k)), the fiber points are moved at the local fluid velocity in this
new velocity field. This done according to the following interpolation scheme:

Xn+1(q, r, s)−Xn(q, r, s)

1t
=
∑
x

un+1(x)δh(x−Xn(q, r, s))h3,
(14.54)

which is a discretization of (14.20). Here
∑

x denotes the sum over the compu-
tational lattice x = jh, jα ∈ {0, 1, . . . , N − 1}, α = 1, 2, 3. Note that the same
δ-function weights which are here used for interpolation were previously em-
ployed in the application of the fiber force to the computational lattice of the
fluid, see (14.27). The construction of the function δh will be described in the
next section.

In summary, the immersed-boundary method proceeds as follows.
Given the fiber configuration Xn(q, r, s) and the fluid velocity un(x), begin by
evaluating the fiber forces fn

(q, r, s):

T n = σ(|DsXn|; q, r, s, n1t), (14.55)

τ n = DsXn

|DsXn| , (14.56)

fn = Ds(T
nτ n). (14.57)

Next apply the fiber forces to the computational lattice of the fluid:

Fn(x) =
∑
q,r,s

fn
(q, r, s)δh(x−Xn(q, r, s))1q1r1s

(14.58)

Then update the fluid velocity by solving the following system of equations for
(un+1, pn+1):

ρ

(
un+1 − un

1t
+

3∑
α=1

un
αD±α un

)
+D0 pn+1

= µ
3∑
α=1

D+α D−α un+1 + Fn, (14.59)

D0 · un+1 = 0. (14.60)
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Finally, interpolate the new velocity field and move the fibers

Xn+1(q, r, s) = Xn(q, r, s)+ (1t)
∑
x

un+1(x)δh(x−Xn(q, r, s))h3

(14.61)

Since Xn+1 and un+1 have been found, the time step is complete.

14.5 CONSTRUCTION OF A SMOOTHED
δ-FUNCTION

The function δh(x), which plays a prominent role in the immersed-
boundary method, is a smoothed approximation to the three-dimensional Dirac
δ-function. Let

δh(x) = h−3φ
( x1

h

)
φ
( x2

h

)
φ
( x3

h

)
, (14.62)

where x = (x1, x2, x3), and where φ has the following properties:

(i) φ is a continuous function.

(ii) φ(r) = 0 for |r | ≥ 2.

(iii) For all r , ∑
j even

φ(r − j) =
∑
j odd

φ(r − j) = 1
2
. (14.63)

(iv) For all r , ∑
j

(r − j)φ(r − j) = 0. (14.64)

(v) For all r , ∑
j

(φ(r − j))2 = C, (14.65)

where C is independent of r .
We shall show presently that these five postulates uniquely determine

the function φ, including the specific numerical value of the constant C , and
hence (via (14.62)) that they uniquely determine the function δh . Before doing
so, however, we give an informal discussion of the motivation for proposing
these five postulates in the first place.

Continuity of φ implies continuity of δh , and this avoids sudden
changes as the fiber points move in space. An alternative strategy (for exam-
ple) would be to let each fiber point interact only with the nearest lattice point,
but this would introduce spurious discontinuities as the fiber points cross the
planes that are equidistant between lattice points.
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As a practical matter, bounded support of the function φ is essential
for the efficient operation of the immersed-boundary method. In the interac-
tion steps, where the function δh is used, each fiber point X interacts with all
lattice points x that lie within the support of δh(x−X). With the choice φ(r) = 0
for |r | ≥ 2, each fiber point interacts with exactly 43 = 64 lattice points, al-
ready a substantial number. From this standpoint, the support of φ should be
as small as possible. In postulate (ii), we have made the smallest choice that is
consistent with the other postulates.

The third postulate (14.63) immediately implies that, for all r∑
j

φ(r − j) = 1. (14.66)

When δh is used for interpolation, this means that the interpolation of constant
functions is exact; when it is used for spreading the force to the fluid lattice,
this implies conservation of momentum: that the total force is not altered by
the spreading process. These considerations do not, however, explain why we
need to impose the stronger conditions given by (14.63).

The motivation for these stronger conditions comes from a peculiar
property of the central difference operator D0 that is used in this work as an
approximation to the vector differential operator ∇. Of course, ∇φ = 0 ⇒
φ =constant, but the analogous statement is not true for D0. As an example,
suppose φ(jh) = (−1) j1 , independent of j2 and j3. This function is certainly
not constant, it oscillates in the x1 direction from one lattice point to the next,
but D0φ = 0 anyway. The effect of this is that spurious long-range oscillations
can be introduced into the computed solution by the action of localized forces
unless the conditions (14.63) are imposed. These conditions guarantee that the
force field F will have a discrete Fourier transform F̂(k) that vanishes for any
wave vector k having any component kα equal to N/2.

The fourth postulate, (14.64), when combined with (14.66), guaran-
tees that the interpolation scheme based on δh will be exact for any linear func-
tion. When δh is used for spreading the force to the fluid lattice, these equations
guarantee conservation of angular momentum: that the correct total torque is
applied to the fluid by each element of the fiber force.

The fifth postulate, (14.65), is motivated an inequality which follows
from it by an application of the Schwarz inequality:∑

j

φ(r1 − j)φ(r2 − j) ≤ C (14.67)

for all r1, r2. Expressions like the one on the lefthand side of this inequality
arise when a fiber quantity is applied to the fluid lattice and then interpolated
back to the fiber points According to (14.66) and its corollary (14.67), the influ-
ence of a fiber point on itself during such an operation is constant, independent
of the location of that fiber point with regard to the fluid lattice, and the influ-
ence of one fiber point on another is no bigger than the influence of a fiber point
on itself.

We now turn to the actual determination of the function φ. First note
that (14.64) can be simplified through the use of (14.63). The result is∑

j

jφ(r − j) = r. (14.68)
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For r ∈ [0, 1], (14.63), (14.68), and (14.65) read as follows:

φ(r − 2)+ φ(r) = 1
2
, (14.69)

φ(r − 1)+ φ(r + 1) = 1
2
, (14.70)

2φ(r − 2)+ φ(r − 1)− φ(r + 1) = r, (14.71)

(φ(r − 2))2 + (φ(r − 1))2 + (φ(r))2 + (φ(r + 1))2 = C, (14.72)

where we have made use of the postulate that φ(r ′) = 0 for |r ′| ≥ 2. The
constant C can now be determined by setting r = 0, and noticing that φ(−2) =
0. With r = 0, (14.69) yields φ(0) = 1

2 , (14.70)–(14.71) imply φ(−1) =
φ(1) = 1

4 , and (14.72) therefore states that C = 3
8 .

With C known, we can solve for the function φ on [0, 1]. Equations
(14.69)–(14.71) can be used to express φ(r − 2), φ(r − 1), and φ(r + 1) in
terms of φ(r). These results can be substituted with (14.72) to yield a quadratic
equation for φ(r). This equation has two solutions, and it might seem that the
choice could be made arbitrarily and separately for each r ∈ [0, 1], but the
postulate of continuity together with the requirement that φ(0) = 1

2 (derived
above) determines uniquely which solution must be chosen. Once φ is known
on [0, 1], it can be extended to [−2, 2] by using the abovementioned expres-
sions for φ(r − 2), φ(r − 1), and φ(r + 1) in terms of φ(r). The result is as
follows:

φ(r) =



3− 2|r | +
√

1+ 4|r | − 4r2

8
, |r | ≤ 1,

5− 2|r | −
√
−7+ 12|r | − 4r2

8
, 1 ≤ |r | ≤ 2,

0, 2 ≤ |r |.
(14.73)

Note that φ is an even function, and that not only φ but also its derivative is con-
tinuous. This last fact is a pleasant surprise, since the continuity of the deriva-
tive of φ was not one of our postulates.

This completes the construction of φ and hence of δh . The function φ
is plotted in Figure 14.1.

14.6 THREE-DIMENSIONAL HEART MODEL

The foregoing sections have described a general numerical method for
solving the equations of motion of a viscous incompressible fluid containing an
immersed system of elastic or contractile fibers. Our purpose here is to apply
that method to the heart. To do so, we must first create an arrangement of fibers
in space that mimics the actual layout of muscle fibers in the heart wall and of
collagen fibers in the heart-valve leaflets. Elastic parameters, time dependent
in the case of the muscle fibers, must also be specified.

We shall not attempt a complete technical description of the heart
model here, but the general principles on which it is based will be broadly de-
scribed. Many of these principles were laid down in the pioneering anatomical
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Figure 14.1. One-dimensional delta function.

research of Carolyn Thomas (Thomas 1957), who has given a global qualita-
tive description of the layout of muscle fibers in the left and right ventricles of
the mammalian heart. We have also been influenced by Streeter and his col-
leagues (Streeter, Jr. et al. 1969; Streeter, Jr. et al. 1978) who have made de-
tailed quantitative measurements concerning the distribution of fiber angles in
the left ventricular wall.

The two ventricles of the heart together form a somewhat conical
structure, with a base and an apex. In the body, the axis of this cone slopes
downward, forward, and leftward as it passes from base to apex. When an
anatomical discussion is confined to the heart itself, however, it is customary
to think of this axis as though it were vertical, with the base at the top and the
apex below. In this viewpoint, which is the one that we shall adopt, the base is
a horizontal plane at the top of the venticles. All four valves lie (more or less)
within the plane of the base. Above the base one finds the structures to which
the ventricles are attached: the left and right atria, the ascending aorta, and the
main pulmonary artery.

The conical description of the ventricles that we have given would
seem to imply that the ventricles are widest at the base, but this is not quite
correct. In fact, there is a plane parallel to the base and slightly below it in
which the ventricles achieve their maximum diameter. This is known as the
equatorial plane of the heart.

A horizontal cross section of the heart cutting through the left and right
ventricles reveals striking asymmetry. The left ventricle is thick walled and
roughly circular, whereas the right ventricle is thin walled and crescent shaped.
These differences are related to the fact that the pressure developed by the left
ventricle is considerably greater (by a factor of about 6) than that of the right
ventricle, though the two sides of the heart pump equal volumes of blood per
unit time.

According to Thomas (1957), the muscle fibers of the cardiac ventri-
cles begin and end at the valve rings, in the plane of the base of the heart. She
describes the fibers as being organized in layers. Each layer has two sheets:
one on which the fibers spiral away from the base and another on which they
return. The following is a somewhat simplified description of the layers that
Thomas found.

Outer/inner layer: The outer sheet of this layer surrounds both ven-
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tricles, and the inner sheet forms the innermost lining of the left ventricle. The
two sheets meet at the apex of the heart. The fibers of the outer/inner layer
have very little swirl. Almost like the rays of a cone, they run nearly directly
to the apex along the outer sheet, penetrate the left ventricular wall at the apex
(where the wall is very thin), and run almost directly back to the base of the
heart along the inner sheet.

Right-inner/left-outer layer: This layer is atypical in that its two
sheets lie side by side instead of one inside the other. One sheet forms the in-
ner lining of the right ventricle and the other surrounds the left ventricular wall.
The two sheets coincide along the right-ventricular surface of the interventric-
ular septum. On the right-ventricular sheet of this layer, fibers leave the base
and spiral clockwise (viewed from above). In the septum, they make a smooth
transition to the left-ventricular sheet, after which they spiral counterclockwise
(viewed from above) around the left ventricle back to the base of the heart.

Internal left-ventricular layers: These layers make up the bulk of
the left-ventricular wall. They are nested, one inside another. As before, each
layer has two sheets. Fibers spiral away from the base along the outer sheet,
make a smooth transition to the inner sheet where the two sheets meet, and
spiral back to the base along the inner sheet.

Although Thomas gives a qualitative discussion of how the fibers run
(as summarized above), she does not enunciate a mathematical principle that
would determine the fiber paths once the fiber surfaces are known. Such a prin-
ciple does, however, emerge from the work of Streeter, Jr. et al. (1978), who
made detailed measurements of fiber angle in the left ventricular wall.

According to Streeter and his colleagues, the fibers follow geodesic
curves on the fiber surfaces. Since the left ventricle has (approximate) axial
symmetry, the term “fiber surface” has a well-defined meaning: it is the sur-
face of revolution that one gets by rotating a fiber about the axis of symmetry.
Whether the fibers are geodesics on these surfaces or not can be tested by using
Clairaut’s theorem, that a geodesic on a surface of revolution has r cosφ = con-
stant, where r is the radial coordinate (in cylindrical coordinates) and φ is the
angle between the tangent direction to the geodesic and the circumferential (θ̂)
direction. What Streeter and his colleagues actually did was to determine loci
of constant r cosφ, and then to check that these loci were tangent to the fibers.
Satisfactory agreement was found, confirming the principle that the fibers are
geodesics on the fiber surfaces.

The general method that we use to construct the initial configuration
of the model ventricles may now be described. First, we define double-sheeted
surfaces on which the fibers lie (see below). In typical cases, the two sheets
meet along a common boundary curve somewhere in the interior of the heart
wall. The surfaces are generally not tangent where they meet, so the only way
that a fiber can make a smooth transition from the sheet to the other is by being
locally tangent to the common boundary curve of the two-sheeted surface. This
defines an initial direction for each fiber at the common boundary curve, and
the fiber can then be continued as a geodesic in both directions along each of
the two sheets, until it encounters the valve rings at the base of the heart.

An exception the above description occurs in the case of the right-
inner/left-outer layer, where the two sheets of the layer lie side by side and
actually share a common surface along the right-ventricular face of the inter-
ventricular septum. We think of the transition between the two sheets as be-
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ing made at the vertical midline of the common surface, and we assume that
the fibers are horizontal there (i.e., perpendicular to the midline). This defines
an initial direction, and the fibers can then be contained in both directions as
geodesics along the two sheets until they encounter the valve rings at the base
of the heart as before.

Below the equator, of the heart, we take all of the surfaces to be por-
tions of cones, although not necessarily cones with circular cross section. In
the case of the outer/inner layer and of the right-inner/left-outer layer these
conical surfaces extend all the way to the apex of the heart, which is also the
common apex of the two cones forming the two sheets of the layer. For the in-
terior layers of the left-ventricular wall, however, we use truncated cones, with
the two sheets of the layer meeting along the common curve where this trun-
cation occurs. (This is also the curve along which the fibers make a smooth
transition from one sheet to the other.)

All of these conical surfaces must somehow be continued above the
equator of the heart, so that they can connect with valve rings in the plane of
the base. This process generally involves a bifunction, since a given sheet of
a given ventricular layer has a cross section which is a single closed curve in
the equatorial plane but which becomes a pair of closed curves in the plane of
the valve rings (each ventricle has both an inflow and an outflow valve).

To deal with this situation, we have introduced a fairly general method
for constructing a surface whose cross-section in the plane z = z1, consists
of n1 given rings (with nonoverlapping interiors) and whose cross section in
the plane z = z2 consists of n2 given rings (with non-overlapping interiors).
By “ring” we just mean a simple closed curve. Note that n1, and n2 may be
different. If they are, the topology of the cross section necessarily changes as
we pass from z1 to z2,

Let the n p rings in the plane z = z p, with p = 1, 2, be given in the
form gpi (x, y) = 0, i = 1 · · · n p, with gpi (x, y) < 0 denoting the interior
of the ring and with gpi (x, y) > 0 denoting its exterior. Since the interiors
are nonoverlapping, any point in the plane belongs to at most one of them. It
follows that the function

G p(x, y) =
n p∏

i=1

gpi (x, y)

has the property that G p(x, y) < 0 on the union of the interiors of the various
rings in plane p, whereas G p(x, y) > 0 on the intersection of the exteriors in
that plane.

Now consider the surface

0 = G(x, y, z) = G1(x, y)
z2 − z

z2 − z1
+ G2(x, y)

z − z1

z2 − z1

This has the required cross section in the planes z = z1 and z = z2, and
we can hope that it defines a plausible means of interpolating between these
cross sections. Unfortunately, this is not guaranteed: sometimes the surface
G(x, y, z) = 0 has two disconnected components and makes no connection at
all between z = z1 and z = z2. We have managed to avoid this possibility in
the construction of the heart, and we have therefore been able to use this in-
terpolation scheme to connect the ventricular fiber surfaces to the valve rings.
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The surfaces G(x, y, z) = 0 do not join smoothly with the conical surfaces that
we have constructed below the equator of the heart (the surface normal is dis-
continuous at the equator), but there is no difficulty continuing a geodesic in a
unique way across such an edge, and this lack of smoothness tends to disappear
in any case as the heart is pressurized.

The construction that we have just described for determining a surface
connecting specified rings in two given planes is also used to build the atria of
the model heart. Here, the rings in question are those of the atrioventricular
valves and those at which the various veins connect to the atria. Finally the
arteries and veins that connect to the heart are initially defined as cylinders with
hemispherical caps, on which geodesic fibers are wrapped.

Since the model vessels have blind ends, it is necessary to provide
sources and sinks in the hemispherical caps, to simulate the connection of the
heart to the rest of the circulation. At present, each such source and sink is con-
nected to a pressure reservoir through a fixed hydraulic resistance. These pro-
vide appropriate pressure loads for the model heart. An external source/sink
allows for changes in volume as the heart fills and ejects.

The valves of the model heart are also constructed out of fibers. In
the case of the atrioventricular valves this is done in much the same style as
has been previously described: by defining rather arbitrary initial surfaces and
then wrapping fibers as geodesics on these surfaces. For the arterial valves,
however, we have found a less arbitrary procedure in which the both the fibers
and the surfaces are simultaneously defined by solving a system of partial dif-
ferential equations. These equations describe the mechanical equilibrium of a
one-parameter family of fibers under tension, and their numerical solution de-
termines the closed configuration of the arterial valves (Peskin and McQueen
1994). A future goal is to formulate and solve partial differential equations for
the fiber architecture of the heart as a whole. For preliminary results in this
direction, see (Peskin 1989).

Finally, we have to consider the elasticity of the model fibers. Let R
be the length of a short fiber segment and let T be the tension in that segment.
We use a nonlinear length-tension relationship of the form

T =

 S0

(
R − R0

R0

)2

, R ≥ R0,

0, R ≤ R0,

where R0 is the rest length of the segment and S0 is a stiffness parameter. Both
R0 and S0 may be time dependent to simulate active, contractile muscle.

The time dependence R0 and S0 can be programmed differently in dif-
ferent parts of the heart, in such a way as to simulate the waves of activation
and deactivation that propagate through the cardiac tissue and coordinate the
heartbeat. At present, however, we do this only in a rudimentary way: First
the atrial muscle contracts synchronously, and then, after a realistic delay, the
ventricular muscle contracts synchronously. This procedure ignores the delays
that occur within the atria or within the ventricles.

The construction of the model heart is shown in Figures 14.2 through
14.11, and its dynamics are depicted in Figures 14.12 through 14.19.
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Figure 14.2. Computer model of the heart and the nearby great vessels. The heart is
viewed from the front, so the left ventricle is at the lower right, and the thin-walled
right ventricle is at the lower left. The vertical vessels at the top of the figure from left
to right are the pulmonary artery (in front), the aorta, and two of the four pulmonary
veins. The pulmonic and aortic valves (outflow valves of the right and left ventricles,
respectively) can be seen within the pulmonary artery and the aorta, and the tricuspid
valve (inflow valve of the right ventricle) can just barely be seen at the top of the right
ventricle. The mitral valve (inflow valve of the left ventricle) is obscured by the dense
left-ventricular wall. The left atrium is visible below the pulmonary veins, and the left-
atrial appendage (auricle) is prominently seen hanging over the left-ventricular wall at
the right side of the figure. The right atrium is behind the aorta and cannot be seen in this
view. The model veins and arteries have blind ends, but sources and sinks are provided,
with properties chosen to establish realistic pressure loads on the model heart.
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Figure 14.3. The outer/inner layer of the model ventricles. Again, the heart is viewed
from the front, so the left ventricle is on the right side of the figure. The four valve rings
at the top of the figure form the base of the heart. The larger rings are the locations at
which the atria join the ventricles, and the smaller rings are the locations at which the
arteries are attached. The fibers of the outer/inner layer form the outermost layer of the
ventricles as well as the innermost layer of the left ventricle only.

Figure 14.4. The right-inner/left-outer layer of the model ventricles. The fibers of this
layer form the inner lining of the right ventricle and the outer lining of the left ventricle.
Viewed from the base, these fibers follow a figure-eight trajectory, spiraling clockwise
around the right ventricle and then counterclockwise around the left ventricle. The tran-
sition is made on the right-ventricular face of the interventricular septum.
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Figure 14.5. The internal left-ventricular layers of the model heart are shown in this
and the following three figures. The smaller of the two rings at the top of each figure is
the aortic-valve ring and the larger is the mitral-valve ring. Each layer is composed of
two sheets of fibers which meet at the two valve rings and also at a third ring that forms
the lower boundary of that layer. The fibers are tangent to this lower ring and therefore
make a smooth transition there from one sheet to the other. The layers are nested, so
that both sheets of the smallest layer lie between the two sheets of the next larger layer
and so on. Both sheets of the largest of these internal left-ventricular layers lie between
the left-ventricular parts of the outer/inner layer and the right-inner/left-outer layer.

Figure 14.6. An internal left-ventricular layer (see legend of Figure 14.5).
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Figure 14.7. An internal left-ventricular layer (see legend of Figure 14.5).

Figure 14.8. An internal left-ventricular layer (see legend of Figure 14.5).

14.7 SUMMARY AND CONCLUSION

This chapter has described the mathematical formulation of the fiber-
fluid problem of cardiac mechanics, a technique known as the immersed-
boundary method which is suitable for the numerical solution of that problem,
and a detailed three-dimensional model of the heart for use in conjunction with
the immersed-boundary method.

Both the mathematical formulation and the numerical method de-
scribed in this chapter are based on the notion that the blood, valves, and mus-
cular heart walls can all be modeled within a common framework. Thus, we
think of the cardiac tissues as though they were a part of the fluid, in which,
however, there are additional tissue stresses besides those that would normally
be present in a fluid. Alternatively, one might say that we think of the blood as
a part of the heart, where the stesses that characterize the muscular walls and
the elastic heart-valve leaflets happen to be zero.

The computational consequence of this point of view is that we solve
the fluid equations on a fixed cubic lattice, unencumbered by the complicated
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Figure 14.9. Inflow structures of the model heart. At the left side of the figure one
sees the superior vena cava (above), the inferior vena cava (below), and the right atrium
between them. The right atrium empties through the tricuspid valve, which is seen just
to the right of the inferior vena cava. The corresponding structures on the left side of
the heart are seen on the right side of the figure. They are the four pulmonary veins,
of which two are visible at the top, the left atrium, and the mitral valve. The left-atrial
appendage (auricle) is seen at the far right side of the figure.

Figure 14.10. The four valves of the model heart. The outflow (aortic and pulmonic)
valves are seen above and the inflow (mitral and tricuspid) valves are seen below. Note
that the inflow valves are supported by fans of chordae tendineae, which insert into pap-
illary muscles, two for the mitral and three for the tricuspid valve. The outflow valves,
by contrast, are self-supporting.
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Figure 14.11. Detail of an outflow (aortic or pulmonic) valve of the model heart.

Figure 14.12. Cutaway view of the model heart during early ventricular diastole (re-
laxation). In this and the figures that follow, the heart model is shown in action. Fluid
flow is represented by streaklines, which were computed by tracing the trajectories of
particles immersed in the flow. The current position of each such particle is shown as
a small blob, and the recent past positions are shown by a fading tail. In this particular
figure, only the markers that were initially in the atria are shown. Note the ring vortex
visible in the left ventricle (right side of the figure) below the mitral valve.
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Figure 14.13. Cutaway view of the model heart during early ventricular diastole show-
ing markers that were initially in the ventricles in addition to the atrial markers shown
previously in Figure 14.12.

Figure 14.14. Cutaway view of the model heart during ventricular systole (contrac-
tion). Only markers that were initially in the ventricles are shown.
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Figure 14.15. Flow pattern in the model right ventricle during early ventricular dias-
tole.

Figure 14.16. Flow pattern in the model right ventricle during late ventricular diastole.
Note the prominent vortex that forms in the right ventricle during diastole.
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Figure 14.17. Flow pattern in the model right ventricle during ventricular systole.

Figure 14.18. Detail of the mitral and aortic valves of the model during ventricular
diastole.
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Figure 14.19. Detail of the mitral and aortic valves of the model during ventricular
systole.

time-dependent geometry of the heart and its valves. The spatial configuration
of those tissues is tracked separately, by means of a collection of tissue marker
points that move at the local fluid velocity while simultaneously exerting force
on the fluid in which they are immersed. The tissue-fluid interaction is medi-
ated by a smoothed approximation to the Dirac δ-function, which is used both
in spreading the fiber forces out onto the computational lattice of the fluid and
also in the interpolation of the fluid-velocity field to the marker points of the
cardiac tissue fibers.

The computer model that has been created in this way is now ready for
use in applied studies concerning the normal and pathological physiology of
the heart, and also as a test chamber in the design of prosthetic cardiac valves.
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