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properties have been investigated.
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ENTRODUCTEON

The mitral valve is situated between the two chambers of the Teft
heart and permits unidirectional flow from atrium to ventricle. In the
normal individual, events associated with the closure of the mitral valve
give rise to the first heart sound, and valvular diseases lead to variations.
in the quality, intensity, timing-énd duration of sounds associated with
mitral flow. Diseases of the mitral valve also lead to a disturbed relation-
ship between pressuré and flow. The elevated left atrial pressure associafed
with mitral stenosis especially at high flow rates is both an important
diagnostic tool and ajso a direct cause of the patient's distress during
exercise, The interpretation of heart sounds aﬁd pressure wavefofms repre-
sents an important aspect of cardio]ogicaf diagnosis, but this interpretation
can only proceed on a rational basis when the relationship between these data
and fhe flow dynamics is clearly understood. Since instantaneo@sbfiow cannot
ordinarily be measured in man, we must turn to a variety of other systems to
gain such understanding. |In this paper we attempt to present a coﬁprehensive
analysis of the dyhamics of flow across the mitral valve. PhyéicalAmodeTing,
mathematical modeling, and animal experiments are all used to build up a
consistent picture of the mechanisms that govern the behavior of the mitral
valve in its normal and pathological states,.

HYDRAULIC ANALOG

The anatomy of the left heart is shown in Fig. 1, and indicates that
the mitral valve and its ring represents an area reduction between the atrium
and ventricle, whicH may be likened to a nozzle or an orifice. As the
chambers change size during a cycle, the size of the opening changes and the
respective area ratios also change, but essentially, the geometry is still
similar to an area reduction in a pipe. One is thus ]édAto consider the

equation governing flow across an orifice as a first approximation to the



physiological system:
Ap =k, or @ =CA~Ap ()

This hydraulic equation was applied with somé succéss by Gorlin
and Gorlin (I)] in 1951 to the problem of estimating the area of a stenotic
heart valve. Roderigo and Snellin (2) presented a firmer theoretical base
and also substantiated the results shortly thereafter; this method is now
used routinely in cardiological diagnosis.

There are several obvious objections to this approach: 1. Equation
(1) is derived from the steady flow Bernoul 1 i equation and neglect;‘the
influence ofAlocai acceleration, This assumption would appear to be
questionable in light of the large amplitude pulsations found within the
heart. 2. The area, A, of the normal orifice changes with time within the
heart. 3. The dfscharge coefficient, C, is a weak function of the Reynolds
number and it, too, changes with time. L. Finally, we do not know if the
flow is quasi=-steady in relation to the energy losses. That is, it is not
known if the discharge coefficient at each instant of time in an unsteady flow
is the same as it would be in a steady flow with an equivalent Reynolds number.

We therefore examined a pressure-flow relation which included an inertial term:
Ap = Aglol+ Bdgo/dt (2)

where A and B are resistive and inertial coefficients respectively and the
flow is multiplied by its absolute value rather than squared as in equation (1)

in order to maintain the proper phase between the dissipative aspects of the

Numbers in parentheses designate References at the end of the paper.



pressure-flow relation.

Equation (2}, or its equivalent, has been derived in a number of
ways, all of which rely on momentum.considerations, and it has beeh applied
to the unsteady flow problem by many investigators. Burger et al. (35 were
the first to attempt to model a stenosis.by studying sinusoidal flow across
an orifice and applying equation (2). They correctly ﬁeasured.a hysteresis
loop in the pressure-~flow graph (although they erred in the direction of
the loop) and they aftempted to explain this result on the basis of a time-
dependence between turbulent losses and unsteady flow. This so-called
“hysteresis loop!" arises from the inertial component in equation (é):
when the flow is i%creasing, the derivative is positive and when the flow
is decreasing, it is negative. Since the resistive component of the pressure
gradient in equation (2) is always in phase with the flow, it follows that
the pressure gradient for an increasing positivé flow must be gfeater than
that for a decreasing positive flow; hence, an abparent Yhysteresis loop!'!,

Lahey and Shiralkar (4) investigated the application of equation (2)
to an exponentially decaying transient flow across an orifice. They found
that for conditions of low flow rate or very rapid transients the inertial
correction becomes appreciable. Thus, while their results are not directly
applicable to a pulsatile flow, they indicate the need to investigate further
the problem of fluid inertance.

Perhaps the most comprehensive study of large amplitude, pulsatile,
incompressible flowvacroés an orifice was presented by Moseley (5). The main
vthrust of his study, and of most engineering studies in this area, is toward
the response of orifice meters to pulsatidns: that is, toward determining
the magnitude of the error in flow rate as inferred from the measured pressure

gradient. The problem here is that measuring systems which give the time
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average of a variable are subject to the ''square root error!l; namely,
the square root of the mean, is not equa] to the mean of the square root.
Moseley (5) generated sinusoidal flows with and witﬁout a mean ‘level;
assumed negligible temporal acce]eration; Tfound the square rooct error
to correctly express the error within experimental uncertainty; and
concluded that the flow must be quasi-steady.

Since we are interested primarily in the instantaneous relations
between pressure and flow, we have studied the dynamics of orifice flow
as a preliminary to the study of intracardiac events (6).

Experimental Methods: Orifices of 1/8, 1/L4, 3/8 and 1/2 inch diameters

were mounted in a 1 inch diameter tube and subjected to steady flow,,simp]e
sinusoidal flow, and sinusoidal flow with a mean level. The range of
frequencies and flow amplitudes included any found in the normal, stressed,
or pathologic in vivo system. The instantaneous pressure difference and
flow across the orifice were measured with Statham strain gage transducers
and with a Carolina Mediéa] Electronics Electromagnetic Flowmeter.

Resultss A typical result for a sinusoidal flow is shown in Fig. 2. The
pressure difference which creates this flow is precisely that which would be

predicted by equation (2):

Csinaitjsinwt{+ Dcosut (3)
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This relationship was confirmed for all flow rates, frequencies, and orffice
sizes,

If equation (2) is integrated over any time interval such that
Q(t]) = Q(tz), the inertial term would make no contribution on that interval

and the time average of theflow should be quasi-steady regarding the
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influence of the acceleration. If the discharge coefficient is also quasi-
steady, then the time average of equation (1) taken between the times the
flow crosses zero, should describe all the flow conditions across a given
orifice. Such an approach is shown in Fig. 3 which correlates all the data -
for two.orificeé of equal diameter but different shape, on the basis of the
.square root of the mean pressure as a function of the mean flow. The data
reﬁresent all frequencies, flow rates, énd combinations of steady and pulsatile
flow which include the physiological range of parameters. The correlation is
excellent and indicative of all the other orifices tested. We conclude that
a pd]satile flow is quasi=-steady in regard to the discharge coeff;cient,
and, when averaged over time, in regard t the loéal acceleration. |t should
be notéd that in order to obtain the correct value for the discharge coefficient
in equation (1), one must take the average of the flow squared and not the
square of the average flow., For a given flow wave~-form, howevé}, the squaré
root error will be constant and the conclusions derived from Fig. 3 are
applicable. 1In sﬁmmary, equation (2) adequately describes a pulsatile flow
across a constriction including large amplitude pulsations.
ELECTRIC ANALOG

I f equatfon (2) does describe the pressure~flow relations across an
orifice, then it should be possible to model this hydraulic system with an electricalf
system. With voltageAand current as the analogs of pressure and flow respectively,
the wave-shapes and temporal relations between the parameters-in both systems
should be similar. An electric analog can then be used to test the validity
of the concepts, and to predict the behavior of the hydraulfc system. Such an
analog is shown in Fig.lha, along with a definition of a square‘law resistor,

Fig. 4b, which satisfies the non-linear dissipative properties of the system.
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An operational amplifier circuit giving the voltage-current réiations
corresponding to the e?ements of Fig. L4a, is shown in Fig. Lc. .The
results corresponding to a simple sinusoidal flow are presented in Fig.5.
The wave-forms and phase relations compare favorably with the reSu}tS.Of
the hydraulic analog as shown in Fig. 2. The analog yielded the same
favoréb]e results for all the conditions modelled.

THE PHYSIOLOGICAL SYSTEM

In order to investigate the pressure-flow dynamics across the
natural mitral valve {7, 8), the left heart of large mongrel dogs was
inétrumented as shown in Fige 6, An intracardiac electromagnetfc flowprobe
(Carolina Medical Electronics) was sutured to the mitral annulus and the
wires brought out through the atrial appendage. Pressure was measured with
Statham strain gage transducers connected to shoft stiff cathgters as shown.
In some dogé, catheter tip transducers (Konigsberg P-20) were used for
pressure measurement and intracardiac phonocardiograms.

Fig. 7 is a reproduction of an oscillographic record and reveals the
following points of interest: Inflow to the ventricle starts at the moment
of pressure gradient reversal (LAP exceeding LVP}. The gradient is small
and }apid]y goes to zero or slightly negative (LVP greater than LAP) thereby
deceTerating the flow so that it too approaches zero, but at a later time.

An atrial contraction produces another favorable gradient which is followed
by another period of forward flow thereby giving the mitral flow trace fté
bicuspid appearance. A strong ventricular contraction rapidly decelerates
the flow and closes the va]ve.sometime after the pressure difference has
reversea.

The inertial character of this system is revealed by fact that flow

follows pressure. The resistive character is indicated by the fact that the
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flowrreaches its maximum after the gradient reaches zero rather than at
that moment (as it would in a purely inertial system); and also by the fact
that the forward gradient exceeds the reverse gradientAso that not all the
kinetic energy is recovered as pressure, These same characteristicsvwere
present at any heart rate and stroke volume. The physiological system thus
séems to obey the relations described by equation (2).
ELECTRICAL ANALOG OF THE M{TRAL VALVE

Fig. 8a presents an electrical analog of the pressure~flow relations
for the natural mitral valve. During forward flow the valve is assumed to
have the properties of an orifice, so that the pressure-flow réiation is
given by equation (2). Two paths are provided in parallel with the diode for
Eackward flow, The first of these is a resistor-capacitor network representing
the visco-elastic properties of the closed valve and the tissue that supports
it. Current flowing into this network is stored in the capacitors, just as
fluid may be stored in the ballooned valve leaflets. Such current (or the
fluid it represents) is returned in the forward direction as the reverse
voltage (pressure difference) dies away. Pathological backflow may also occur
when the valve leaflets fail to close completely. Such backflow is governed
again by equation (2) but with different constants. To allow for backflow
we include a second path around the diode with dissipative and inductive
(inertial) e!ehents whose impedances add to those of the forward flow path
to givevthe.tota] impedance to backflow. An operationaT amplifier circuit
to solve the equation relating voltage and current is shown in Fig. 8b. |
An oscillographic record of ihe driving pressure.gradient which includes an
"atrial contraction'’, and the resulting flow, is presented in Fig..9. The
similarities wifh the physiological results (Fig. 7) are strikingly clear.

We have also varied the timing of "atrial and ventricular contractions!t in
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the model and we find the same dynamic relations as in the physiologic
system,
DISCUSSION

The inertial character of flow across the aortic valve has been
known for more than a decade (9), but until recently, no one had considered
the possibility that a similar situation prevailed for the mitfa} valve,
With the pioneering work of Nolan et al. (10), and the corroboration of
Folts et al. (11), Williams et al. (12) and ourselves {7, 8), we must now
accept the facf that phasic flow across all heart valves will possess an
inertial component.- The full impact of this conclusion has yet to be felt
byvthe medical community. For example, the first heart sound should occur
several milliseconds after the A-V gradient reverses because flow lags
pressure and the valve closes with flow and not pressure (13}.

The approaches presented thus far in this report all have-in common
the fact that they describe the system in terms of lumped parameters. They
are phenomenological approaches which reveal the overall system dynamics
but not the details. In the concluding section we describe briefly a
distributed parameter approach. The results of a numerical method for
‘solving the equatioﬁs of motion governing the ffuid and cardiac tissue are
presented below to complement the foregoing analyses.

DIGITAL COMPUTER SIMULATION

Qur aim is to calculate the flow pattefn of blood in the heart. To do
this, we must take into account not only the forces which arise in the blood
itself, but also the forces which arise in the muscular heart walls and the
membraneous valve leaflets. The latter forceé are determined by the
configuration of the heart apparatus in space in a manner which is fixed

for the valve and time-dependent for the active muscle,
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The motion of the cardiac tissue is determined by the condition that
it moves at the local fluid velocity. To a reasonable approximation, the
density of the whole system is uniform, since the heart apparatus is nearly
neutrally buoyant. Consequently the heart apparatus can be idealized as-a
specialized region of the fluid where extra forces are applied ih addition
to the usual fluid forces.

Based on such considerations, we have devised a computer method
for éonstructing approximate solutions to the eduations of motion of the
blood-valve-heart system {14). We have applied this method to a two
dimensional representation of a valve of the mitral type guarding the
opening between muscular atrial and ventricular chambers. The.flexible
valve leaflets are restrained by chordae which connect the ventricular
apex to the tips of the leaflets. We begin the calculation at the end of
systole, with the atrium distended and the ventricle small, First, the
ventricle relaxes; later, the atrium contracts; and finally the ventricle
contracts. When the valve has closed we stop the calculation.

In Fig. 10 we show the results of a computer experiment in which the
chordae are under tensién throughout diastole. Fig. 10 a-d shows four frames
all prior to atrial systole, while Fig. 10 e and f shows two frames during
atrial systole. These six frames have been selected from a total of 16 and
are not equally spaced in tfme.

Fig. 10a shows the configuration of the valve, atrium, and ventricle,
at the beginning of this computer experiment. The chordae exist as a force
bbetween the ventricular apex and the cusp tip, and are not shown. In thfs
frame the atrial and ventricular pressures are equal at the beginning of
diastole. Subsequent relaxation of the ventricle allows the valve to open

as in Fig. 10b. The inflow to the ventricle forms a jet which, at this stage,
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diffuses outward at the cusp margins and does not reach deep into the
ventricle. A significant vena contracta fs also evident, and a vortex
can be seen forming about 2/3 of the way down each cusp on the atrial
aspect. In Fig. 10c the vortex has moved to the tip of the Va?ve‘and
grown considerably in strength; ité streaml ines are beginning to move
the valve toward closure., The jet extends between the vortices and
reachés dééper into the ventricle. In ?ig.vIOd the inflow is slowing
down and the vortices are much more prominent; theirAstreamlines sweep
the valve rapidly toward closure. Part of the jet persists between the
vortiées, but most of its streamlines no longer connect with the atrium.
instead they circulate around the vortices and participate in valve
closure. This brings out the close relationship between the 'broken jet!
theory of Henderson and Johnson (15) and the vortex theory of Leonardo
da Vince (16).

in atrial sYstple the same qualitative phenomena are repeated.
In Fig. 10e we see the jet re-established by atrial systole, and it now
reaches deeper intc the ventricle than before. Between 10e and 10f the
valve is re-opened to some extent, vortices are formed at the valve tips,
closure begins égain. In 10f we see a very late stage of atrial systole,
with the jet broken and the vortices moving the valve toward closure,

BiSCUSSION

and

From a digital computer solution’ to the equations of motion we have

predicted the flow patterns of the blood as it flows across the mitral valve

without assuming a geometry for the flow path. This is a powerful method

whose results are not only consistent with the findings of in vivo (17} and

model studies (18, 19), but also elucidate the flow characteristics. As

consequence, we can identify the streamlines which circulate as a vortex and
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close the valve without reducing ventricular volume, and those which go
from the ventricle to the atrium and reduce the volume, i.e., backflow.
These mofions could have been deduced from the lumped parameter approach:
the inertial properties are noted from the pressure~flow.relations, leading
one to conclude that pressure hust reverse before flow and thereby impose
a force on the valve in a direction opposite to that of the flow; ergo,
the valve should be closing before all the blood has entered the ventricle.
The mathematical solution is an additional and welcome verification using
a different approach.v )

The distributed parameter approach can also resolve apparent contra-
dictions between different observations. For example: there would appear
to be an inconsistency between the finding that the_va]ve'achieves most of
its closure during diastole, and the finding that the flow is quasi-steady
with a constant discharge coefffcient° This question is readily resolved
when we note the existence of the vena contracta (Fig. 10b), which produces
an area reducfion of approximately 60%. Since the contraction coefficient
is the only significant component of the discharge coefficient, we may
anticipate a valve 'lclosure'’ to 60% of its fully opened area without.any
additional energy losses., In effect, a thin plate orifice has been converted
to a nozzle of smaller diameter and similar discharge coefficient,

While the mathematical model is a powerful tool, it can never completely
descriEe the physiological system in detail, and one must always approach the
results with a healthy skepticism. A very useful method is to look at the
computer results as a form of interrogation. For example: our numerical
solution of the flow patterns without chordae show a valve which opens widely
and does not start to close. That is, there is no strong interaction between
the valve cusps and fluid. The inclusion of chordée under tension allows the

vortex to develop and sweep the cusps toward closure. Bellhouse (18), on the
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other hand, has found in his model studies, that vortices will form and the
valve move toward closure in the absence of tension on the chordae. It is
not our intention at this time to reject one hypothesis in favor of the other,
but rather, to sgggest the need for definitive in vivo experiments in order
to answer the question raised by the computer solution,
| Finally, given the observation of the flow patterns shown in Fig. 10,
we can postulate a role for afria] systole in valve closure: at slow heart
rates, where flow ceases before étrial contraction, an atrial systole re-
establishes a favorable gradient whiich imparts momentum to the blqod in the
direction opposite to the direction of valve closure, and the cusps seal
without backflow,
SUMMARY
From the anatomy of the left heart and the physics of flow, we have
developed a comprehensive approach to the investigation of atrioventricular
flow dynamics. Classical hydraulics, electronic analogs, animal studies
and digital computer methods’ have complemented each other and produced a
series of consistent solutions. |In addition, we may deduce from these
solutions a role for anatomical features such as the chordae tendineae,
which heretofore has not been clear. We have elucidated the patterms of
flow and the overall system dynamics to show that temporal acceleration is
highly significant in understanding the instantaneous pressure-flow relations
and cusp motion. Because the flow is quasi-steady in respect to the time
average properties and the discharge coefficient, the mean pressure and flow

are related by the orifice meter equation.’
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Fige 1. The

LEGENDS FOR FIGURES

atrioventricular configuration at the end of systole, just

before the mitral valve opens; and at the end of diastole after

the

ventricle has filled., Note that the A-V valve always presents

a reduction in area.

Fig. 2. Results of pressure difference ([ﬁp) and fiow {Q) across an orifice

plate in a tube, when the flow is sinusoidal.

Fig. 3. The

pressure~flow relations across two orifices of 3/8" diameter

with shapes as shown. The data points include steady flow (SF),

sinusoidal flow (PF) and sinusoidal flow with a mean level (PFZSF).
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Fig. 5. The
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Fig. 6. The

regression equations are based on the time average of the flow

the square root of the time average of the pressure difference.
the text for further discussion.

electric analog of an orifice; b. The definition of a square
resistor; and c. The operational amplifier circuit for solving
equations governing the pressure-flow relations across the analog.
pressure~flow relations across the electric analog of Fig. 4 when
flow is sinusoidal. Compare to Fig. 2, the hydraulic results,

left side of the canine heart instrumented to measure left ventri-

cular pressure {LVP}, left atrial pressure {LAP}, mitral valve flow

(MF)

and aortic valve flow (AJF)}. See the text for details,

Fig. 7. A recording of the atrioventricular pressure-flow relations in the

dog

heart. The two-peaked character of the mitral flow is due to an

atrial systole in late diastole. The sharp point in the second and

‘third mitral flow trace is an electrical artifact arising from atrial

depolarization.



Fig. 8. a. An electrical analog of the mitral valve. In parallel with
the diode are a storage path and a leakage path. b. The operational
amplifiér circuit which solves the equations governing the pressure-~
flow relations across the analog of a.
Fig. 9. The pressure-flow relations across the analog of Fig. 8 with infinite
backflow impedance, The driving pressure gradient mimics the normal
atrioventricular pressure difference of Fig. 7. Note the similarity
of wave-forms and temporal relations between the analog and the
in vivo results,
Fig.10. migifal computer solution of flow patterns across the mitral valve:
a. The configuration of tHe atrium, valve and ventricle
at the beginning of diastole when the pressures in
both chambers are equal.

b. The valve is fully open in early diastole, a vena contracta is
evident, and a vor tex is forming.

c. The vortex has moved to the valve tip and grown stronger so
that its streamlines are moving the valve.toward closure.

d. The jet has ‘'broken' so that there is no flow oﬁt of the atrium
and a large vortex is rapidly closing the valve.

e. An atrial systole re-establishes the jet and re-opens the valve.

f. As in d, the jet 'breaks'' again and the valve rapidly closes.-
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