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Abstract

In this paper the Immersed Boundary Method is presented, with some recent developments. The method is used to
analyze fluid—structure interaction problems. Different aspects of the method are illustrated by applying it to blood flow in

the heart and a flapping filament (flag-in-wind) problem.
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1. Introduction

In the study of fluid—structure interaction, it is useful
to think of the structure as a part of the fluid where addi-
tional forces are applied, and where additional mass may
be localized. In this paper, we consider the case of a vis-
cous incompressible fluid that interacts with an immersed
structure that is made of an incompressible viscoelastic
material. To keep things as simple as possible, we assume
that the viscosity is Newtonian and uniform throughout the
system. This restriction can certainly be removed, but we
shall not address that complication here. The mass density
of the ambient fluid is also assumed to be uniform, but
the structure is allowed to have a nonuniform mass density
which may be greater or lower than that of the fluid.

Instead of separating the system into its two components
coupled by boundary conditions, as is conventionally done,
we use the incompressible Navier—Stokes equations, with
a nonuniform mass density and an applied elastic force
density, to describe the coupled motion of the hydroelas-
tic system in a unified way. In order to do this, however,
we need to supplement the Navier—Stokes equations by a
Lagrangian description of the elastic material, from which
the elastic force density and the nonuniform mass density
that appear in the Navier—Stokes equations may be cal-
culated. Moreover, we need a mathematical apparatus to
translate in either direction between Lagrangian quantities
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and the corresponding Eulerian quantities. This apparatus
is conveniently provided by the Dirac delta function.

The equations of motion that result from this point of
view directly motivate a numerical method known as the
“Immersed Boundary Method” [1-5]. This name empha-
sizes an important feature of the method: that it can handle
not only immersed elastic structures that displace a finite
volume, but also immersed elastic boundaries like heart
valve leaflets (for which the method was originally de-
signed), insect wings, sails, and parachutes, all of which
may be idealized as surfaces which, despite having zero
volume, nevertheless apply finite forces to the fluid in
which they are immersed. Clearly, the Dirac delta function
is particularly well suited to this situation.

2. Equations of motion

As described in Section 1, we use an Eulerian descrip-
tion of the system as a whole (fluid + structure) supple-
mented by a Lagrangian description of the structure. The
independent variables of the Eulerian description are the
Cartesian coordinates x and the time 7, and the independent
variables of the Lagrangian description are curvilinear ma-
terial coordinates ¢, r, s and again the time z. The Eulerian
description of the system as a whole involves the velocity
field u(x, t), the hydrostatic pressure field p(x, t), the mass
density p(x, t) and the Eulerian elastic force density f(x, t).
The Lagrangian description of the immersed elastic mate-
rial involves its configuration X(q,r, s, t), its Lagrangian
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elastic force density F(q,r, s, t), and its Lagrangian addi-
tional mass density M(q, r, s), the integral of which over
any chunk of the material gives the mass of that chunk
minus the mass of the fluid displaced. Since both the mass
and volume of any such chunk of the immersed elastic
material are conserved, M is independent of time. Note that
M = 0 in the case of a neutrally buoyant structure, and
that M will be negative at any material point for which
the mass density of the immersed elastic material is less
than that of the ambient fluid. To complete the Lagrangian
description of the elastic material, we need to specify the
elastic potential energy functional, E[X], which is used in
the calculation of the elastic forces from the configuration
X(,,,t) at any given time. The mass density py of the
ambient fluid and the viscosity p of the system as a whole
are constant parameters. With this notation, our equations
of motion read as follows:

p(x, 1) (2—’1’ +u- w) +Vp =uViu+fx, 1) (1)
V-u=0 2)

fx, 1) = /F(q, r,s,t)8 (x —X(q,r,s,t)) dgdrds 3)

px,t)y=po+ | M(q,r,s)8(x—X(q,r,s,1)) dgdrds
4)

X
—(q,r,s,t) =u(X(q,r,s,1),1)
ot
= /u(x, t)d(x —X(q,r,s, 1)) dx (@)
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These equations (without the viscous term) can be for-
mally derived from the principle of least action, see [6] for
details. Here we just give an informal discussion of their
meaning.

Egs. (1) and (2) are the familiar Navier—Stokes equa-
tions of a viscous incompressible fluid, with a variable
mass density p(x,) and an applied force density f(x, t).
Although it may be unconventional to use these equations
in the case of an elastic material, one should recall that in
the derivation of the incompressible Navier—Stokes equa-
tions the only ingredients are Newton’s laws of motion,
incompressibility, and a particular form of the stress tensor.
It follows that the incompressible Navier—Stokes equations
are applicable to any incompressible material, provided that
appropriate allowance is made for the particular stress-ten-
sor of the material, which may, of course, be different from
that of a fluid. Here, the applied force density f(x, t), the
divergence of the elastic stress tensor, plays that role.

Note that Eq. (1) also involves the non-uniform mass
density p(x,t). Since the fluid and the structure are both
incompressible, it must be the case that p(x, 7) at any given
material point is independent of time, i.e., that Dp/Dr = 0,
where D/Dr is the material derivative: 0/0¢ 4+ u - V. This
constraint is implicit in Egs. (4) and (5); it does not have to
be imposed separately.

Egs. (3) and (4) provide conversions from the La-
grangian force and mass densities F(gq,r,s,t) and
M(q,r,s) to the corresponding Eulerian force and mass
densities, f(x, ) and p(x, t), respectively. The relationship
between corresponding densities is not that their values
are the same at corresponding points, but rather that their
integrals over corresponding regions are equal. One can
confirm that this is satisfied in our case by integrating Eq.
(3) or Eq. (4) over some arbitrary region of space, changing
the order of the integrals on the right-hand side, and noting
that the integral of the Dirac delta function yields 1 or
0 depending on whether or not the domain of integration
includes the point x = X(q, r, 5, 1).

It is important to note that Eqgs. (3) and (4) still make
sense in the special case that the immersed elastic structure
takes the form of a surface instead of displacing any
volume. In the case of such a structure (like a sail or
parachute canopy), we need only drop one of the three
Lagrangian coordinates ¢q,r,s so that Eqs. (3) and (4)
become

fx, 1) = /F(r, s,1)8 (x — X(r,s,t)) drds @)

px,t) = po+ / M(r,s)d (x — X(r,s,t)) drds )

In each of these equations, the Dirac delta function is still
three-dimensional, but there are only two integrations to
perform so the result is singular like a one-dimensional
delta function. Again, the integral of f(x, ) or p(x, 1) over
any finite three-dimensional region gives a finite result.

Eq. (5) states that the velocity of any material point
of the structure may be found by evaluating the Eulerian
velocity field u(x, r) at the current location of that material
point. This is essentially the definition of the Eulerian
velocity field, but it also enforces the no-slip condition at
the interface between the fluid and the structure, since we
require that u be continuous. The second form of Eq. (5),
in which the Dirac delta function appears, shows that the
conversion from Eulerian to Lagrangian velocity can be
expressed in a manner that resembles the conversions from
Lagrangian to Eulerian force and mass densities, Egs. (3)
and (4). All of these conversions involve integral operators
in which the Dirac delta function appears as a kernel. In
Eq. (5), however, the integral is over the fixed Cartesian
coordinates x, whereas in Eqgs. (3) and (4) the integrals are
over the moving curvilinear material coordinates g, r, s.

Eq. (6) is shorthand for the statement that F is minus the
Frechet derivative of E. That is, dE = — f F - dX dq dr ds,
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for any perturbation dX, up to terms of higher order in dX.
This is essentially the principle of virtual work.

3. Numerical method

The Immersed Boundary Method is obtained by dis-
cretization of the above equations of motion. For details in
the uniform density case, see [2—5]. The case of non-uni-
form mass density is similar, except that the Navier—Stokes
solver involves the solution of difference equations with
non-constant coefficients at each time step. Thus, Fourier
transform methods are no longer applicable, and some iter-
ative method such as multigrid must be used. An example
of such a computation can be found in [7], and we report
on another such example here.

4. Results

In this section, we present results of two different im-
mersed boundary computations, illustrating different as-
pects of the method. The first is a computer simulation
of the heart. It involves all aspects of the mathematical
formulation mentioned above except that the density of the
system is considered uniform. In particular, heart muscle
is modeled as an anisotropic, incompressible, elastic mate-
rial that is neutrally buoyant in blood, and the heart valve
leaflets are modeled as massless fiber-reinforced elastic
membranes. The elastic parameters of the heart muscle are
time-dependent, which is what makes it possible for the
model heart to beat.

The second computation presented here is a simulation
of a laboratory experiment involving a flexible filament
suspended in a flowing soap film with the upstream end of
the filament held fixed. Because the fluid is in the form of
a soap film, the whole problem is inherently two-dimen-
sional, and the immersed boundary (the flexible filament) is
one-dimensional. Filament mass, we have found, is an es-
sential feature of the problem. Therefore, this computation
illustrates those aspects of the Immersed Boundary Method
that are concerned with non-uniform density.

The heart model [2,8] is shown in Figs. 1-3. It is
made entirely of elastic and contractile fibers immersed in
viscous incompressible fluid. The model includes the four
cardiac chambers and all four valves; it also includes the
great vessels to which the heart is connected. These great
vessels of the model have blind ends but are equipped with
sources and sinks that provide appropriate loads for the
model heart. An external source/sink allows for changes
in cardiac volume and also provides a convenient reference
pressure. The specific form of the Immersed Boundary
Method used for these computations is described in [5], see
also [4]. Parameters, including the Reynolds number, are
those of the human heart.
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Fig. 1. Cutaway view of the three-dimensional heart model
during ventricular filling. The heart is viewed from the front, so
the left ventricle is on the right side of the figure and the right
ventricle is on the left. Structures that appear above the ventricles
are (from left to right in the figure) the main pulmonary artery
(with closed pulmonic valve), the ascending aorta (with closed
aortic valve), and the left atrium (with open mitral valve). Two
pulmonary veins are visible behind and connecting to the left
atrium. Fluid flow is shown in terms of streaklines: dots mark the
current positions of blood particles, and tails attached to these
dots show the trajectories of these particles over the recent past.
Note the prominent vortex that was shed from the anterior leaflet
of the mitral valve and has migrated down towards the apex of
the left ventricle.

Figs. 1 and 2 show cutaway views of the heart in
diastole from different perspectives. In Fig. 1 the clipping
plane cuts through the mitral valve, the aortic valve, and
the apex of the heart. Note the prominent vortex that was
shed primarily from the anterior leaflet of the mitral valve
and has then been convected towards the apex of the heart
by the jet of left ventricular filling. In Fig. 2 the model
heart has been turned so that the right ventricle faces the
viewer. A large swirling vortex with an interesting 3D
structure fills the relaxing right ventricular chamber. Fig. 3
shows the flow pattern of blood on the left side of the heart
during ejection. Note the closed mitral valve, supported
by papillary muscles and chordae tendineae, that prevents
backflow into the left atrium, and the open aortic valve that
allows the left ventricle to eject blood into the aorta.
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Fig. 2. Transparent view of the predicted flow pattern of right
ventricular filling. The heart model has been turned so that the
free wall of the right ventricle is in front. At the upper left in
the figure, the superior vena cava and inferior vena cava join
to form the right atrium. The open tricuspid valve is visible
at the atrioventricular junction. Other structures seen above the
ventricle are (from left to right in the figure) the ascending
aorta and the main pulmonary artery. Note the flow pattern of
the prominent vortex that seems to fill the entire right ventricle.
There is a hint of 3D structure in the way that the flow comes
down through the tricuspid valve in the foreground but swirls
around the vortex core into the background behind that inflow
jet.

It is our hope that this model will prove useful as a
computer test chamber for the design of prosthetic cardiac
valves. (For early studies of this kind in a two-dimensional
left heart model, see [9-11].)

Computer simulation of a flapping filament in a flowing
soap film is shown in Fig. 4. The filament, a flexible thread,
is anchored at its upper end in a soap film which flows
downwards under the influence of gravity, constrained by
two vertical wires at the edges of the film. Air resistance
flattens the velocity profile of the flowing soap film. This
simulation is based on an experiment performed in the
Courant Institute WetLab by Jun Zhang [12]. Zhang’s key
discovery is that under a range of conditions the filament
exhibits bistable behavior. Its two stable states are: (1) a
steady state in which the filament points straight down-
stream; or (2) a sustained oscillation in which the filament

Fig. 3. The computed flow pattern of left ventricular ejection.
Note the tension in the closed mitral valve and the jet of blood
entering the ascending aorta through the open aortic valve.

flaps like a flag in the wind and alternately sheds vortices
of opposite sign creating a wake that resembles the Kar-
man vortex street behind a cylinder. Either state is stable
against small perturbations (hence the term ‘bistable’) but
can be converted to the other state by a sufficiently large
perturbation.

Our principal finding is that the flapping state requires
filament mass. With a massless filament, the steady state in
which the filament points straight downstream is globally
stable. Fig. 4 shows a simulation in which the filament
mass per unit length is twice that of the experimental fila-
ment (saturated with water), the extra mass being explained
by a bulge in the soap film that forms around the thread as
a consequence of surface tension, thus raising the effective
filament mass. Although the Reynolds number of the com-
putation (Re = 210) is lower than that of the laboratory
experiment by two orders of magnitude, the results of the
simulation are in good agreement with those of the exper-
iment, including the observed flapping frequency of about
50 Hz.

5. Conclusions
The Immersed Boundary Method is a practical way
to simulate fluid—structure interaction in the incompress-

ible case. It can handle immersed elastic structures which
displace finite volumes (like muscle), and also immersed
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Fig. 4. Computer simulation of a flapping filament in a flow-
ing soap film. Selected time step from a simulation showing
sustained oscillation at about 50 Hz. Two different visualization
techniques are used. The left panel of the figure shows the in-
stantaneous positions of fluid markers created in bursts along the
upper (inflow) boundary, as in a hydrogen bubble flow visual-
ization. The right panel of the figure shows the corresponding
vorticity contours. In both panels flow is from top to bottom
(driven by gravity, working against air resistance) at an inflow
velocity of 280 cm/s. The filament length is 3 cm, and the width
of the channel is 8.5 cm. The Reynolds number of the computa-
tion (based on inflow velocity and filament length) is Re = 210.
The flapping filament sheds vortices of alternate sign which then
form the sinuous wake seen in the figures.

elastic membranes (like sails, parachutes, and heart valve
leaflets). Recent developments have extended the range of
Reynolds numbers that the method can handle (up to and
including that of the human heart), and have also made pos-
sible the simulation of immersed elastic structures which
are not neutrally buoyant in the ambient fluid.
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