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Abstract

The immersed boundary (IB) method has been widely applied to problems involv-

ing a moving elastic boundary that is immersed in fluid and interacting with it. But

most of the previous applications of the IB method have involved a massless elastic

boundary and used efficient Fourier transform methods for the numerical solutions.

Extending the method to cover the case of a massive boundary has required spread-

ing the boundary mass out onto the fluid grid and then solving the Navier-Stokes

equations with a variable mass density. The variable mass density of this previous

approach makes Fourier transform methods inapplicable, and requires a multigrid

solver. Here we propose a new and simple way to give mass to the elastic boundary

and show that the new method can be applied to many problems for which the

boundary mass is important. The new method does not spread mass to the fluid

grid, retains the use of Fourier transform methodology, and is easy to implement in

the context of an existing IB method code for the massless case.
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1 Introduction

The purpose of this paper is to propose a simple way to extend the immersed

boundary (IB) method to a situation in which an elastic moving boundary has

mass that cannot be neglected and to show several examples of the application

of this new methodology. In the examples chosen, the boundary mass plays a

crucial dynamical role. This is in contrast to most previous applications of the

IB method, in which the immersed boundary was either massless or neutrally

buoyant in the ambient fluid.

The IB method was developed to study flow patterns around heart valves, and

is a generally useful method for problems in which elastic materials interact

with a viscous incompressible fluid. In the IB formulation, the influence of

the elastic material immersed in the fluid appears as a localized body force

acting on the fluid. This body force arises from the elastic stresses of the

material. Moreover, the immersed material is required to move at the local

fluid velocity as a consequence of the no-slip condition. The central idea of

the IB method is that the Navier-Stokes solver does not need to know anything

about the complicated time-dependent geometry of the elastic boundary, and

that therefore we can escape from the difficulties caused by the interaction

between the elastic boundary and the fluid flow. This whole approach has been

applied successfully to problems of blood flow in the heart [18,20–23,25], wave

propagation in the cochlea [3,6], platelet aggregation during blood clotting [5],

and several other problems [2,8,9,11,13].

In these applications, however, the elastic boundaries have no mass. (In the

case of a thick “boundary” like the muscular heart wall, the corresponding
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assumption is that the boundary is neutrally buoyant, so that the mass of

the volume occupied by the boundary is the same as if it were occupied by

fluid.) The massless assumption appears in one version of the mathematical

derivation of the IB method [19,21,23], see however [7,28], and can be applied

when the mass of the moving boundary is too small to have a significant

effect on the overall motions of the fluid and the elastic material. With the

massless assumption, however, we cannot approach many other problems for

which the boundary mass is important. Consider, for example, the simulation

of a flapping filament in a flowing soap film as studied by Zhu and Peskin

[27,28], who have shown that a massless filament does not flap at all, and

that filament mass is essential for the sustained flapping that is seen not only

in simulations with mass but also in laboratory experiments [26]. Subsequent

experiments (J.Zhang, personal communication) have shown as predicted that

an extremely fine filament fails to flap under the same conditions in which

flapping of a more massive filament had been seen. Many other examples, in

which the massless assumption is not reasonable arise in aerodynamics. Since

air is such a light fluid, it is usually the case that elastic boundaries immersed

in air have mass that cannot be neglected. Not only the inertial effect of

the boundary mass but also the effect of gravity on the boundary mass are

important. We study several such examples in this paper.

In [7,28], the method used to handle boundary mass was to spread that mass

out onto the fluid grid, in much the same manner as boundary force is conven-

tionally applied to the fluid grid in the IB computations. When this is done, a

variable density ρ(x, t) appears in the Navier-Stokes equations, and this com-

plicates the numerical solver of those equations. Specifically, it makes Fourier

methods inapplicable and requires that an iterative method like Multigrid be
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used instead. This introduces the question of what stopping criterion to use

for the iterative solver, i.e., how to optimize the tradeoff between accurate

solution of the difference equations at each time step and the computational

cost of doing more iterations per time step, a question which does not arise

when a direct solution method is available.

Our current approach stays much closer to the IB method for the massless

case. In particular, it does not spread mass to the fluid and so it requires the

same constant-density Navier-Stokes solver as is used in the massless case. The

key idea is to introduce a massive boundary point as a twin of each immersed

boundary marker where mass is needed. We assume that the massive boundary

thus introduced does not interact directly with the fluid and that the original

immersed boundary, which will play the same role as in the original IB method,

has no mass. The two boundaries are supposed to be the same, and when

they move apart, a strong restoring force arises to pull them back together.

This is done with a collection of stiff springs connecting the two boundaries.

The massive boundary moves according to Newton’s law (F = ma) in which

the only forces acting are the forces of the stiff springs and the gravitational

force. Meanwhile, at the other end of each spring, the massless boundary

marker is moving at the local fluid velocity and spreading force locally to

the fluid grid. Among the forces that it spreads is the force on the boundary

marker due to the stiff spring (equal and opposite to the force acting on the

massive boundary). Because the spring is stiff, the massive boundary point

stays close to its twin immersed boundary marker, and the overall effect is

that the boundary has mass.

Even though the two boundaries (which we call massive and massless bound-

aries) are supposed to coincide, we allow them to separate by an amount that
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depends inversely on the stiffness of the spring connecting them. The stiffness

parameter of this spring is analogous to a penalty parameter in a constrained

optimization problem, which is why we call this new mass-handling idea the

penalty immersed boundary (pIB) method. We shall see later that, in the

limit of infinite spring stiffness, the two boundaries coincide, and the results

obtained by the pIB method approach those of the version of the IB method

used by Zhu and Peskin [27,28] for the massive case.

2 Equations of Motion

We begin by stating the mathematical formulation of the equations of the

motion for a system comprised of a three-dimensional viscous incompressible

fluid containing an immersed, elastic boundary with mass [19].

ρ(
∂u

∂t
+ u · ∇u) = −∇p + µ∆u + f , (1)

∇ · u = 0, (2)

ρ(x, t) = ρ0 +
∫

M(r, s)δ(x − X(r, s, t))drds, (3)

f(x, t) =
∫

F(r, s, t)δ(x − X(r, s, t))drds, (4)

∂X

∂t
(r, s, t)=u(X(r, s, t), t)

=
∫

u(x, t)δ(x − X(r, s, t))dx, (5)

F(r, s, t) = −∂E

∂X
(X(r, s, t), t). (6)

Eqs. (1) and (2) are the familiar Navier-Stokes equations for a viscous in-

compressible fluid subject to an applied body force per unit volume f(x, t).
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The density ρ(x, t) is the non-uniform mass density of the whole system

(fluid+boundary) and µ is the constant fluid viscosity. The unknown func-

tions in the fluid equations are the fluid velocity, u(x, t); the fluid pressure,

p(x, t); and the force per unit volume applied by the immersed boundary to

the fluid, f(x, t), where x = (x, y, z) are fixed Cartesian coordinates, and t is

the time.

Eq. (6) is the immersed boundary equation which is written in Lagrangian

form. The parameters r, s label a fixed material point. The unknown X(r, s, t)

completely describes the motion of the immersed boundary, and also its spatial

configuration at any given time. Note that X(r, s, t) represents a 2-dimensional

surface in 3-dimensional space, which is the case in all the 3-D applications

in this paper. F = F(r, s, t) is the force density applied by the immersed

boundary to the fluid, in the sense that F(r, s, t)drds is the force applied to

the fluid by the patch of immersed boundary drds. The elastic contribution

to this force density is given by the variational derivative − ∂E
∂X

of the elastic

energy functional E[X(·, ·, t)]. This variational derivative is implicitly defined

by

dE(t) =
∫

∂E

∂X
(r, s, t) · dX(r, s, t)drds, (7)

where dX is a perturbation of the boundary configuration and dE is the

resulting perturbation in the elastic energy of the boundary (to first order).

In this paper, the energy functional E[X(·, ·, t)] is chosen a simple way. In a 2-D

space, we consider an immersed boundary as a 1-D rod and use two elasticities:

one that resists stretching and compression, and another that resists bending:

E[X(·)] =
1

2
cs

∫

(|∂X

∂s
| − 1)2ds +

1

2
cb

∫

|∂
2X

∂2s
|
2

ds, (8)
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where cs and cb are constants. Regarding a 2-D boundary immersed in a 3-

D space as a shell or membrane, one could use quite general strain-stress

relations [1,9]. In all our 3-D simulations, however, we use a very simple law

to generate the elastic force. The 2-D immersed boundaries are modeled as

collections of 1-D rods. Suppose that X(r, s) is an immersed boundary. Then,

for a fixed r or s, X(r, s) is a curve which is parameterized as a function of s

or r, respectively. Now each such curve can be assigned the same strain-stress

relation as is used for the 1-D immersed boundary in our 2-D simulation, and

all the forces generated from all these rods are summed up to make an elastic

force F(r, s).

Eqs. (3), (4) and (5), which we call interaction equations, involve the three-

dimensional Dirac delta function δ(x) = δ(x)δ(y)δ(z), which expresses the

local character of the interaction. ρ0 is the constant fluid density and M(r, s) is

the mass density of the immersed boundary in the sense that M(r, s)drds is the

mass of the patch drds. In (3) and (4), the delta function δ(x) = δ(x)δ(y)δ(z)

is still three-dimensional, but there are only two integrals drds. As a result,

ρ(x, t) and f(x, t) are each singular like a one-dimensional delta function with

the singularity supported on the immersed boundary. Although ρ(x, t) and

f(x, t) are infinite on the immersed boundary, their integrals over any finite

volume are finite. In the case of ρ(x, t), for example, we may integrate over an

arbitrary region Ω to find

∫

Ω

ρ(x, t)dx= ρ0Vol(Ω) +
∫

Ω

∫

M(r, s)δ(x − X(r, s, t))drdsdx

= ρ0Vol(Ω) +
∫

X(r,s)∈Ω

M(r, s)drds, (9)
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which represents the sum of the mass of the immersed material and the fluid

that are contained within a fixed space region Ω. Similarly, the integral of

f(x, t) over such a volume is the total force applied to the fluid by the part of

the immersed material living in the volume.

Eq. (5) is the equation of motion of the immersed elastic boundary. It is just

the no-slip condition which says that the boundary moves at the local fluid

velocity. This is rewritten in terms of the Dirac-delta function in the second

form of Eq. (5). We do so in order to expose a certain symmetry with Eq.

(4), in which the force generated by the immersed boundary is re-expressed as

body force acting on the fluid. This symmetry is important in the construction

of our numerical scheme. Note, however, that the integral in Eq. (5) is a triple

integral(dxdydz), unlike the integral in Eqs. (3) and (4). Thus ∂X/∂t is finite,

unlike ρ and f .

Note that Zhu and Peskin [27,28] use this system of equations (1)-(6) and solve

it directly. Since the fluid density ρ(x, t) is not a constant, which disables the

use of FFT methodology, their numerical solver of the Navier-Stokes equations

needs a multigrid method.

Now substitute the density defined in Eq. (3) into Eq. (1), and separate the

left-hand side of (1) into two terms: one involving the constant density ρ0, and

the other containing the singular part of ρ(x, t) that comes from the immersed

boundary. Then

ρ0(
∂u

∂t
+ u · ∇u) = −∇p + µ∆u + f − fD, (10)

fD(x, t) =
∫ Du(x, t)

Dt
M(r, s)δ(x − X(r, s, t))drds, (11)

9



where D
Dt

is the material derivative. Using the relation:

∂2X

∂t2
(r, s, t) =

Du

Dt
(X(r, s, t), t), (12)

we can interpret fD(x, t) in Eq. (11) as an Eulerian body force obtained by

using the Dirac delta function to transform the Lagrangian expression

FD(r, s, t) = M(r, s)
∂2X

∂t2
(r, s, t), (13)

which is known as the D’Alembert force. In a numerical procedure, one might

try to evaluate FD(r, s, t) by applying a backward time difference to ∂X/∂t

as evaluated by the Eq. (5). Then FD could be applied to the fluid grid like

any other immersed boundary force by using the Dirac delta function. This

method was proposed by Xiaodong Wang [14] and works when the boundary

mass is sufficiently small. Here we use a different way of approximating FD,

as described in the following.

Now we modify the equations discussed so far to make what we call the penalty

immersed boundary (pIB) method [12]. To do this, we introduce two bound-

aries immersed in a 3-D fluid: one is a massive boundary Y(r, s, t) having

all the mass of the elastic immersed boundary, and the other is a massless

boundary X(r, s, t). The massive boundary Y(r, s, t) has mass density M(r, s)

but does not interact with the surrounding fluid directly. On the other hand,

the massless boundary X(r, s, t) interacts with the fluid: it moves with the

local fluid velocity and exerts the elastic force locally on the fluid. Both the

massless and massive boundaries are supposed to represent the same material

surface. If a pair of corresponding boundary points moves apart, a restoring

force appears in order to make them move close together (see Fig. 1). The
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Massive boundary

Massless boundary

Spring

Fig. 1. Massive and massless boundaries are linked together by a collection of a very

stiff springs with rest length zero.

restoring force FK acting on the massless boundary is

FK(r, s, t) = K(Y(r, s, t) − X(r, s, t)), (14)

where K is a large constant.

Now the massive boundary Y(r, s, t) moves according to the following equa-

tion:

M(r, s)
∂2Y(r, s, t)

∂t2
= −FK(r, s, t) (15)

Note that the only force acting on the massive boundary is the reaction force

−FK (we shall add to this a gravitational force later), and that the massive

boundary does not interact with the fluid directly. On the other end of the

spring, the massless boundary X(r, s, t) applies to the nearby fluid both its
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elastic force FE = − ∂E
∂X

and the spring force FK.

Consider the case in which K in (14) goes to infinity. Then the massive bound-

ary Y(r, s, t) approaches the massless boundary X(r, s, t), in which case, using

X(r, s, t) only, we can see that FK(r, s, t) is same as −FD(r, s, t) of Eq. (13).

Note that, in practice, K cannot be infinite but we can keep X(r, s, t) and

Y(r, s, t) as close as we like by choosing K sufficiently large.

With a large constant K (not infinity), we can use Eqs. (14) and (15) instead

of Eq (13) (D’Alembert force) and derive the equations of motion for the pIB

method as follows:

ρ0(
∂u

∂t
+ u · ∇u) = −∇p + µ∇2u + f , (16)

∇ · u = 0, (17)

f(x, t) =
∫

F(r, s, t)δ(x − X(r, s, t))drds, (18)

∂X

∂t
(r, s, t)=u(X(r, s, t), t)

=
∫

u(x, t)δ(x − X(r, s, t))dx, (19)

F = FE + FK , (20)

FE = −∂E

∂X
, (21)

FK(r, s, t) = K(Y(r, s, t) − X(r, s, t)), (22)

M(r, s)
∂2Y

∂t2
= −FK(r, s, t) − M(r, s)ge3, (23)

where g is the gravitational acceleration and e3 is a unit vector in the vertical

direction (against gravity). We have here added a gravitational term on the
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right-hand side of Eq. (23) in order to allow for the influence of gravity on the

massive immersed boundary. (The corresponding term −ρ0ge3 is not included

in Eq. (16) because there it only amounts to a redefinition of the pressure.)

3 Numerical Implementation of the pIB method

We now describe a formally second-order IB method to solve the equations of

motion [15,20]. The word ‘formally’ is used as a reminder that this scheme is

only second-order accurate for problems with smooth solutions. Even though

our solutions are not smooth (the velocity has jumps in derivative across the

immersed boundary), the use of the formally second-order method results in

improved accuracy, see [15].

The specific formally second-order method that we use is the one described

in [20], generalized here to take into account the massive boundary that is

linked to the immersed elastic boundary by stiff springs. In this method, each

time step proceeds in two substeps, which are called the preliminary and final

substeps. In the preliminary substep, we get data at time level n + 1
2

from

data at time level n by a first-order accurate method. Then the final substep

starts again at time level n and proceeds to time level n + 1 by a second-

order accurate method. This Runge-Kutta framework allows the second-order

accuracy of the final substep to be the overall accuracy of the scheme.

We use a superscript to denote the time level. Thus Xn(r, s) is shorthand for

X(r, s, n∆t), where ∆t is the duration of the time step, and similarly for all

other variables. Our goal is to compute updated un+1, Vn+1, where V=dY/dt,

Xn+1, and Yn+1 from given data un, Vn, Xn and Yn.
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Before describing how this is done, we have to say a few words about the

spatial discretization. There are two such discretizations: one for the fluid and

the other for the elastic boundary.

The grid on which the fluid variables are defined is a fixed uniform cubic lattice

of meshwidth h = ∆x1 = ∆x2 = ∆x3. Now we introduce the central difference

operator Di, defined for i = 1, 2, 3, as follows:

(Diφ)(x) =
φ(x + hei) − φ(x − hei)

2h
, (24)

where ei is the unit vector in the i-th coordinate direction. As the notation

suggests, the difference operator in i-th direction Di corresponds to the i-

th component of the differential operator ∇. Thus Dp will be the discrete

gradient of p, and D · u will be the discrete divergence of u.

We shall also make use the central difference Laplacian L:

(Lφ)(x) =
3

∑

i=1

φ(x + hei) + φ(x − hei) − 2φ(x)

h2
(25)

The fluid mesh and the elastic boundary mesh defined below are connected by

a smoothed approximation to the Dirac delta function. It is denoted δh and is

of the following form:

δh(x) = h−3φ(
x1

h
)φ(

x2

h
)φ(

x3

h
), (26)
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where x = (x1, x2, x3), and the function φ is given by

φ(r) =























































3−2|r|+
√

1+4|r|−4r2

8
, if |r|<1

5−2|r|−
√

−7+12|r|−4r2

8
, if 1≤|r|<2

0 , if 2≤|r|

(27)

The motivation and derivation for this particular choice is discussed in [21,23].

We are now ready to describe a typical timestep of the numerical scheme. The

preliminary substep which goes from time level n to n+ 1
2

proceeds as follows:

First, update the position of the massless boundary Xn+ 1

2 (r, s).

Xn+ 1

2 − Xn

∆t/2
=

∑

x

un(x)δh(x − Xn(r, s))h3 (28)

Here and throughout the paper
∑

x denotes the sum over the cubic lattice in

physical space on which the fluid variables are defined. Similarly,
∑

r,s will de-

note the sum over rectangular lattice in (r, s) space on which the two boundary

positions X, Y, the force density F and the mass density M are defined.

The key to generalizing the formally second-order method to the massive case

is to handle the massive boundary in a manner that closely parallels the nu-

merical treatment of the immersed boundary itself. Thus, we update Yn+ 1

2 in

a similar manner to Xn+ 1

2 :

Yn+ 1

2 − Yn

∆t/2
= Vn, (29)

where Vn is the velocity vector of the massive boundary (the known value at

time n∆t, like un).
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Next, calculate the force density Fn+ 1

2 which is the sum of two parts: one

is elastic force and the other is from the spring linked between massless and

massive boundaries.

F
n+ 1

2

K = K(Yn+ 1

2 − Xn+ 1

2 ), (30)

Fn+ 1

2 = −∂E

∂X
(Xn+ 1

2 ) + F
n+ 1

2

K . (31)

These are discretization of Eqs. (20)-(22), respectively.

Now we have to change this elastic force density defined on Lagrangian grid

points into the force at Eulerian spatial grid points to be applied in the Navier-

Stokes equations. This is done by a discretization of Eq. (18).

fn+ 1

2 (x) =
∑

r,s

Fn+ 1

2 (r, s)δh(x − Xn+ 1

2 (r, s))∆s∆r. (32)

With fn+ 1

2 in hand, we can turn to solving the Navier-Stokes equations:

ρ(
u

n+ 1

2

i − un
i

∆t/2
+

1

2
(u ·Dui + D · (uui))

n) + Dip̃
n+ 1

2 = µLu
n+ 1

2

i + f
n+ 1

2

i ,(33)

for i = 1, 2, 3, and

D · un+ 1

2 = 0. (34)

The notation p̃n+ 1

2 is used to distinguish this pressure from the one that is

computed when solving Eqs (38)-(39), below. Note that the unknowns in Eqs

(33)-(34) are u
n+ 1

2

i and p̃n+ 1

2 and that they enter into these equations linearly.

Since all the coefficients of these equations are constants, the system of Eqs

(33)-(34) can be solved by Fast Fourier Transform with the periodic boundary

condition [21,23].
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Again we have to calculate the velocity Vn+ 1

2 of the massive boundary in the

same fashion.

M(
Vn+ 1

2 − Vn

∆t/2
) = −F

n+ 1

2

K − Mge3. (35)

This is nothing but Euler’s method for Eq (23) and completes the preliminary

substep.

The final substep is the use of un+ 1

2 , Vn+ 1

2 , Xn+ 1

2 and Yn+ 1

2 obtained in the

preliminary substep to compute the corresponding quantities at time level

n+1 by the second-order accurate midpoint rule.

First, using the fluid velocity un+ 1

2 and massive boundary velocity Vn+ 1

2 , we

can find the massless boundary configuration Xn+1 and massive boundary

position Yn+1.

Xn+1 − Xn

∆t
=

∑

x

un+ 1

2 (x)δh(x − Xn+ 1

2 (r, s))h3, (36)

Yn+1 − Yn

∆t
= Vn+ 1

2 . (37)

The last thing that we have to do is to update the fluid velocity data:

ρ(
un+1

i − un
i

∆t
+

1

2
(u · Dui + D · (uui))

n+ 1

2 ) + Dip
n+ 1

2 =
1

2
µL(un+1

i + un
i ) + f

n+ 1

2

i ,(38)

for i = 1, 2, 3, and

D · un+1 = 0. (39)

Just as in the case of Eqs. (33)-(34), Eqs (38)-(39) are a constant-coefficient

linear system in the unknowns un+1
i , pn+ 1

2 . This linear system is solved by fast
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Fourier transform. For the velocity of the massive boundary, we have

M(
Vn+1 − Vn

∆t
) = −F

n+ 1

2

K − Mge3. (40)

Since we have now computed un+1, Vn+1, Xn+1 and Yn+1, the timestep is

complete.

To complete the description of the numerical pIB method, we need to explain

the boundary conditions imposed along the edges of our computational do-

main. In all cases, we use periodic boundary conditions which are very conve-

nient for the solution of the linear systems of Eqs. (33)-(34) and Eqs. (38)-(39)

by fast Fourier transform, but we also break the periodicity in various ways

depending on the application.

In all of the applications considered here, we need to impose an “inflow veloc-

ity”. This is done on two (or four) adjacent parallel grid planes (or grid lines

in the 2D case). It is very important to use two adjacent planes rather just

one, in order to avoid the spatial oscillations that would otherwise propagate

throughout the domain via the central-difference structure of our numerical

scheme. Although we typically choose either the first or last two grid planes

in some coordinate direction, this is of no fundamental significance, since the

underlying domain is periodic and all grid points are created equal.

The way of driving the “inflow velocity” in this paper is to apply an external

force per unit volume equal to

f0(x, t) =































α0(u0(t) − u(x, t)) , x ∈ Ω0

0 , otherwise,

(41)
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where Ω0 is the set of grid points comprised of the two grid planes on which we

want to control the velocity, u0(t) is the desired velocity on those planes, and

α0 is a constant. When α0 is large, the grid velocity is driven rapidly towards

u0(t) within Ω0. Note that, when we refine the grid by a factor of 2, since the

region Ω0 is fixed, the number of grid planes in Ω0 becomes twice as large.

Another way to break the periodicity is to put no-slip walls on faces of the

domain. The method that we shall describe for this purpose can indeed be

used to put no-slip walls of any shape anywhere within the domain; planar

walls along the faces are just a special case.

We create fixed no-slip boundaries by laying out an array of “target points”

to mark their desired positions. To avoid leaks, the target points should be

spaced about half a meshwidth apart (or closer). These target points are fixed

in position and do not interact with fluid. Each of them is connected, however,

by a stiff spring to a massless immersed boundary point that moves at the local

fluid velocity and applies the force generated by the stiff spring locally to the

fluid. This provides a feedback mechanism for computing the boundary force

needed to enforce the no-slip condition.

Note the close analogy between the above construction and the pIB Method,

the massive boundary of which is essentially a target position that moves

according to Newton’s law of motion instead of being fixed in space.

The various methods that we have discussed above for breaking the periodicity

of the domain are special cases which hint at the following general remark: In

the context of an immersed boundary method, it is not much of a restriction

to use periodic boundary conditions for the domain occupied by the fluid. This

is because one can immerse within that domain whatever dynamic or static
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geometry the application demands. As a general setting for immersed bound-

ary computations, the periodic domain has both philosophical and practical

advantages in comparison to other choices one might make. The philosophical

advantage is that the periodic domain preserves the translation invariance of

free space. Related to this is the practical advantage that we can use the fast

Fourier transform to solve the discretized fluid equations at each time step.

When walls are wanted in immersed boundary computations, we put them

in as immersed boundaries, and this means that a geometrically complicated

wall is no harder to model than a planar one. But the boundaries of the fluid

domain do not introduce unwanted wall effects, for the simple reason that a

periodic domain has, indeed, no boundaries at all.

4 Numerical convergence test of the pIB method

In this section, we verify the claim we made in Section 2 that, as K goes to

infinity in Eq. (22), the two boundaries X and Y converge to each other and

FK=K(X − Y) approaches the negative D’Alembert force −FD. To do that,

we consider a unit square of [0 1]×[0 1] filled with an incompressible fluid in

which an initially elliptic flexible elastic boundary is immersed. (Throughout

this section we use dimensionless variables.) The density and viscosity of the

fluid are 1.0 and 0.01, respectively.

The initial shape of the elastic boundary is an ellipse with major axis 0.62 and

minor axis 0.5. This ellipse is parameterized by arclength x=X0(s), with s in

the interval [0,L0], where L0 is the perimeter of the chosen ellipse. (There is

no simple formula for an ellipse parameterized by arclength, but the function

X0(s) is easily computed numerically.) Of course, s=0 is equivalent to s=L0,
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since an ellipse is a closed curve. At all times t, the immersed elastic boundary

will be described in parametric form x=X(s, t), with X(s, 0)=X0(s). Here s

is a Lagrangian parameter (a particular value of s corresponds to a particular

material point), but s is not equal to arclength in general, since an elastic

material by definition may stretch or shrink. It is important to note that the

domain of s is fixed: It is always the interval [0,L0] despite any changes in

length of the boundary that may occur. This is because the label s attached

to a given material point does not change. The immersed boundary with mass

density 0.25 interacts with the fluid and generates an elastic force by the

following law:

F(s) = cs

∂2X

∂s2
(s), (42)

where cs=40 is the stiffness coefficient of the immersed boundary. It can be

shown that the force law given by Eq. (42) describes a completely flexible

boundary (no bending rigidity) in which the tension is equal to cs|∂X/∂s|. This

is a special case of Hooke’s law, the special feature being that the rest length of

the immersed boundary is zero. Thus, the boundary tries to shrink to a point,

but it is prevented from doing so by the incompressibility of the fluid. The

equilibrium configuration of the immersed boundary is a circle containing the

same area as the initial ellipse. The expected behavior is a damped vibration

about this circular state, see Fig. 2.

By choosing s=arclength at the initial time, we create uniform tension (equal

to cs, since |∂X/∂s|=1) at that time, and in this case the force given by

Eq. (42) is normal to the immersed boundary at t=0. This choice of initial

condition avoids a rapid transient (boundary layer in time) of tangential equi-

libration. Since s is not arclength in general, the force given by Eq. (42) may
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time=0 time=0.064

Fig. 2. Motion of a massive elastic boundary (closed curve).

have a nontrivial tangential component at all times other than t=0.

Now we choose the penalty spring constant K=200×N 2 where N=32, 64, 128,

256, 512, and 1024. For each N , we also change the timestep ∆t=3.2×10−4/N ,

the space meshwidth ∆x=1/N and the boundary meshwidth ∆s=L0/(4N).

That is, when we refine the meshwidths ∆x and ∆s by a factor of 2, the

timestep ∆t is also reduced by the same factor. Although this is sufficient

for stability within the range of parameters tested, the explicit computation

of the boundary force may impose a more severe stability restriction once

the parameters have been sufficiently refined, see [24]. Note that the penalty

parameter K increases as the meshwidth and timestep are refined. The above

manner of increasing it has the property that K∆t2 is constant. In practice,

this preserves the numerical stability of the scheme despite the increase in K,

as one might expect since the frequency of oscillation of a spring-mass system

with spring constant K is proportional to
√

K. It is fortunate for the overall

effectiveness of the pIB method that one can increase K rapidly as the other

numerical parameters are refined without inducing numerical instability.

The top panel of Fig. 3 shows the maximum distance between massless and
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Fig. 3. The maximum amplitude ||X − Y||∞ of the oscillation (distance between

the two boundaries) and the x-directional force −FK acting on a massive boundary

point (‘*’ in Fig. 2) are plotted in time for each N . As N gets bigger, the computation

gets refined and K increases. As the refinement goes on, the maximum distance of

the two boundaries decreases (top panel), and the force acting on the chosen point

converges (bottom panel).
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massive boundaries for each N as a function of time. From the graph (note

logarithmic scale, base 10) we can see that the maximum distance of the two

boundaries goes to zero as the refinement proceeds, i.e., ||X − Y||∞ → 0 as

K → ∞, which verifies our first claim. Note in particular that the amplitude

of the rapid oscillation in the displacement between the two boundaries also

tends to zero as the numerical parameters are refined and K → ∞. The

appearance of a constant amplitude of this rapid oscillation is a consequence

of the logarithmic scale. The bottom panel of Fig. 3 compares the x-directional

force acting on a point of the massive boundary for each N. The chosen point is

marked with ‘*’ in Fig. 2. The graphs verify our second claim that, K → ∞,

the force acting on the massive boundary −FK converges (in fact, to FD,

but we do not know the exact value FD). Note that the amplitude of the

force oscillation appears to converge to zero as the numerical parameters are

refined. This is remarkable when one considers that the stiffness parameter is

approaching infinity.

Overall, Fig. 3 provides empirical evidence that the pIB method works as

advertised. One certainly might worry about the high-frequency oscillation

introduced into the system by the large value of the penalty stiffness K: In

a nonlinear system, such a spurious high-frequency oscillation might interact

with the frequency modes of interest in unpredictable ways. But the results

in Fig. 3 indicate that this spurious oscillation is not only of high frequency;

it is also of low amplitude, in fact, of an amplitude that approaches zero as

the numerical parameters are refined. This suggests that the pIB method may

indeed be convergent. We provide further empirical evidence for convergence

in the remainder of the section.

Table 1 shows the convergence ratios of the velocity fields computed by the
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Table 1

Convergence ratios in L2 and L∞ of the velocity field

N ||uN−u2N ||2
||u2N−u4N ||2

||uN−u2N ||∞
||u2N−u4N ||∞

||vN−v2N ||2
||v2N−v4N ||2

||vN−v2N ||∞
||v2N−v4N ||∞

32 1.9235 1.1200 2.0367 1.7614

64 2.1044 1.9523 2.0297 1.6366

128 2.0944 1.8466 2.0514 1.8517

256 2.0930 1.8125 2.0430 1.8451

pIB method. Since we do not know the exact solution of the problem, one con-

vergence ratio needs three numerical solutions for three consecutive N ’s. Let

(uN , vN) be the velocity field at the chosen time t=0.064, which is roughly half

the longest period of the observed vibration of the immersed elastic boundary,

and let || · ||2 and || · ||∞ be L2 and L∞ norms, respectively. Table 1 shows that

the pIB method has the convergence ratio roughly equal to 2 (at least in the

L2 norm; perhaps somewhat worse in the L∞ norm), which implies that the

scheme is first order accurate. Although this provides empirical evidence for

the convergence of the pIB method, it also underscores the purely formal na-

ture of its formal second order accuracy. In the formulation of the pIB method

(Eqs. (16)-(23)) the appearance of the Dirac delta function induces jumps in

certain quantities across the immersed boundary. Specifically, there is a jump

in pressure (produced by the normal component of the boundary force) and a

jump in the normal derivatives of the velocity components (produced by the

tangential component of the boundary force). This lack of smoothness reduces

the accuracy of the scheme. These same considerations apply to the original

IB method for the massless case just as they do to the pIB method considered

here.
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In this connection, note that Griffith and Peskin [10] have recently described

an immersed boundary computation in which the immersed ”boundary” has

finite thickness (it is an immersed elastic shell), and in this computation actual

second order accuracy is achieved by a formally second-order accurate IB

scheme, despite the sudden changes in material properties where the shell

meets the fluid. Thus, the case of an immersed elastic structure with finite

thickness already has sufficient regularity for the formal accuracy of the IB

scheme to manifest itself. Although we have not yet applied the pIB method

to immersed elastic structures with finite thickness, it seems reasonable to

conjecture that the pIB method of this paper would similarly exhibit actual

second-order accuracy in such a case.

In the case of a thin immersed boundary, though, it is natural to ask what

is the benefit of using a formally second-order accurate IB or pIB scheme,

since only first-order accuracy will be realized in practice. We believe that the

principal benefit is the reduction in numerical viscosity associated with the

skew-symmetric differencing of the nonlinear terms in comparison to a first

order upwind scheme. This benefit has in fact been demonstrated in [15], see

also [20]. It is not clear, though, whether the skew-symmetric differencing of

the nonlinear terms in any sense calls for the second order accurate time dis-

cretization that is also part of the formal second order accuracy of our scheme.

In some applications, it seems possible to use the skew-symmetric differencing

of the nonlinear terms together with first-order accurate time discretization,

but in other applications this combination appears to be unstable.

To show that the reduction of accuracy comes from the spatial discretization

and perhaps also from the increase of K, we have also conducted a conver-

gence study involving time discretization only, with the spatial discretization
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Table 2

Convergence ratios with the spatial discretization and penalty parameter fixed

M ||uM−u2M ||2
||u2M−u4M ||2

||uM−u2M ||∞
||u2M−u4M ||∞

||vM−v2M ||2
||v2M−v4M ||2

||vM−v2M ||∞
||v2M−v4M ||∞

1 4.0075 4.0112 4.0070 4.0070

2 4.0018 4.0028 4.0017 4.0017

4 4.0010 3.9991 4.0009 4.0009

8 3.9934 4.0124 3.9926 3.9926

and the penalty parameter fixed. Table 2 shows the convergence ratios ob-

tained in this way. We fix N=256 and ∆x=1/N , and change the timestep

∆t=1.25×10−6/M where M=1,2,4,8,16, and 32. The penalty stiffness K=107

is fixed like the spatial discretization. The simulation goes up to time t=0.064.

Table 2 shows substantially better convergence ratios than Table 1, and in-

deed comes to second order accuracy, which would be a convergence ratio of

4. In this case, though, convergence is not to the true solution of the partial

differential equations, but rather to the solution of the ordinary differential

equation system defined by the spatially discretized pIB method, in which

time is still continuous, and moreover with constant penalty parameter K.

Thus the results shown in Table 2 only verify that our time-stepping scheme

is second-order accurate, as claimed. The results in Table 2 have no bearing on

the quality of the spatial discretization, nor on the effectiveness of the penalty

approach

To illustrate the influence of mass on the behavior of an immersed elastic

boundary, Figure 4 compares the massive boundary and massless boundary

cases by plotting horizontal and vertical radii of the boundary curve in each
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Fig. 4. The influence of boundary mass on the behavior of an immersed elastic

boundary in the form of a simple closed curve in a two-dimensional fluid. The curve

is initially elliptical, and the horizontal and vertical radii are plotted as functions of

time. Both cases show a damped oscillation as the boundary approaches a circular

shape, but the massive boundary oscillation has a lower frequency and is sustained

longer than that of the massless boundary. The overall downward trend is a form of

numerical error (see text) that is somewhat exaggerated here by the vertical scale

of the plot.

case as functions of time. Of course, the fluid has mass in both cases. In each

case, the two radii oscillate in a damped manner, with one radius having its

maximum at about the same time as the other radius is at a minimum. As one

would expect, the oscillation has a lower frequency and is sustained longer in

the massive than in the massless case.

The overall downward trend of the plots in Figure 4 represents loss of volume

(area), a form of numerical error that is typical of IB computations but can

be virtually eliminated by a technique known as ”improved volume conserva-
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tion” [25], which is not implemented here, since most of our applications do

not involve enclosed volumes. For other approaches that also lead to better

conservation of volume, see [4] and [16].

5 Applications

5.1 Flapping Filament in a Flowing Soap Film

The first application is a flapping flexible filament in a flowing soap film. This

replicates a simulation done by Luoding Zhu [27,28] by the method mentioned

in the introduction, in which the mass of the immersed boundary is attributed

instead to the nearby fluid. Our purpose here is to show that this problem can

also be done by the pIB method.

The physical experiment that inspired both Zhu’s simulation and ours was

performed by Jun Zhang [26] in the Courant Institute WetLab. It involves

a vertical soap film that flows downwards between parallel wires under the

influence of gravity. A thread, or “filament”, anchored at its upper end but

otherwise free, is suspended in the flowing soap film. Two qualitatively dif-

ferent modes of filament behavior are seen in these experiments. In one, the

filament settles into a straight steady configuration, hanging vertically in the

flow. In the other, the filament settles into a pattern of sustained flapping,

like a flag in the wind. For some choices of parameters, only one of these two

behaviors is seen, but there are other choices of parameters for which both

behaviors are possible. In the latter (“bistable”) cases, the choice of which

behavior occurs is determined by the initial conditions.
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We have used the same parameters as in [27,28], see Table 3. For the most

part, these are also the parameters of the experiment. The most important

difference is that the film viscosity has been increased (in both computations)

by a factor of 100. The experimental Reynolds number is about 20,000, but

the computational Reynolds number is about 200.

Before we discuss the results of the filament simulation, we first consider two

special aspects of the simulation. The first issue is about how big the spring

coefficient K, which appears in Eq. (22), should be to keep two boundaries

(massless and massive) close and not to make any computational instability.

We choose a constant K by trial and error. As K gets bigger, a larger restoring

Table 3

Parameters of flapping filament simulations

Parameters magnitude units

Film Density 3 × 10−4 g/cm3

Film Viscosity 1.2 × 10−3 g/cm·s

Film Inflow Velocity (−280) − (−200) cm/s

Filament Density 1 × 10−5 − 4 × 10−4 g/cm

Filament rigidity 0.1 erg·cm

Filament Length 2.0 − 3.0 cm

Reynolds number 100 − 210

Gravitational acceleration 980 cm/s2

Domain (rectangle) 9 × 18 cm×cm

30



force is generated, and the computation becomes more unstable, in which

case, we need to reduce the timestep ∆t. Our strategy is to choose an allowed

distance between the two boundaries, to adjust K until it is large enough that

this allowed distance is not exceeded, and to reduce ∆t, if necessary, as K

is increased to avoid numerical instability. Although this process does involve

trial and error, the tests for success are extremely simple, and it is easy to zero

in on good choices for K and ∆t, as follows: The test for whether K is large

enough is simply to monitor the maximum distance between any massless

immersed boundary point and its massive twin. Since this distance will be

inversely proportional to K (for large K) it is easy to see from the results of a

trial run how K needs to be adjusted for the next trial. Numerical instability

resulting from too large a choice of ∆t is unmistakable: the immersed boundary

seems to explode. Also, in adjusting ∆t when K changes, one can use the rule

of thumb that (for a given spatial discretization) stability is determined by

K(∆t)2. This has the pleasant consequence that to make K four times larger

(for example), one only needs to make ∆t twice as small.

Fig. 5 shows that the maximum distance between the two boundaries is con-

trolled within around 1.5 × 10−4 meshwidth. For this simulation, we use

K = 108g/cm·s2 and ∆t = 5 × 10−7s. Despite the oscillations seen in the

figure, the massless and massive boundaries stay close to each other as the

simulation proceeds.

The second question is about the way of driving a desired inflow. In section 3

we have suggested a method to drive an inflow which involves an external body

force term α0(u0(t)− u(x, t))θ(x) on the right hand side of the Navier-Stokes

(momentum) equation. Here, α0 is a large constant, u0(t) = (U0(t), V0(t)) is

the desired inflow velocity at time t, and θ(x) is the characteristic function
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Fig. 5. The maximum distance in units of meshwidth between the massless and

massive boundaries as a function of time. The maximum distance between two

boundaries stays below 1.5 × 10−4 meshwidth here and even after the time shown

in this graph.

of the chosen region in which we want to specify the velocity. If we use this

method, the size of the constant α0 should be taken carefully. In order to make

the inflow velocity obtained by solving the Navier-Stokes equations close to

the desired inflow in a reasonably short amount of time, the constant α0 should

be large. If it is too large, however, α0 can be a source of numerical instability.

If such an instability appears, however, it can be eliminated by reducing the

time step ∆t. In this way it is possible to control the inflow velocity closely

enough for practical purposes.

Fig. 6 shows the desired inflow velocity V0(t) and the error of the calculated

velocity v(x, t) at one point x in the specified region. The top graph represents

the y-component V0(t) of the desired inflow, and the bottom graph is the

absolute error of the y-component of the induced velocity v(x, t) from the
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Fig. 6. The top panel represents the y-component V0(t) of the desired inflow, and

the bottom panel is the absolute error of the y-component of the calculated velocity

v(x, t) from the desired velocity V0(t) at one specified point x, i.e., |V0(t)− v(x, t)|.

desired velocity. We can see that, except for the very beginning of the time,

both velocities match well, i.e. our method of deriving the inflow velocity

forces very quickly the velocity in the chosen region to approach the desired

inflow. Note that, to avoid a sudden change of the inflow velocity, V0(t) is

smoothly increasing in magnitude: v0(1 − exp(−t/t0)), where v0 is the final

velocity (y-component) and t0 is an arbitrary chosen constant. Also note that,

even though this graph shows only a very short time result, the match of both

velocities is getting better as the time proceeds. Control of the inflow velocity

is accurate to within 1% by the time 3×10−3s have elapsed and continues to

improve thereafter.

An important result of [27,28] is that filament mass is needed for sustained

flapping to occur. Our simulations by the pIB method give the same result.

Fig. 7 compares two cases: one has an almost massless filament with density
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Fig. 7. The x-coordinate of the free ends of two filaments are plotted as functions of

time. The sustained flapping motion is observed only in the case of a filament with

enough mass.

1×10−5g/cm and the other has a heavier filament with density 4×10−4g/cm,

which is the value used in [27,28]. This value is the same as in Zhang’s ex-

periments [26], allowing for a factor of 2 to account for a bulge of the film

that forms around the filament as a result of surface tension. Other conditions

are also the same: the inflow velocity is -280cm/s, the filament length is 3cm,

and the initial configurations are same as in [27,28]. The figure plots the x-

coordinate of the free end of the two filaments as functions of time. As time

proceeds, while the small mass filament rapidly becomes straight and then re-

mains straight like a rigid body, the larger mass filament settles into a flapping

mode with the total excursion of the free end 1.8cm and the frequency 48/s.

Fig. 8 shows the vorticity contours in both cases at two fixed times. Note the

concentrated vorticity on the two sides of the domain as well as around the

filament and in the wake of the filament. The concentrated vorticity near the

side walls represents the boundary layers that are generated there. (Recall
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Fig. 8. Motion of two filaments with different mass densities: 10−5g/cm (left panels)

and 4× 10−4g/cm (right panels). The vorticity contours are drawn at two different

times: 0.06s (top) and 0.18s (bottom).

the manner in which the no-slip condition has been imposed on the side walls

through the use of tether points, as explained in Section 3.) The concentrated

vorticity on the two sides of the filament similarly represents the boundary

layers generated by the shearing effect of the (almost inextensible) filament on

the flow. In the case of the more massive filament, discrete vortices of opposite

sign are shed as the filament flaps.

In order to explore the issue of bistability, we choose a filament of length 2cm

and mass density 4 × 10−4g/cm. The steady inflow velocity v0 is -200cm/s,

which produces a Reynolds number of 100. Two different cases are created by

two different initial perturbations from the straight configuration of the fila-
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Fig. 9. The left two pictures show the initial configurations of a filament in the

shape of a sine curve with two different amplitudes: 0.01cm (left-top) and 0.2cm

(left-bottom). The x-coordinate of the free ends of the two filaments are plotted

as functions of time in the right two panels. While the case with a small initial

perturbation almost stops flapping (top), the large initial perturbation case quickly

settles into a sustained oscillation with a larger amplitude than that prescribed

initially (bottom).

ment, see Fig. 9. Since our model of the filament has as its initial configuration

a sine curve, the initial perturbation can be expressed by the amplitude of the

sinusoid. The left-top picture in the figure shows the initial configuration of

the filament with 0.005cm amplitude initial perturbation. For the larger initial

perturbation case, we choose 0.2cm amplitude (left-bottom). The right panels

of the figure show the x-coordinates of the free ends as functions of time. We

can see that, while the filament with a small initial perturbation almost stops

flapping, the filament with the large initial perturbation sustains its flapping

motion. Fig. 10 shows the vorticity contours in both cases at two fixed times.
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Fig. 10. Motion of a filament with all the same circumstances except the initial

conditions (see figure 8): a small perturbation (left) and a large one (right). The

vorticity contours are drawn at two different times: 0.06s (top) and 0.18s (bottom).

Despite the qualitative similarity with Zhu’s results, there are some quantita-

tive differences: With Reynolds number 210 (the inflow is -280cm/s and the

filament length is 3cm) and 4 × 10−4g/cm filament mass density, both simu-

lations yield about 50 Hz for the flapping frequency of the filament. The total

excursion of the filament free end of our experiment, however, is 1.8 cm which

is somewhat different from Zhu’s result 2.1cm, but is close to the real experi-

mental data 1.5 cm [26]. For the case of the flapping filament with -200cm/s

inflow velocity and 2cm filament length, Zhu’s and ours have a similar fre-

quency 36 Hz, but again the total excursions are different: Zhu’s is 1.5cm and

ours 1.0cm. These differences between the two methods are presumably ex-
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Fig. 11. Initial configuration of windsock and computational domain which is a box

0.8 × 0.4 × 0.4 m3. The left end of the windsock is attached to a ring which is fixed

in the domain. Wind is driven from left to right by prescribing inflow velocity at

the left face of the domain.

pressions of the numerical error of one method or the other, or most likely

of both, and as such would become smaller if the resolution of both compu-

tations were refined. We are not trying to claim here the superiority of one

method over the other, and the fact that the pIB method comes closer to the

experiment in the amplitude of the motion may well be fortuitous, since the

computations are being performed at a much lower Reynolds number than the

experiment.

5.2 Windsock

A windsock is a device used at airports to make the speed and direction of

the wind visible to pilots. The magnitude of the wind and the weight of the

windsock oppose each other to determine the extent to which the windsock

stands out horizontally or hangs down vertically. Thus the mass of windsock is

38



Table 4

Parameters of the 3-D simulations

Parameters Windsock Flag units

Fluid Density 1.2 1.2 kg/m3

Viscosity 3.0 × 10−3 5.0 × 10−3 kg/m·s

Inflow Velocity 0.0 − 5.0 0.0 − 4.6 m/s

Density(mass) 0.08 0.09 kg/m2

Dimensions 0.2 × 0.08π 0.333 × 0.25 m

Gravitational acceleration 9.8 9.8 m/s2

Reynolds number up to 400 up to 370

Domain(Box) 0.8 × 0.4 × 0.4 1.28 × 0.64 × 0.64 m×m× m

essential for the windsock simulations. In filament simulations, we need mass

of the filament because the flapping motion requires the inertia of the filament.

In this case, however, the mass is needed for the gravitational force.

For the simulation, we make the windsock with the shape of a part of a slightly

tapered cone, of which the circle at the upstream end is only a little bigger than

that at the downstream end. The upstream end of the windsock is attached

to a fixed ring, see Fig. 11. The fixed ring is created by the method explained

in Section 3 generating a fixed no-slip boundary which can be of any shape.

Then we make a wind blow in one direction from left to right.

Table 4 contains the parameters used here (and also in the simulations of a

flag considered below). The size of the windsock, which is represented by its
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Fig. 12. Errors in the windsock simulation. The top graph represents the

x-component U0(t) of the desired inflow, and the middle graph is the absolute

error of x-component of the induced velocity u(x, t) from the desired one U0(t)

at one specified point x,i.e. |U0(t) − u(x, t)|. The maximum distance (in units of

meshwidth) between two boundaries is shown in the bottom graph. Note that the

maximum distance between the massive and massless boundaries is always less than

8 × 10−5 meshwidths.

length times the circumference of the fixed circle to which it is attached, and

the surface mass density of windsock material are chosen arbitrarily. The other

parameters are all realistic except viscosity. Air has viscosity 2 × 10−5kg/m·s

which is 150-250 times smaller than the viscosities of the simulations. The

reason for this modification is that we want to reduce Reynolds number (Re)

in the simulations. We believe that, with computational resolution affordable

so far, we can properly compute up to a Reynolds number of several hundreds.

With the modified viscosity, the windsock has maximum Re=396 based on its
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length, and the flag considered below has maximum Re=370 based on its

width. Note that, in all applications considered in this paper, we modify the

viscosities usually existing in real experiments to make the Reynolds number

between 100 and 400.

In order to see if the method for driving an inflow and the pIB method for

keeping the massless and massive boundaries close work well in the 3-D sim-

ulation, we draw Fig. 12 as in the previous section. The top graph is the

x-component U0(t) of the desired inflow velocity which we want to drive in

time. The desired velocity is gradually increasing up to 5.0m/s (not seen in

the graph). The comparison of U0(t) with the induced velocity u(x, t), which

is nothing but the solution of the fluid equations at a specified point x, is

shown in the middle graph. For the windsock simulation, we use the constant

α = 105/s and the timestep ∆t = 2×10−5s. The middle graph shows that our

inflow driving method works well even in 3-D simulation.

The bottom graph shows the maximum distance (in units of meshwidth) be-

tween the massless boundary X(r, s, t) and its massive counterpart Y(r, s, t).

With the spring coefficient K = 107kg/(ms)2 and the timestep ∆t = 2×10−5s,

we can keep these two boundaries close without any computational instabil-

ity. Note that the error of the driven inflow from the desired inflow and the

distance between the two immersed boundaries are kept within 0.07m/s and

8 × 10−5 meshwidths, respectively.

Fig. 13 compares the movements of the windsock with different wind speeds.

For a while, there is no wind (top) and, after that time, the wind slowly

increases up to 2.5m/s (middle) and 5.0m/s (bottom). In the figure, we choose

a vertical plane that is a plane of symmetry for the windsock, record only the
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Fig. 13. Three different cases of a windsock are compared. Vorticity contours in a

vertical plane that bisects the windsock are plotted. The top frame has no wind and

the windsock falls down. In the case of a small wind speed (middle), the windsock

finds an equilibrium angle that depends on the wind speed. The bottom frame has

a large wind speed which straightens the windsock.

velocity components parallel to that plane, and plot contour lines of vorticity

of that two-dimensional velocity field. The top windsock has no wind and

naturally falls down. The bottom one has enough wind to make the windsock

stand out almost straight in the direction of the wind. The middle windsock

has half the wind speed of the bottom one and slopes downwards at about 30o

below the horizontal. Thus we see that each windsock finds a different angle

(with respect to the wind direction) depending on the wind speed.

Figs. 14 and 15 show perspective views of the windsock with the two different

magnitudes of the wind considered above: 5.0m/s on the top and 2.5m/s on
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Fig. 14. Sideview of windsocks with different wind speeds: 5.0m/s (top) and 2.5m/s

(bottom). The larger the wind speed is, the less tilt angle windsock has. The lines

around the windsocks show the motion of some fluid markers. Each marker has left

a trail showing its recent trajectory.
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Fig. 15. The same situation as in Fig. 14 with the view looking into the wind.

the bottom of the figures. A few fluid markers are also shown. Each marker

has left a trail showing its recent trajectory (streak line).
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Fig. 16. Initial configuration of a flag and the computational domain which is a box

1.28×0.64×0.64m3. The left end part of the flag is attached with the flagpole which

is fixed in the domain. The flow of the wind is from left to right.

5.3 Flag in Wind with Gravity

The third application is a flapping flag in the wind. This application looks

like the 3-D generalization of the 2-D filament simulation. In the flag problem,

however, the wind flow is from the side and the gravity force acts downward

while both in the 2-D filament case are in the downward direction. Thus the

importance of the mass of the flag turns out to combine those of the filament

and the windsock. Because of gravity, the flag will sag, and, because of the

flag’s inertia, we can also expect to see it flap. For related work on modeling

cloth in the context of computer graphics, see the excellent survey [17], and

the references therein.

The parameters are shown in Table 4 and the initial configuration of the flag

is drawn in Fig 16. The initial configuration of the flag is that of a sine curve

from the top view. A vertical flagpole in the form of a cylinder is provided.

It is fixed in place in the same way as the ring of points that anchors the
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windsock, see Section 5.2. The left edge of the flag is attached directly to the

flagpole, and wind blows from left to right in these simulations.

Fig. 17 shows the motions of the flag in two different situations. As we can

expect, when there is no wind, the flag falls down and stops moving, see the

bottom frame in Fig. 17. But if the wind is strong enough, the flag overcomes

gravity and straightens up in the wind direction. With this sufficiently large

wind speed, we can see the flag flapping (top of Fig. 17).

In order to observe more clearly the flapping and sagging motion of the flag

in the top of Fig. 17, we can plot the trajectories of several points on the

downstream edge of the flag as functions of time. In Fig. 18, choosing three

points (top, middle, and bottom) of the downstream end of the flag, we plot

the three coordinates of their motion in each case. The top frame shows the

x-coordinate of the motion which represents the movement in the direction of

wind. Since the y-axis is perpendicular to both the flag and the wind direction,

the middle frame clarifies the flapping motion of the flag. The bottom and

middle points of the flag go through a relatively large oscillation but the top

undergoes only a small oscillation. One more interesting observation is that

the three points are moving out of phase, i.e. the bottom part is moving ahead

of the top part. These two phenomena (out of phase and different amplitudes)

can be easily seen when we watch the motion of a real flag. The bottom panel

shows the z-coordinate (height) of the flag. The flag settles down little bit at

the beginning of the computation and then stops sagging because of the drag

force of the wind.

By analogy to the results of filament simulation (Section 5.1), we expect that,

for the sustained flapping motion, a flag should have several conditions satis-
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Fig. 17. A large enough windspeed (top) helps the flag overcome the gravity and

sustain a flapping motion. We can see the flag still sagging slightly. In the case of

no wind (bottom), the flag falls down and stops moving. Note the folds which are

a consequence of the (small) bending rigidity of the flag. (time=1.2s)

fied: its mass, wind speed (or Reynolds number), and the initial perturbation

must all be sufficiently large. Here the initial perturbation means the ampli-

tude of the sine curve which is the image of flag viewed in the plane perpendic-
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Fig. 18. Cartesian coordinates of the positions of three different material points on

the downstream edge of the flag. Three points are chosen at the top, middle, and

bottom of the downstream edge. The x-axis is in the direction of the wind, the

y-axis is perpendicular to the flag and the wind direction, and the z-axis is vertical.

We can see from the middle panel that the flag is flapping, and, from the bottom

panel, that the flag sags a little at the beginning of the computation and then stops

sagging. Note (middle panel) that the flapping motions of top and bottom of the

flag are out of phase, i.e. the bottom part runs ahead of the top part. Also the

amplitude of the flapping motion is much greater at the bottom of the free edge

than at the top.

ular to z-axis (see Fig. 16). In order to check whether the above expectation

is correct, we can study the case of a flag with a deficit in each condition and

compare the result with that of a flapping flag. As the conditions suitable for

a sustained flapping, for example, we have the flag density 0.09kg/m2, wind

speed 4.6m/s (Reynolds number 370), and the initial perturbation 0.01m. This

case produces the Figs. 17 (top) and 18.
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The first deficit case is a massless flag with all other parameters the same as

that of the flag considered above. From the result in the filament case, we can

easily guess what will happen. Without enough inertia force to kick the flag

from side to side, the flag will not flap. Because there is also no gravity force

on the massless flag, there will be no sagging motion either. Fig. 19 shows

the motion of the massless flag computed by the IB method. Comparing with

the flag in the top panel of Fig. 17, here we cannot see any sagging of the

flag. To make the comparison more clear, we plot the (y, z)-coordinates of

the lower downstream corners of both flags as functions of time, see Fig. 20.

As we mentioned before, the y-coordinate shows the flapping motion best,

and the z-coordinate shows how much a flag has sagged. From the figure, we

can see that only the massive flag is flapping (top panel) as well as sagging

(bottom panel). Notice that the massless flag actually rises a little instead of

going down. This must be a subtle effect of the flagpole, since the only thing

that breaks the up-down symmetry of the problem is that the flagpole extends

below but not above the flag.

Now, to see the case with a small wind speed, keeping all other conditions of

the flapping flag case, we take wind speed 4.0m/s which reduces the Reynolds

number to 320. Fig. 21 shows the flag at a fixed time, and Fig. 22 compares

(y, z)-coordinate trajectories in the same manner as before. From the com-

parison of the y-coordinates in Fig. 22, we can see that, with a small wind

speed, the flag does not flap. As we can see from Figs. 19 (no mass) and 21

(slow wind), however, although these two flags both do not flap, their detailed

motions are different. The massless flag in Fig. 19 is straightened like a rigid

body, which reminds us of the small mass filament case. On the other hand,

the massive flag in a slow wind (Fig. 21) keeps a particular bent shape such
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Fig. 19. Motion of the massless flag. Even though all other conditions are same as

in Fig. 17 top, the massless flag neither flaps nor sags. See also Fig. 20.
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Fig. 20. Comparison of the motions of two flags with and without mass. Trajecto-

ries of the (y, z) coordinates of the lower downstream corners of the two flags are

plotted, with the solid lines corresponding to the flag with mass, and the broken

lines corresponding to the flag without mass. The massive flag flaps (top panel) and

sags (bottom panel) but the massless flag does neither.
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Fig. 21. Motion of a flag with a small wind speed. (time=2.4s)

that the downstream edge of the flag is somewhat S-shaped when viewed look-

ing into the wind. See also the bottom graph of Fig. 22, which shows that the

wind speed has essentially no effect on the sagging of the bottom of the flag

even though the top of the flag sags more in the slow wind (non-flapping) case

than in the fast wind case.

The final deficit case is created by reducing the initial perturbation to be

0.0025m. To demonstrate bistability, we choose the inflow velocity U0=4.3m/s

rather than 4.6m/s used so far. we can see from Figs. 18 and 23 that the flags

with 0.005m initial perturbation both show sustained flapping motion even

though they have different wind speeds of 4.6m/s and 4.3m/s, respectively.

On the contrary, the case with the small initial perturbation (0.0025m am-

plitude) does not show the sustained flapping motion of the flag. This result

is a reminiscent of the bistable motion of the filament in the Section 5.1, for

which it was also the case that flapping or not depends on the amplitude of

the initial perturbation. Note that the bottom graph in Fig. 23 is very similar
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Fig. 22. Comparison of flag motions with low and high wind speed. The figure shows

(y, z)-coordinates of the positions of selected points of the downstream edge of the

two flags as functions of time: the inflow velocities are 4.0m/s and 4.6m/s. From the

upper panel it is clear that the flag in the slower wind is not flapping although its

position is not perfectly steady either. The heights of the downstream-bottom point

of both flags is almost same, but the downstream-top point of the slower wind case

is lower that of the faster wind case. This implies that the downstream edge of the

flag in the slower wind is bent, which is a typical phenomenon when a flag does not

flap, see also Fig. 21.

to that of Fig. 22. In fact, the detailed motion of the flag, when not flapping,

is S-shaped when viewed looking into the wind, and it is almost same as in

Fig. 21.

6 Summary and Conclusions

We have introduced a new version of the IB method which can handle a mas-

sive elastic boundary and have shown that the new method can be well applied

to many problems in which mass of the immersed boundary is important. This

52



0 0.5 1 1.5 2

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

time(s)

y−
co

or
di

na
te

small perturbation
large perturbation

0 0.5 1 1.5 2

0.2

0.3

0.4

0.5

time(s)

z−
co

or
di

na
te

large perturbatioin; top
small perturbation; top
large perturbation; bottom
small perturbation; bottom

Fig. 23. Comparison of two flags with different initial perturbations. The figure

shows (y, z)-coordinates of selected points of the downstream edge of two flags as

functions of time. Everything about these two flags is identical except that the

amplitudes of the initial perturbations are 0.0025m and 0.005m. For the sustained

flapping motion, the flag needs a large enough initial perturbation. The bottom

graph is very similar to that of Fig. 22. In fact, the specific motion of the flag, when

not flapping, is S-shaped when viewed looking into the wind, and it is almost same

as in Fig. 21.

method has the virtue of simplicity: one can easily implement it in the con-

text of an existing IB method code for the massless case. The new method

contains a penalty parameter, which is the stiffness coefficient of the springs

that connect the massless immersed boundary points to their massive twins.

In principle, this stiffness should be infinite, and one might think that it would

have to be so large as to require a reduced time step for numerical stability,

but in practice we have been pleased to find that this is not the case.

Since the purpose of this paper has been to introduce and illustrate the new
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method, we have not yet pursued the applications begun here in as much

detail as they deserve. The flapping flag, in particular, seems to have many

aspects that are worthy of further study. For example, we can see from the

flag simulation that whether a flag is flapping or not depends on several pa-

rameters: mass density of the flag itself, speed of the incident wind, and even

the amplitude of the initial perturbation of the flag from a planar configura-

tion. A detailed exploration of the behavior of the flag as a function of these

parameters is needed.

Another subject for future research is a comparison of the three different

methods that have now been proposed for the simulation of massive im-

mersed boundaries within the framework of the IB method. These are the

mass-spreading method [7,27,28], the direct use of the D’Alembert force [14],

and the pIB method of the present paper. A preliminary comparison is pre-

sented in [14], but further work is needed to sort out the advantages and

disadvantages of the different approaches.
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