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CONTROL OF OVULATION NUMBER IN A MODEL OF

OVARIAN FOLLICULAR MATURATION 1

~ H. Michael Lacker and Charles S. Peskin

ABSTRACT. We assume that interactions between
developing follicles occur through circulating
hormones that control cell growth. This leads
to a system of ordinary differential equations
of the form

and where £; measures the maturity of the i-th
follicle. We give a particular choice of £
for which the stable trajectories of this sys-
tem correspond to a limited range of ovulation
numbers. Along these stable trajectories, the
population of follicles is divided into two
parts: a few follicles mature to ovulation

and the rest atrophy and disappear. For some
parameter values there are also stable trajec-
tories that lead to pathological, anovulatory
states. The model takes on a probabilistic
aspect when we add the assumption that entry
into the class of interacting follicles occurs
by a stochastic process from a reserve pool of
immature, noninteracting follicles. We simulate
this situation numerically, and we compute the
distribution of ovulation times and ovulation
numbers.
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1. Introduction

As the female, in most classes of animals, has
two ovaria, I imagined that by removing one it
might be possible to determine how far their
actions were reciprocally influenced by each other
... . There are two views in which this subject
may be considered. The first, that the ovaria,
when properly employed, may be bodies determined
and unalterable respecting the number of young to
be produced... . The second view of the subject
is, by supposing, that there is not originally
any fixed number which the ovarium must produce,
but that the number is increased or diminished
according to circumstances; that is it is rather
the constitution at large that determines the
number; and that if one ovarium is removed, the
other will be called upon by the constitution to
perform the operations of both, by which means
the animal should produce with one ovarium the
same number of young as would have been produced
if both had remained [1]1. 7~

John Hunter, 1787

In mammals the number of offspring produced in a litter
is usually characteristic of the species or breed. This is
a reflection of the relatively constant number of eggs that
are periodically shed from the ovaries at the time of ovula-
tion. )

Each egg is released from a developmental unit called a
follicle which matures in the ovary over a period of weeks.
Follicles initiate growth continually from a large reserve
pool which is formed at birth. Only a few of those folli-
cles which start to grow in each cycle actually mature
and release ova; the rest atrophy and die. The observed
variation in ovulation number for a given mammal is suffi-
ciently small to rule out the hypothesis of independent
follicle growth. In fact, follicle interaction occurs
through circulating hormones. . It is our hypothesis that this
interaction determines ‘the. number of follicles'_that
eventually mature to ovulation. o ' )

, The assumption of -interaction through the citcﬁlatipn
"is' important. It will impose .a particular symmetry on the
class;of dynamical systems ﬁhéfZcéﬁfbé’ﬁﬁéd?fdfges¢rihe_
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follicle growth. We shall use the word global to describe
this kind of interaction.

2. Support for Global Interaction

The first evidence suggesting the possibility that glo-
bal interaction regulates ovulation number appeared in 1787.
The famous Scottish surgeon John Hunter removed an ovary
from a sow in order to determine what effect this might have
on the size of its litters (see the quote that introduces
this paper). He found that although the reproductive life
span was significantly reduced by this manipulation, the size
of each litter did not change. Further examination showed
that the number of eggs released by the remaining ovary
doubles at each ovulation. If the operation is performed
at the right time in the cycle, compensation by the remain-
ing ovary will occur at the next scheduled ovulatory period
[2,3]. This compensation has been observed in many mammals
and is called the law of follicular constancy [4].

If ovulation number is controlled only by local inter-
actions between follicles, then the number of eggs released
at ovulation by one ovary should be independent of the
number released by the other. One would expect the removal
of one ovary to reduce the ovulation number by one-half.
However, if ovulation number is controlled by follicle inter-
actions that occur through the ciréulationithen any two given
follicles will interact in the same'way whether they are
nearest neighbors or in different ovaries. Removing-one
ovary should not change the number of eggs released at
ovulation provided that the size of the developing popula-
tion of follicles is still large compared to the number
which eventually ovulate in a cycle.

_ Since global interaction is spatially independent, it
cannot be sensitive to the way a given set qf.follicles is

distributed betwéen the two ovaries. This is unlikely to
‘be true if local, spatially dependent, interaction is

importaht..blf follicles interact primarily through the.
circulation then the distribution of eggs shed between the
two .ovaries when conditioned on a given total ovulation
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number should satisfy binomial statistics. If local inter-
action plays an important role then some deviation from the
binomial law might be expected. In fact, no significant
deviation from binomial statistics is observed in those
species which have been examined [5-10]. In mice, where this
distribution has been most extensively tested, p is very
close tof1/2.

It should be noted that binomial statistics and the law
of follicular constancy would also be satisfied if follicles
did not inberact at all. However, as previously mentioned,
the assumption of independent follicle growth cannot explain
the small variation in ovulation number that mammals can
achieve. For example, the number of follicles activated per
cycle in a young woman is on the order of 103. since the mean
ovulation number is one, the assumption of independent folli-
cle growth leads to a prediction of 2 eggs being released in
18% of her cycles. One would think that this would lead to a
higher rate of fraternal twins than the observed rate of '
about 1% [11].

3. The Physiological Mechanism which Mediates

Global Interaction

Developing follicles might communicate directly through
their own secretions or they might interact indirectly by
controlling the release of growth mediating hormones from a
distant site. The latter possibility would appear to be more
compatible with a global mechanism and is, in fact, supported
by a large body of evidence. The distant site is the pitui-
tary, whose secretions also help regulate other endocrine
glands.

Pituitary removal arrests follicle maturation in its
early stages. A chemical fraction from the gland, called
gonadotropin, can make follicles mature to ovulation in both
sexually immature animals and in animals whose pituitaries
have been removed. Gonadotropin consists of 2 protein
hormones called follicle-stimulating hormones (FSH) and
luteinizing hormone (LH). Specific receptors with extremely
high affinity for each of these hormones are found on folli-

cle cells: The number of receptors a follicle contains
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appears to depend on its maturity [12]. Both FSH and LH are
secreted in different amounts throughout the cycle. During
most of the cycle the ratio of FSH/LH is greater than 1,
however, in the few hours which precede ovulation there is
an abrupt increase in gonadotropin and the ratio reverses.

Indirect communication between follicles is established
by the fact that steroid secretions from developing follicles
regulate the release of gonadotropin. In several species,
the principal steroid hormone which regulates gonadotropin
release during follicle growth is estradiol. As a follicle
develops morphologically its estradiol secretory rate
increases [13,14]. The different cell types within a folli-
cle cooperate in producing estradiol from cholesterol. 1In
addition to its ability to regulate gonadotropin release,
estradiol is a potent stimulator of cell division within a
follicle. Many of the effects of FSH and LH on follicle
development may be mediated through estradiol and its pre-
cursors [15]. These local effects may explain the influence
of a follicle's maturity on its own growth rate.

On the time-scale of follicle maturation (days), estra-
diol is rapidly removed from the circulation. The rate
of removal is proportional to the concentration with a time-
constant measured in minutes [16,17]. Thus equilibrium is
rapidly achieved. The resulting serum concentrations of
estradiol are at least an order of magnitude lower than those
concentrations measured in follicular fluid [18].

4. Follicle Maturation

Mammals are born with a large reserve pool of immature
follicles that decays exponentially with age [19]. Once a
follicle leaves this pool it will either ovulate or atrophy.
Each follicle in the immature pool consists of an egg cell
which is surrounded by a small number of granulosa cells
(order 101). A basement membrane separates the granulosa
cells from the remaining ovarian tissue.

No new follicles enter the reserve pool after birth and
follicles only leave by starting to grow. A growing follicle

can be recognized microscopically by an increase in the
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number of its granulosa cells. The mechanism which triggers
granulosa cell division in a reserve follicle is not under- .
stood. Activation from the reserve pool continues in the i
absence of gonadotropin although follicle maturation does i
not proceed beyond its early stages. Exponential decay of
the reserve pool suggests that follicle activation may be

described by a poisson process.

Each follicle is surrounded by a vascular net which NPOTHALAMUS

forms outside the basement membrane. In this area the j ~PITUITARY

i i i i i i ig—- FSH (h,) | released
surrounding ovarian tissue differentiates to form an indis 7{LHih5} from pituitary
tinct shell called +the theca. At the biochemical level i
follicle maturation is a very complex process. Many inter- CIRCULATION

connected reactions between granulosa and theca appear to !

«

understood. '

|
unfold in a coordinated way that is just beginning to be ‘ ¢ secreted by follicles }
\

At any given time there is a distribution of follicle
maturities in the ovary. In humans follicles range in size
from 10_2 cm in diameter to 2.5 cm. The largest follicles
contain 107 granulosa cells. Before puberty all growing
follicles atrophy at different times and stages of growth.
Periodically, after puberty, a small and remarkably constant
number, depending on the species, complete maturation and FOLLICLE 1
release their eggs nearly simultaneously on the time scale i
of follicle growth. In mice, where the most careful measure-
ments have been made, the estimated time from growth initia-

tion to ovulation is 3 weeks [20].
Figure 1. Schematic representation of the interaction

5. Formulation of the Model ! between 2 developing follicles.Follicle estradiol

. . . . secretory rate is used as a measure of follicle
In this section; a model is proposed to describe the Y

. i . . A X maturity. The circulating concentration of estra-
interaction of developing follicles by means of circulating

| diol, & , is assumed to control the release of the

hormones. For the sake of clarity, very simple and specific L. .
pituitary gonadotropins FSH and LH. These pitui-

physiological assumptions are made. In fact, however, the
! L. . i tary hormones regulate the rate of follicle matura-
model is not critically dependent on all of these assumptions. : .
. . . . tion. However, the response of a follicle to the
A more general derivation has been given in (21). 1
X . circulating concentrations of FSH(h,; d LH(h
Consider a population of N develpping follicles. Each g ratt ( 1/ an ( 2)

R at an articular time is also assumed to depend on
follicle will be characterized by the number of granulosa Y P P

. / follicle maturity. (R inted from [21].
cells X, (t), i = 1,2,...,N. We will assume that follicle g urity. (Reprin m [211.)
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extradiol secretory rate is proportional te xi although any in-
creasing monotonic relationship between these two quantities
could be used without altering the form of the model that is
eventually proposed.Let 0 be the constant of proportionality.

Assume that estradiol is distributed in the serum volume
V at concentration &(t) and that it is removed from the
serum at a rate YE&. Since the rate of change of serum
estradiol must be equal to the difference between its produc-

tion rate and removal rate, it follows that

N
e _
va = L ox e - vE. (0
i=1

If estradiol is removed from the circulation at rates
which are fast on the time scale of follicle growth [22-24]
then £ (t) is always near its equi}ibrium value. More pre-
cisely, if xi(t) are slowly varying on the time scale given
by T = V/Y, then

E( s ¥ x (2a)
t) = = X, (t) . a
Vo= b
It is convenient to write (2a) in the form
N
E(t) = L E;(0) (2)
i=1

where Ei(t) = Oxi(t)/Y is the contribution that the ith
follicle makes to the estradiol concentration at time t.
Since Ei(t) is proportional to Xi(t) it is also a measure of
follicle maturity.

We assume that serum estradiol regulates the pituitary
production of LH and FSH. As above, we assume that the equi-
libration rates for the circulating concentrations of
these hormones are fast compared to the time scale of folli-
cle maturation [25-27]. Then we can define the functions

h,: £ = h; (£)

h,: E > h,(E)

where hl and h2 are the circulating concentrations of FSH
and LH.
Finally, we assume that the specific growth rate of

(3)

granulosa cells in a follicle depends on the concentrations
of circulating gonadotropins and the maturity of the
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follicle. That is
ax;/dt = x,;4(x;,h;,h,) . (3a)

Xi appears explicitly on the right-hand side to emphasize
the underlying exponential character of cell growth. The
function § can be given a simple physiologic interpretation
as follows: If for any given follicle we define the net
growth rate as the net difference between the rate of cell
division and the rate of cell death, then ﬁ is the net
growth rate per cell, or the specific growth rate.

Equation (3a) can be rewritten in terms of Ei as
follows

dEi/dt = Ei¢(Ei:€) (4)
where we have introduced the function ¢ defined by
_ Y
9(5;,8) = B(5 E;ehy (B),hy(E)) . (5)

Our model consists of equations (2) and (4) which we

write together as a system for future reference:
dg,/at = Ei¢(£i,a) il |
13 ity Ej

It is important to recognize that the effects of FSH
and LH on follicle growth are still present in equation (6).
They are represented implicitly through equations (3) and (5).
The system (6) really represents a class of models which
becomes a particular model when ¢ is specified, as we shall
do.

There are two important symmetries in (6). First, the
form of ¢ is the same for all i. This means that all folli-
cles satisfy the same law of growth. The actual growth
rate may differ in different follicles at the same time
because the value of the growth rate depends on maturity Ei.
The second symmetry in (6) is that interaction between fol-
licles occurs only through £ which is a symmetrical
function of the Ei. This is an expression of the assumption
that follicle growth is regulated by global interactions
that are exerted through circulating hormones. All follicles
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with identical maturity Ei are assumed to respond in the same
way when exposed to a given circulating hormonal environment.

At any time the environment is controlled by £.

6. The Growth Law Function ¢

Since ¢ is arbitrary, it might seem that the class of
models répresented by the system (6) is too broad to be
useful. In fact, as we have just shown, the symmetries in
(6) are very restrictive. Is it possible for a model to
exhibit the correct qualitative features of follicle matura-
tion given the restrictions that all follicles have the same
program for development and interact only through the
circulation? Such a model should possess the following
properties: ]

(1) It should allow a few follicles to emerge from the
the developing population with ovulatory maturity while the
remainder atrophy and die at different times and stages of
growth;

(2) The number of ovulatory follicles should be rela-
tively constant and emerge at regular intervals even though
follicles start growing at random times;

(3) It should be able to account for the fact that
mammalian species and breeds have different characteristic
ovulation numbers.

A priori, it is not clear whether a growth law ¢ exists
which will generate this qualitative behavior. We shall
answer this question by giving an example. Whether or not
this example actually corresponds to the developmental pro-
gram of follicles in the ovary remains to be seen.

The specific example which we will analyze is:

dgi/dt=£i ¢(ElIE) ’ i=1l---lN

N
E= 1 ¢
391

$(85,8) = 1 - (E-MjE4) (E-MyE)

5 (7)

where Ml and M, are constants that remain unchanged for
each i.
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At this point the reader who is familiar with the bio-
chemical complexities involved in the hormonal regulation of
cell growth may protest that the model is clearly too simple
to be redlistic. The answer to this objection is that the
growth law ¢ is not intended as a detailed description of all
the processes involved in the regulation of follicle matura-
tion. 1Instead, ¢ is supposed to summarize the relevant
consequences of the biochemistry. In fact; we have not
arrived at ¢ by studying the biochemistry but by a process
of unnatural selection in which various growth laws were
tried out and their predictions compared with the behavior
of the ovary. A major task for the future is to relate the
growth law to the underlying biochemistry.

The particular model represented by the system (7) is
motivated by the stability of its equilibria and the prop-
erties of its symmetric solutions. These will now be
discussed.

Consider the behavior of (7) when M follicles have
exactly the same maturity and all others are dormant. Since
€ is the sum of the contribution made by M identical folli-
cles, it follows that

E(ty/M, i=1,...,M
Ei(t) = (8)
0 , 1= M+l,...,N.
When (8) is substituted into (7) the dynamics simplify to
ag/dt = £ + g’ (9)
where p = - (1- Ml/M)(l— M2/M). Without loss of generality
we will assume M, > Ml.

When the M follicles are sufficiently small the linear
term in (9) dominates and the follicles grow independently
and exponentially. As the follicles grow the cubic term
begins to play a role. The role that it plays depends on the
number of interacting follicles M (Fig. 2).

If M is outside the interval (Ml’Mz)' then Y1 < 0 and the
follicles will approach an equilibrium maturity

= 1/V (e
Ey = 1// (W10 (W) (10)

independent of the initial maturity. This equilibrium is
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(a)

p>0

(b)

Figure 2. Qualitative behavior of the symmetric solutions of
equation (6). These correspond to the special
case where M developing follicles are imagined to
interact with exactly the same maturity and all
other follicles are assumed dormant. If the
number of follicles, M, is between Ml and M2 (u>0),
then an ovulatory solution develops (2b). However,
if M lies outside the interval (Ml’MZ) then the M
follicles approach an equilibrium
Em = 1//TE:EITTE:EET maturity (2a). Note that the
idealized ovulation time, T, (2b) depends on M and
initial maturity (see equation (11)).

(Reprinted from [21].)
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stable within the framework of the symmetric solutions given
by (8), but it usually becomes unstable when unsymmetric per-
turbations are considered (see below).

If on the other hand the number of identical follicles
M is within the interval (Ml'MZ) then the interaction will
be stimulatory (i > 0) and the M follicles will "ovulate"
in a finite time given by

T = % gn ((1+u€§)/u€(2,) ' (11)

where EO is the initial value of &. Solutions which "blow
up" in finite time are appropriate to represent ovulatory
solutions for the following reason. 1In women and primates
Ei(t) for an ovulatory follicle has actually been measured
during the later part of the follicular growth phase of the
cycle. This is possible because the serum estradiol concen-
tration at this time is almost entirely due to a single
ovulatory follicle. The concentration does not approach an
equilibrium but continues'to increase in slope [28] even on
a logarithmic scale. High, fast rising serum estradiol levels
appear to be important in triggering the gonadotropin surge.
On the time scale of follicle growth, this surge is essenti-
ally an instantaneous event that causes follicle rupture and
egg release. ’

Thus, when M identical follicles interact, ovulation
numbers are restricted to lie within the range (Ml,Mz). In
reality follicles interact with different maturities because
they start to grow at different times. However, at any
instant, there is only one concentration of each circulating
gonadotropin. This suggests that it might be instructive
to consider the behavior of the function ¢ when £ is fixed
and Ei varies.

As a function of the maturity Ei the growth rate ¢ has
a parabolic form with a maximum at a particular maturity

I T,/ 410,) ) 6
that depends on the instantaneous value of &. When Ei
differs too much in either direction from this optimal
maturity the growth rate is negative. Thus the model promotes

the growth of follicles whose individual maturities lie in a
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certain range. Since the optimal maturity is proportional to
E a group of follicles will be selected for growth as &
increases in time. Of course, the estradiol concentration
develops in time as the net result of the simultaneous growth
and atrophy of all follicles in the interacting population.
If we assign to each of the N follicles a coordinate
axis in N-dimensional space, then any set of maturities can
be represented by a point P with coordinates (51,52,...,EN).
The special solutions (8) of M identical follicles will lie
along the line of symmetry lM associated with each M-dimen-
sional coordinate hyperplane (see Fig. 3a). Those lines of
symmetry in coordinate hyperplanes with dimension outside
the interval (Ml’MZ) will contain an equilibrium point Py
which blocks ovulation. (Each PM has M coordinates equal to
the equilibrium maturity &, = l/JTﬁ:ﬁITTﬁ:ﬁ;_, and the
remaining N-M coordinates equal to 0.) If M is within the
interval (Ml'Mz) then no equilibria will lie on EM. Any
starting point on one of these QM will escape along this line
to » in a finite time given by eguation (11). These corres-

pond to ovulatory solutions.

' 7. Stability of Symmetric Equilibria

Additional insight about the behavior of the growth law
is obtained by examining its linearized behavior near each of
the equilibria Py- Because of the symmetry in the problem it
is enough to consider the equilibrium whose first M coordi-
nates are EM. Let P = (51,52,...,EN) be a perturbation

from this equilibrium. Substituing P +P into equation (7)

M
and assuming that P is small produces the linear system.

B = ab
N \
( [
al+bl b ' bl
. 1! (12)
b, ° !
A= 1 a.+b, |
__________ l__l_?____________._ M
1882 . 0
! .
] 0 .
0 ' )
1]
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where a;= EM %%I'g e ra, = ¢(0,MEM), and by = EM %% .
M M MM
are functions of M and the growth law parameters Ml and M,
(see Table 1). It should be noted that the symmetric equili-
bria PM do not exhaust the set of stationary states of (7).

Equilibria off the lines of symmetry also exist. They are all
unstable and will not be analyzed in any great detail.

It is easily demonstrated that the eigenvalues of A are
either the eigenvalues of the symmetric block in the upper
left or the diagonal block in the lower right. Although
there is a complete set of N independent eigenvectors for
each PM , there are only 3 distinct eigenvalues XS = a1+Mbl,
Ain = a; and Aout = a, (see Table 1).

The eigenvectors of A have a simple geometric interpre-
tation which is most clearly illustrated by considering the
following example (see Fig. 3a). Suppose the number of inter-
acting follicles, N, is 3 and the growth law parameters of
(7) are Ml = 1.9 and M2 = 2.9. The stability analysis
suggests that, with probability 1, two follicles will ovu-
late and one will atrophy.

Since the interval (Ml’Mz) includes the integer 2, the
lines of symmetry, Rz , in each 2-dimensional coordinate plane
will be ovulatory. That is, if 2 follicles start with
exactly the same maturity and the third is dormant, then
both follicles will ovulate. However, since 1 and 3 are
both outside (Ml’MZ)' the coordinate axis, ll’ and the line
of symmetry in 3-space, 23 , will each contain a stationary
point. These are labelled P1 and P3 in Fig. 3a. Pl prevents
one follicle from ovulating when the other 2 are dormant. Py
prevents 3 follicles from ovulating when they all have the
same maturity. The three eigenvectors of A at Py and Py will
now be considered.

The eigenvector associated with AS = a; + Mbl lies- along
lM. From the behavior of the symmetric solutions (Fig. 2a)
we expect XS < 0 for M outside (Ml,Mz). Table 1 shows that
this is indeed true. There are N-M independent eigenvectors
associated with A = a,. They correspond to perturba-

out
tions from PM which are out of the M-dimensional
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‘*/, '/3 .
[}
4L, 1 : _
wP| H
«L ! ]
Xm :
A :
N7 \ '
Xm\ T AN : .
\ B \ out
‘\ \ ll 4
AN T Bl EA I 4 ,
-~ PA=)
N i |l 3
R A '

&2
el b
Figure 3. See text for explanation. The dashed lines in (a)
are out of the plane of the paper. The origin is
in the plane. The curves in (b) are in the coordi-

nate planes and those in (c) are in 3-space.

(Reprinted from [21].)
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coordinate hyperplane. For P

1 there are N-M = 2 perturba-
tions out

of the l-dimensional coordinate hyperplane

(the coordinate axis). These are illustrated in Fig. 3a.
A > 0 for P, ,

out 1 since 1 = M < M, = Mle/(M1+M2) =1.15
(see Fig. 4 where Aout is sketched as a function of M).
Fig. 3b illustrates that Py directs nearby solutions

in the coordinate planes towards 22. In fact, all solu-

tions in the plane will asymptotically approach &

2 and "blow-
up" in finite time. Thus two small

nondormant follicles of
unequal maturity will both grow and the smaller one will
"catch-up" in finite time and ovulate.

The final eigenvalue xin = a; has an M-1 dimensional

eigenspace that corresponds to perturbations from PM that

lie in the M-dimensional coordinate hyperplane but are ortho-

gonal to QM' For Pl no such space exists (the eigenvectors

of Pl are already complete). For P3 ;, M=1 = 2. The pertur-

bations from P3 which lie in the 2-dimensional space ortho-

gonal to £3 are shown in Fig. 3a. A, > 0 , because M = 3

of Ain as a function of M in Fig. 4.
solutions towards the 2-dimensional
coordinate planes which contain ovulatory solutions (Fig. 3c).
In fact all phase curves

> 2.9 = M, (see sketch
P3 directs all nearby

except 21 and 23 asymptotically

approach Lz and "blow-up" in finite time. Since any small

perturbation from 21 and £3 will approach lz in finite time,

two of the three interacting follicles will ovulate and one
will atrophy and die.

If the growth law parameters are kept the same as in the

example above but the number of interacting follicle N

made larger than three,

is
then the stability analysis suggests

that all but two follicles will atrophy and die. In this

case, all the stationary states PM in higher dimensional
coordinate hyperplanes than three

are unstable saddle point
equilibria which direct nearby

solutions toward lower
dimensional coordinate subspaces (see Table 1

and Figs. 4
and 5).

This suggests that all phase curves will asymptoti-
cally approach the 2-dimensional coordinate hyperplanes g
which are filled with ovulatory trajectories.
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Stable
Y PmMﬂ No
. Saddle —| |— Stationary—~—Saddle —

Points States Points
|
M
M|\ M My
\\\
\

Figure 4. Sketch of the eigenvalues of A (see (12)) as a
function of M (see Table 1). A

is associated
out

with those eigenvectors which are orthogonal to

the M-dimensional coordinate hyperplane. A is

in

associated with perturbations which are orthogonal

to LM but within
hyperplane. The
the eigenvector

is always stable

the M-dimensional coordinate
eigenvalue ks associated with
along the line of symmetry QM
and is not indicated in the

diagram. Only integer values of M have physical

meaning.

(Reprinted from [21].)
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TABLE 1

(Reprinted from [21].)
A Summary of the Stability Analysis for Equilibria P

39

M-
Eigenvalues Eigen- Perturbation Geometric
of value Eigenvectors Interpretation in
_the Multi- 7= (8E §E.) N-Dimensional
variational plicity 1'°°"'°°N Phase Space of
matrix = i
A Z=(6E ..., 8E)
Ag= a; + Mby 1 _ A perturbation
ZS satisfies from the
= =2 . stationary point
§E.= {1' i=l,....M p along &%
i 0, i=M+1i,...,N M M*
Ain_ a; = M-1 21""’2M—1 %gg piituzgzﬁ%gn
_ independent vectors m tae ron=
(M) +M,) M-2M, M, which satisfy ary point Py
ML) (ML) M perpendlculgr to
1 2 _ &M but within the
I 8. =0, ; :
P 1 M-dimensional
i=1 .
coordinate
6€i=0 , i=M+l,...,N hyperplane.
Aout= 25 = N-M EM+1""'2N—1 Perturbation out
2 satisfy of the M-
1 - M dimensional

(M—Ml) (M-Mz)

6Ei= 0, i=1,...,M
N

Ei=0' i=l,.-.M
i=M+1

and iN satisfies

8E.=

{(M—N) b ,i=1,..M
1

coordinate hyper-
plane.

:(al-a2)+Mbl, i=M+1l,...,N

0 2 4
l
|
|
|
|

=
-
-

)

IS
v
g .

M

M

Saddle Points
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Oof course, ovulatory solutions need not be restricted to
a single ovulation number. Ml and M2 can be chosen so that
several coordinate hyperplanes will contain ovulatory solu-
tions (those M-dimensional coordinate hyperplanes in the
interval (Ml’MZ))‘ In addition, for special values of Ml and
M2 it is possible for some of the equilibria Py to become
asymptotically stable. As shown in Fig. 4 all eigenvalues
are negative when M is between M, = M1M2/(M1+M2) and M, .
Integers in this interval will correspond to stable Py-

Each of these stable equilibria has a domain of attrac-
tion, and when the initial condition 1lies within such a
domain, ovulation will not occur. Instead M follicles will
become stuck at an equilibrium maturity given by equation
(10). sSince these "stuck" follicles continue to secrete
hormones, they can be a source oé additional pathology in
the uterus and breast where cell growth is regulated by

steroids secreted from the developing follicles.

8. Numerical Solutions

In this section we will test and further develop our
intuition about the behavior of the growth law by solving
the system (7) numerically. The numerical method used to
obtain these results will be described after we discuss the
change of variables on which it is based (Section 9).

Initial conditions are determined in the following way.
Each of N follicles is independently assigned a starting
maturity that is chosen at random from a uniform distribution
on the interval (O,Egax). The observation that the reserve
pool decays exponentially with age suggests that follicle
activation could be modeled as a poisson process. For now,
however, we will consider each cycle to begin with N folli-
cles activated at the same time but with different maturi-
ties.

Figure 6 shows the resﬁlts of 4 cycles in which 10
follicles are activated in each cycle. Although each follicle
satisfies the same growth law (M; = 3.85, M, = 15.15 for
each follicle), some follicles continue to mature while

others atrophy and die. The results of many cycles, with

1.50

0.00

1.50

MATURITY

0.00

Figure 6.
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(R) (B) Z
(C) (D) I
0.00 .65 -~ 1.30 0.00 .65 1.30
_ TIME
Follicle maturation curves in 4 cycles. Each curve

represents the development of a follicle whose
initial maturity is chosen at random from a uniform
distribution of maturities between 0 and 0.1.
Although every follicle obeys the same law of
growth, some follicles are selected for continued
development'while others become atretic. The growth
growth law parameters Ml and M, of equation (7) are
are the same for each follicle (M1 = 3.85, M2=15.15).
In cycles (A) and (D) 5 ovulatory follicles emerge.
In (B) and (C) the ovulation number is 4. In each
cycle 10 follicles interact. Note that it is
possible for an ovulatory follicle and an atretic
follicle to have almost the same maturation curve
for most of the length of the cycle (see cycle D).
On the other hand, a significantly smaller follicle
can occasionally "catch-up" and ovulate (see cycle
B). The ovulation time is slightly different in
each cycle.

(Reprinted from [211].)
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Figure 7. Distribution of ovulation numbers and ovulation
times. In (A) the growth law parameters are the
same as for Fig. 6 (Ml= 3.85, M2==15.15). The
statistics are obtained for 500 cycles. In every
cycle 30 follicles interact. Each follicle is given
an initial maturity that is chosen independently
from a uniform distribution in the interval
(0, 0.075). In (B) the growth law parameters have
been changed to Ml= 5.5, M2= 61.7. The results
summarize 300 cycles. As in (A), 30 follicles
interact in each cycle but the initial maturities
are uniformly distributed in the interval (0, 0.02).
Statistics (mean + SD): (B) ovulation number =
4.32 + 0.47, ovulation time = 1.39 + 0.23;

(B) ovulation number =7.34 + 0.58, ovulation time
=1.12 + 0.08.
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the same parameters as above, show that two ovulation numbers
are highly favored (Fig. 7). Even though ovulatory solutions
have been shown to exist ~for all integers in the interval
(Ml'MZ)’ the larger ovulation numbers are not observed at
all! This surprising result will be explained in Section 9.
Figure 6 could be interpreted in terms of a threshold initial -
maturity which separates ovulatory from atretic follicles.
However, the results indicate that this threshold is
"automatically adjusted" in each cycle so that number of
follicles which ovulate is nearly independent of the initial
maturities. Figure 7 also shows the distribution of ovula-
tion times which is unimodal and skewed in favor of shorter
intervals. This qualitative shape is observed in many
species including humans.

The distribution of ovulation numbers is independent of

Egax' The shape of the ovulation time distribution is
unaffected by the choice of Eiax so long as follicles start

at maturities dominated by the independent exponential growth
phase.

An interesting and perhaps important physiologic feature
of the model occurs when the size of the interacting popula-
tion changes. Figure 8 shows a shift in the distribution of
ovulation numbers towards lower integers in the interval
(Ml’Mz) as the size of the interacting population increases.
There is also striking improvement in the control of ovula-
tion time as N increases. These results suggest that the
large number of follicles which initiate growth but atrophy

and die in each cycle are playing an important role in the

regulation of ovulation number and time.

The distribution of ovulation number seems to converge
with increasing N to some limiting distribution. The prob-
ability density of ovulation times appears to have a singular
limit with the standard deviation decreasing by a factor of
1/v¥N. Although each ovulation number has its own distribu-
tion of ovulation times (Fig. 9), nevertheless all of these
conditional distributions appear to converge to the same
singular limit as N + «. This means that the limiting cycle.
time is independent of the ovulation number.
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Figure 8. The effect of interacting follicle population size

on the distribution of ovulation times and numbers.
Larger numbers of interacting follicles improve
control of ovulation time and favor smaller ovula-
tion numbers. In (A) 1000 follicles interact in
each cycle. In (B) 100 follicles interact per
cycle and in (C) 30 follicles interact. Each graph
" represents the results of 80 cycles. Every folli-
cle obeys equation (7) with Ml = 6.1, M, = 5000.0.
Tnitial maturities are chosen at random to be a
number from a uniform distribution between 0 and
107°. sStatistics (mean + s.D.): (A) ovulation
number = 7.79 + 0.65;ovulation time = 4.3710.01;
(B) ovulation number = 8.82 *+ 0.67, ovulation time
= 5.55 + 0.04; (C) ovulation number = 9.04 + 0.65,
ovulation time = 6.33 + 0.10.
(Reprinted from [211.)
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Figure 9. The distribution of ovulation times conditioned on

ovulation number. The initial maturity of each
follicle is chosen independently from a uniform
distribution in the interval (0, 0.05). The growth
law parameters (Ml = 5.5, M2 = 61.7) are the same
as for Figure 7 (B). In each cycle the number, N,
of interacting follicles is 10. (A) represents

the ovulation time frequencies for those cycles in
which 7 follicles ovulate (mean + S.D. = 1.31+0.25).
(B) represents the distribution of ovulation times
for those cycles in which 8 follicles ovulate (mean
+ S§.D. = 1.13 + 0.20). The area under each graph

is equal to the probability of achieving that ovula-
ovulation number. The results are obtained from a
total of 1500 cycles. The distribution of ovula-
tion times for all cycles is represented in (C)
(mean + .S.D = 1.25 + 0.25).

(Reprinted from [21].)



46 LACKER AND' PESKIN

Figure 10 illustrates the results of 4 cycles when the
growth law parameters are Ml = 6.5 and M2 = 15.5. As pre-
dicted from the stability analysis, these parameters admit
the possibility of both ovulatory solutions and anovulatory
states, since the interval (M,,M;) contains the integers 5
and 6. In Fig. 10B, 6 follicles become "stuck" at the
predicated’ equilibrium maturity. Much more infrequently 5
follicles (Fig. 10D) become "stuck" (2 out of 1000 trials).

We now briefly consider the behavior of the growth law
when follicles are activated from the reserve pool at random
times. In Fig. 11 (preliminary results), follicles initiate
growth at random times given by a poisson process. Each
activated follicle is given the same initial maturity and
obeys the same growth law (equation (7) My = 3.15, M2==15.15.
Note that the number of interdcting follicles, N,
is now a function of time.

Although there is no source of periodicity, a relatively
constant number of follicles periodically emerge as ovula-
tory. Just before ovulation the serum estradiol concentra-
tion is almost entirely due to the ovulatory follicles. At
ovulation, these follicles are removed from the interacting
population. This results in a precipitous drop of circula-
ting estradiol to levels where stimulatory interactions can
again occur and allow a new crop of follicles to mature.

The ovulation number and time need not be the same as the
previous cycle because of the assumed stochastic nature of
growth initiation from the reserve pool.

An intriguing property of this form of the model is
that successive cycles are completely uncorrelated. That is,
any two random variables (e.g. ovulation times) associated
with different cycles are independent. This follows from
the fact that, in our model, atretic follicles are driven to
Ei = 0 (zero rate of estradiol production) at the moment of
ovulation, so they are completely removed at the same time as
the ovulatory follicles. Thus the process has no memory from
one cycle to the next. This raises the gquestion whether suc-
cessive cycles are correlated or not (the answer may be
different in different species). Some preliminary evidence

0.00

1.50

MATURITY

0.00

Figure 10.
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(D)

| —

0.00 1.75 3.50 0.00 1.75 3.50

TIME

Follicle maturation curves for parameters which
admit both ovulatory solutions and anovulatory
states. Every follicle satisfies equation (7)
with the same parameter values Ml = 6.5, M2=15.5.
The initial maturity of each follicle is chosen
at random from a uniform distribution in the
interval (0, 0.05). In (A) and (C) 7 follicles
ovulate. In (B) an anovulatory state occurs in
which 6 follicles approach an equilibrium
maturity of 0.46. In (D) 5 follicles approach a
maturity of 0.25. Note that the approach to
equilibrium need not be monotonic (B). 5

(Reprinted from [21].)
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11. (Preliminary results.) Behavior of the growth law

(7) when follicles begin to develop at random
times determined by a poisson process. Each small
vertical mark on the time axis represents the
activation of a follicle. All activated follicles
start with the same maturity (0.03) and obey the
(Ml = 3.85, M, = 15.15).
Although there is no source of periodicity, a

same law of growth.

relatively constant number of follicles mature at
The results of the 4
illustrated cycles are tabulated below:

periodic intervals.

. Follicles
Ovulation Ovulation Activated
Cycle  Number Time per Cycle
1 4 2.91 18
2 4 3.12 27
3 5 2.20 17
4 5. 2.21 20
TOTAL 18 10.44 82.

The mean activation rate is set at 8.
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bearing on this question is discussed in [29].

In this idealized model ovulation number and time are
determined entirely by interactions between activated folli-
cles. These interactions are exerted indirectly through the
effects of serum estradiol on the release of circulating
pituitary hormones. In several species other factors
besides secretions from developing follicles influence
gonadotropin release. Some of these are in the external
environment and periodically change with the season or day
(light).

other than growing follicles including, for example, the

Other factors include steroid production by sources
corpus luteum. As previously mentioned these factors cannot
alone account for the small variance in ovulation number that
mammals achieve. They can, of course, modulate the mechan-
ism proposed for the regulation of ovulation number and time

and therefore should be considered in more detailed schemes.

9. Stability of N-Space Trajectories

The stability analysis of symmetric equilibria suggested
that the phase curves in N-space would approach the lines of
symmetry, EM ;, in coordinate hyperplanes with dimensions in
the interval (M*,Mz).
contained ovulatory solutions (for M between M. and Mz) or

) 1
stable anovulatory equilibria (for M between M, and Ml).

It was shown that these lines either

Although the numerical results agree with these theoretical
predictions, in the sense that all of the observed values of
M fall within the allowed interval, the larger ovulation
numbers in this interval are not observed even though ovula-
It might be thought
that these ovulation numbers simply have a low probability

tory solutions for these numbers exist.
of occurring. In fact, however, the larger allowed ovula-
tion numbers have probability zero. As we now show, this is
because ovulatory solutions in the interval (2M,,M,) are
unstable.

Since ovulatory phase curves blow up in finite time, a
change of variables is chosen in which these curves
approach finite equilibria whose stability can be analyzed

by the methods employed in Section 7. This is accomplished



50

.
o

LACKER AND PESKIN

Az A

3
x
4=
oot
n
<
1=
N

e T

Figure 12. Stability analysis of the equilibria represented

by equation (16). Each equilibrium is character-
ized by M, the number of follicles with relative
maturity v, = 1. Al and AZ are the distinct eigen-
values associated with each equilibrium. These
eigenvalues are linear in M (see equation (17))
and divide the range of ovulation numbers in the .
interval (Ml’MZ) into a stable range (M,,2M,) and

an unstable range (ZM*,MZ). This explains why

larger ovulation numbers in the interval (Ml'MZ)

are not observed even though solutions for these

ovulation numbers have been shown to exist (see

Section 6). The figure also shows a stable region

between M, = Mle/Ml-l-M2
exist in this interval they correspond to the

and M,. If integers

presence of stable anovulatory states.

(Reprinted from [21].) )
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in the following way which was suggested to us by J. Moser.

Arrange the N follicles in order of their maturities
with El the most mature. (Since the Ei(t) do not cross, the
order of maturities is preserved in time.) We now rescale
the time by defining

" ,
T(t) = J El(t') at' . (13)
0

As t approaches the finite time of ovulation, T + «. This
follows from the fact that dEl/dt N Ei as El + ®, Since the
inverse of T(t) exists we can use it to define the variables.

Yi(T) = Ei(t(T))/El(t(T)) and T(T) = E(t(T))/El(t(T))-
(14)
We can now rewrite the system (7) in the following form.
in/dT = Yi w(Yi;T): i=1, N
: g (15)
I = Y
=1
where
w(vi.r) = (l-Yi)[Mle(Yi+1) - T(M1+M2H.

Note that v,(T) =1, and 0 < v;(T) < 1.
Since we expect Ei(t)/il(t) + 1 for ovulatory follicles
we look for stationary points of (15) of the form

1, i=1,...,M
Y = (16)
0, i=M+l,...,N .

In fact, this form is also applicable to anovulatory states,
and the only way to tell the difference is to see whether El
is infinite or finite. The stability analysis of (15) near
these stationary states is summarized in Fig. 12. There are
only 2 distinct eigenvalues ll and 12. They are linear in M.

AL = (MyHMy)M - 2M) M,

Xz =-4M1+M2)M + MlM2

(17)

Since ovulatory solutions correspond to integers between My
and M2 , we see that this interval is broken into a stable
and unstable region. The stable ovulation numbers lie at

the lower end between M) and the harmonic mean, 2Mx, of M;
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and M2' The larger ovulation numbers are unstable. The
region between M, and My is also stable. As noted earlier
in Section 7, if integers exist in this region they corres-
pond to stable anovulatory states.

The above analysis is consistent with the numerical
results obtained in Section 8.For example, consider Fig. 7B.
Although symmetric solutions for ovulation numbers between 6
and 61 exist, only ovulation numbers 6 through 9 are observed.
Since M; = 5.5, 2M, = 10.1 , these results match the
stability analysis perfectly except that the ovulation number
10 should have been seen. Presumably its low probability is
related to the fact that 10 is very close to the stability
boundary in this case.

Tt should be noted that the range of stable ovulation
numbers is not affected by the number of interacting folli-
cles since the eigenvalues Xl and Kz are independent of N.
Changing N, however, alters the dimension of the phase space
and presumably the geometry of the capturing region associ-
ated with a given stable ovulation number. This could change
the frequencey with which a given stable ovulation number

will be observed.

10. NumericalyMethods

The numerical solutions of Section 8 were not obtained
by direct integration of (7). Advantage was taken of the fact
that the solutions of (15) do not "blow-up" in finite time
but rather approach finite stationary points asymptotically
as T + ., The initial maturities Ei(O) are converted to
relative maturities Yi(0)=€i(0)/El(0). The system (15) is then
directly integrated by utilizing a standard explicit finite
difference method (a second order Runge-Kutta scheme was
used). The value of T (1) = Z§=1 Yi(T) converges to an
integer which is the ovulation number (or number of folli-
cles stuck in an anovulatory state). Since the distribution
of relative maturities determines the ovulation number, it is
easy to understand why the distribution of ovulation numbers

is independent of Exax'

R S
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Once Yi(T) and I'(T) have been obtained, transformation
to Ei(t) is accomplished by solving the differential equa-
tion which is satisfied by &;(T) = &, (t(1)),

- 2
14 52 _ =
Sar b =1- @T-M(r-mMy) g (18)
The actual time t which corresponds to T is obtained by
integration T
t(t) = J —— ar' . (19)
1
o Ei(ThH

Using the inverse T(t) we finally obtain,
E,(8) = Ej(T(t) Y (t(8)) . (20)

The solutions obtained were checked against a scheme which
solved the untransformed equations (7) directly. Both
numerical methods converged to the same solution.

The advantages of using the change of variables are
that the dependent variables Yi are bounded while the Ei
are not and that high time resolution is automatically
achieved near the blow up time because T + ® as t approaches
the time of ovulation.

Conclusion

We have proposed a simple and specific model in which
developing follicles regulate their growth through inter-
actions that are exerted by circulating hormones. These
interactions occur indirectly through follicle secretions
that control the release of pituitary hormones. Although all
follicles obey the same developmental program and start
growing at random times from an immature reserve pool; a
small and relatively constant number of follicles emerge at
regular intervals with ovulatory maturity. The remainder
atrophy and die at different times and stages of development.
A change in the parameters of the growth law can alter the
distribution of ovulation numbers and times. Thus, the
observation that mammalian species and breeds have different
characteristic litter sizes can bé accounted for by the same
basic developmental scheme.
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An interesting and perhaps important physiologic '
feature of the model occurs when the size of -the interacting |
population changes. As the number of interacting follicles l
increases, there is striking improvement in the control of
ovulation time. There is also a shift in the distribution
of ovulation numbers towards smaller integers. Since the
number of interacting follicles in a cycle decreases with |
age, these results partially explain the increased variance
in the time of ovulation as women approach menopause [30].
The behavior of the model is also consistent with the
observed increase in the occurrence of dizygotic twins as
women age [31].

The model therefore suggests two important functions
for the large number of follicles that are activated during
each cycle, even though an overwﬁelming fraction (about
99.9% in humans) of these are destined to atrophy and die.
The functions of these nonovulatory follicles are to hold
down the ovulation number and to reduce the variance in the
time required for the ovulatory follicles to mature.

This makes sense in evolutionary terms when we consider i
that, in primitive species, the reproductive strategy is to
produce as many offspring as possible. Mammals have a
different reproductive strategy in which a large effort is
invested in a small number of offspring. Often in evolution,
older mechanisms are not discarded but are adapted to new
ends when the demands of the environment change. This is
often accomplished by superimposing a new layer of control
mechanisms upon an older scheme. In the case of the ovary,
the model suggests that the old strategy of producing as
many ova as possible has been adapted to the (opposite)
purpose of tight control on the reproductive process. Before
the present model was proposed, the significance of the
nonovulatory follicles was completely mysterious.

Another important feature of the model is that it
predicts, under special conditions, the existence of (patho-
logical) anovulatory states. These have been shown to
correspond to stable equilibria in which a certain number of
follicles become "stuck" and produce nearly steady levels of
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circulating estradiol. In some women it has been observed
that such states may exist for long periods of time [32].
It is important to understand such states because estradiol
and its metabolites are potent stimulators of cell growth
in the uterus and breast. Persistent exposure to steady,
relatively high levels of estradiol may have serious conse-
quences including a greater risk for the development of
carcinoma of the breast and endometrium [33].

The duration of these states and their frequency of
occurrence in a given individual varies over a wide spectrum
in the female population [34]. Spontaneous escape does occur
and may be the result of random perturbations. Such pertur-
bations could occur naturally, for example, by the continual
and random entry of follicles into the interacting population
from the reserve pool. The factors in the model which influ-
ence the duration and frequency of occurrence of these states
are presently being investigated. It should be noted that
these stable anovulatory equilibria exist only for special
values of the parameters. Therefore the model is consistent
with the observation that some species and some individuals
within a species do not exhibt these states.

Clearly, at the biochemical level, the mechanisms that
regulate the growth of follicles are far too complicated to
be described by any equation as simple as our growth law ¢.
The question, however, is not whether this growth law con-
tains a detailed description of all of the processes involved
but whether it is an adequate summary of the relevant conse-
quences of these complicated biochemical events. One
important test of this is whether the growth law generates
behavior consistent with observations on the control of ovu-
lation number. Another important test is whether the growth
law is actually obeyed by individual follicles. The first
test has already been passed, as demonstrated in this paper.
Experiments designed to test the second point are proposed
in [21].
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