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INTRODUCI‘ION 

Next time you meet a white cat in a dark hallway, take a close look at  the amount of 
detail you can see. Depending on the amount of available light, the cat will appear in 
various degrees of blurriness. Seeing the texture of the fur is out of the question. Details 
such as ears are hard to make out. Sometimes the cat is just a ghostly blur and it is hard 
to tell which end is the head and which is the tail. Evidently, there is a relationship 
between the amount of light available and the spatial resolution that can be achieved in 
vision. 

The experimental study by Rose’ was the first to show clearly that the rod system in 
the human retina is often starved for photons. This implies that some limitations of 
rod-mediated visual performance are imposed by quanta1 fluctuations in the retinal 
image. A highly reflecting object, illuminated by a full moon on a clear night, will give 
rise to roughly 3 captured photons per rod per second in the retinal area with greatest 
rod density. Clearly, under these conditions, features in the retinal image which are on 
a scale similar to the spacing between rods will not be perceived reliably. This is 
particularly true if the viewed object is moving. For further discussion of experimental 
evidence concerning the significance of photon noise in vision, see the comprehensive 
review article by Shapely and Enroth-Cugell.’ 

To understand the limitation on visual resolution that is imposed by the photon 
noise consider the analogous situation in photography. If we look closely a t  a 
photographic image, we see that it consists of a number of grains. Each grain is the 
record of the capture of a photon. In fact, the information content of a photograph may 
be summarized by listing the positions of the grains. Now consider the problem of 
reconstructing an image from such a list. The brightness of the image should be the 
“density” of the grains, but the concept of density becomes elusive when we get down to 
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a length scale that is comparable to the typical distance between nearby grains. The 
obvious way to define density a t  a point is to surround the point by a patch of area, 
count the number of grains in the patch and divide by the area of the patch. 

The question is how to choose the area of the patch. From the standpoint of spatial 
resolution, the patch should be as small as possible, since it is clearly impossible to 
resolve features in a smaller scale than that of the patch. From the standpoint of noise 
reduction, however, the patch should be as large as possible. The number of grains in 
the patch is a random variable (that is what we mean by “photon noise”) given by the 
Poisson distribution. This distribution has the property that the standard deviation is 
the square root of the mean. To achieve an expected error of *lo%, for example, the 
number of grains in the patch has to be at  least 100. At lower levels of light there are 
fewer photons per unit area, so the size of the region that is needed for a reliable 
estimate of the density is correspondingly larger. This explains the loss of resolution a t  
low levels of light. The resolution has to be deliberately reduced because an attempt to 
maintain high resolution would result in an unacceptably noisy image. 

We will show, however, that there is a better (albeit closely related) strategy for 
coping with the photon noise than merely pooling the data over regions of carefully 
chosen size. This strategy involves the design of an optimal linear filter for reconstruct- 
ing an image from a record of photon absorption events. We believe that the retina is a 
closely related filter and that the theory of optimal filters has features that are 
strikingly reminiscent of the phenomenon of light adaptation in the retina. Moreover, 
we believe that such filters will turn out to be very useful in nuclear medicine, since 
nuclear medicine images are subject to considerable degradation by photon noise. 

The mathematical theory of optimal filters that we use throughout this paper is not 
new. It was invented by N. Wiener’ and has been widely used in the design of 
communication systems. Further references on this subject are those of Lee4 and 
Morse and Feshbach.’ The situation we consider in this paper does have the somewhat 
novel feature that the input to the filter is not the sum of a signal and a noise. Rather, 
the signal has been encoded in a manner that is intrinsically noisy: the observer 
measures the brightness of a scene only by counting the (random) photon events. The 
main contribution of this paper, though, is not in the theory but in the applications, 
which we believe are new. 

OPTIMAL FILTER FOR THE PHOTON IMAGE 

Let u ( x )  2 0 be the expected number of grains (photons) per unit area at  position x 
in a photograph of a scene. The actual grains are located at  positions Xk, where k is an 
arbitrary label (the order of the photons has no significance). Given u(x).  the {xk} are 
generated by an inhomogeneous Poisson process with density u ( x ) .  

There are many equivalent ways to define a Poisson process. The following 
two-step construction of the process is particularly convenient: 

(i) Choose an integer N according to the Poisson distribution: 

Pr{N = n }  = e-”, 
n! 

where 

= J udx. (2) 

(ii) Given N ,  choose x k ,  k = 1, . . . , N, independently, from the probability density 
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function 

p ( x )  = p - ' u ( x ) .  (3) 

Remark: This definition assumes that udx < m. If not (for example if u = constant 
and the egion in question is the entire plane), then break the region up into subregions 
where 1 udx < m and apply the foregoing definition in each subregion. 

We have defined the stochastic process that generates the photon image {Xk] given 
the photon density function u ( x ) .  Note that the quantity u ( x )  is dependent on the 
illumination of the scene. A quantity that is more characteristic of the scene itself is the 
reflectance r ( x ) ,  0 5 r ( x )  5 1, which is the fraction of the incident light that is reflected 
at  the point x.  Let I. be the expected number of photons per unit area of photograph 
when r ( x )  = 1; thus I. is proportional to the brightness of the illumination and also to 
the total exposure of the photograph. Then u ( x )  = fo r ( x ) .  

The next step is to think of r ( x )  as a member of a very large ensemble of scenes. We 
shall attempt a reconstruction of r ( x )  given the data {XI . . . XN]. If r ( x )  were known, 
then the reconstruction problem would surely be trivial: there would be no need to look 
at  the data. Since lack of knowledge is the essence of probability, we may think of r ( x )  
as a sample function of some stochastic process. Thus, our grainy photograph is 
generated by a pair of stochastic processes acting in series: 

(i) Pick a scene r ( x )  a t  random from the ensemble of scenes. Then choose I. 
(which we regard as  deterministic) and set u ( x )  - 1, r ( x ) .  

(ii) Generate {Xk], a Poisson process with density u ( x ) .  

Consider the stochastic process that generates the scene ~ ( x ) .  We assume that this 
process is stationary. This means that all statistical properties depend only on 
differences in the values of x .  It is important to remark that stationarity is a property of 
the ensemble and not of the individual scenes. For example, we can generate a 
stationary ensemble by starting with some complicated picture and then considering all 
possible translates of that picture. For our purposes, the only properties of the ensemble 
that matter are the first and second moments: 

where E denotes the expected value = ensemble average. Thus ro is the mean 
reflectance and 4 is the (normalized) correlation function. Note that ro and 4 each 
have one fewer arguments than the expressions that define them. This is a consequence 
of stationarity. 

It will be convenient in the following to work with u ( x )  instead of r ( x ) .  Therefore, 
we define 

(6) uo = If0 = I o E [ r ( x ) ]  = E [ I f ( X ) ]  = E [ u ( x ) ]  

and note that 4 can be written in the alternative form 

4 ( x '  - x )  = E [ ( u ( x ' )  - uo)(u(x)  - uo)] /u; .  (7) 

If the illumination (or the exposure) changes, uo changes proportionally, but 4 remains 
invariant. 

We are now ready to consider the reconstruction problem. Given {Xk], we seek a 
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reconstruction of the image of the form 

where h ( x )  is to be determined. The interpretation of Equation 8 is that we take each 
photon and replace it by a function with shape h centered on the point where the photon 
was absorbed. The sum of all of these smeared-out photons is the reconstructed image. 
The reconstruction is linear because it satisfies the principle of superposition, it is 
translation-invariant or stationary because a translation of the photon image results in 
the corresponding translation of the reconstructed image. We call the operation 
described by Equation 8 a j l t e r  because ~ ( x )  is the convolution of h ( x )  with a sum of 
&functions centered at  the points Xk. 

Our next task is to pick the function h ( x )  in some optimal way. To do this, we need 
a definition of the error. First, define the contrast of the scene 

r ( x )  - ro u ( x )  - uo 
C(X) = ~ = 

r0 UO 
(9) 

Note that E [ C ( x ) ]  = 0 and also that C(x) is independent of the brightness of the 
illumination of the scene. Let 

U o  = E [ o ( x ) l .  (10) 

(1 1) 

The quantity V ( x )  is essentially the contrast of the reconstructed scene. The reason 
that we do not divide by u0 will become clear below. 

Finally, we say that the error at  the point x is 

V(X)  = U ( X )  - 2’0. 

e ( x )  = C(x) - V ( x ) ,  (12) 

and we pick h to minimize E[e2(x) ] .  (By stationarity, E[e’(x) ]  is, in fact, independent 
of x.) I f  we divided by u0 in the definition of V,  then the error would be independent of 
the scale of u and hence independent of the scale of h. In this situation it would be 
impossible for there to be a unique h that minimizes E[e’(x) ] .  Moreover, there is no 
need to divide by u0 because the scale of ZI is fixed by the requirement that the error be 
small. Thus, v is always of order I ,  independent of the scale of u. (A third reason not to 
divide by uo is that there are cases in which uo = O!) 

The next step is to evaluate E [ e ’ ( x ) ] .  The basic method for doing this is to use the 
following identity 

(13) 

That is, to compute the expected value (ensemble average) of any quantity, we first 
take the expectation with a fixed scene u and a fixed number of photons N. Then we 
take the expectation over N (which is distributed according to the Poisson distribu- 
tion), and finally we take the expectation over the ensemble of scenes u. Here is the 
calculation. First. 

E l - ]  = E [ E [ E [ . I N ,  U I  lu l l .  
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by definition of 4. Next evaluate uo: 

N 

E[u(x )  IN, u] = x E[h(x  - x k )  IN, u] 
k-l 

= N p - ’  f h(x  - X)u(X)dX.  

Then, since E[NI u] = p, 

E[u(x )  1 u] = f h(x  - X)u(X)dX ,  

uo = E[u(x ) ]  = uo f h(X)dX. 

Next, evaluate E[C(x)V(x)] :  

E [ C ( x ) V ( x )  I U I  = C ( x ) E [ V ( x )  I ul 

= C(X)  f h(x  - X ) ( u ( X )  - uo)dX 

= 110 f h(x  - X)C(x)C(X)dX,  

E[C(x )V(x ) ]  = uo f h(x  - X ) 4 ( X  - X)dX 

= 110 f h(X)4(X)dX 

since 4( X - x )  = E[C(X)C(x ) ] .  Finally evaluate E [ V 2 ( x ) ] :  
N 

E[U2(x)IN, U ]  = x E[h(x  - Xj)h(x - xk ) IN ,  u] 
1.1-1 

= Np-lf h2(x - X)u(X)dX 

+ ( N z  - N ) N - ~  f f h ( x  - X)h(x  - X‘)u(X)u(X’)dX dX’. (20) 

In the last step, we made use of the fact that X i  and X k  are independent (for j # k) 
when N is given. Note that N is the number of diagonal terms and N Z  - N is the 
number of off-diagonal terms in the double sum that appears in Equation 20. We now 
take the expectation over N. 

Recall that the Poisson distribution has E[NI u]  - p and E [ N 2  I u] = p z  + p. 
Therefore. 

E [ v 2 ( x ) l u ]  = f h2(X - X)u(X)dX 

+ f f h(x  - X)h(x  - X’)u(X)u(X’)dXdX’, (21) 

E [ V 2 ( x ) l u ]  = E[V2(X)1U] - v: 

= f h2(X - X)u(X)dX 

+ f f h ( x  - X)h(x  - X ‘ ) ( U ( X ) U ( X ’ )  - u@dXdX’, (22) 

(23) E [  V 2 ( x ) ]  - uo f h*(X)dX + u: fs h(X)h(X’)d(X - X’)dXdX’. 
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Combining the results of Equations 14, 19, and 23, we obtain 

E [ e z ( x ) ]  = u o j  h z ( X ) d X  + u i l J  h ( X ) h ( X ’ ) + ( x  - X‘)dXdX’ 

- 224, h ( X ) d ( X ) d X  + +(O). (24) 

To calculate the optimal h is now an exercise in the calculus of variations. Let h = 

h,  t ch,,  where h,(x)  is the optimal filter and h , ( x )  is an arbitrary perturbation. Since 
h,  minimizes E [ e * ( x ) ] ,  we require that 

0 = ~ [ e ~ ( x ) ~  = 2u0 j -  h , ~ )  { h , ( ~ )  
d 

t uo J h , ( X ’ ) d ( X  - X’)dX‘ - d ( X ) } d X .  (25) 

} must be zero. This gives the integral Since h , ( X )  is arbitrary, the quantity in ( 
equation 

h,(X)  + UO j -  h,(X’)+(X - X’) dx‘ = + ( X h  (26) 

which may be solved by taking Fourier transforms. Let 

H o ( [ )  = e-“” h o ( x ) d x  (27) 

and similarly for a([). 
Then, since the Fourier transform converts convolutions into products, 

Ho(€) t u o H , ( f ) W )  = a([). (28) 

It should be mentioned that this result is the same as the optimal filter for extracting a 
signal with power spectrum CP from an additive white noise. In  our problem, however, 
the input to the filter is certainly not the sum of a signal and a noise. In fact, the signal 
is carried exclusively by the same (photon) events that generate the noise. 

The low-light and high-light limits of Equation 29 are very instructive. As u, - 0, 
H ,  - CP. It follows, of course, that h,(x)  - d(x). Thus, under low-light conditions, the 
best strategy is to spread each photon out according to the correlation function of the 
ensemble of scenes. Further spreading than this is never desirable, no matter how dim 
the light gets. As uo- m, Ho- 0, but uoHo- 1. This implies that u,h(x)  - 6 ( x ) .  the 
two-dimensional Dirac &function. Thus, under high-light conditions, the optimal filter 
reduces to a simple scaling of intensity with no spatial smoothing. 

Strictly speaking, the high-light limit is slightly more complicated than the brief 
remarks in the foregoing paragraph implied. First, the statement that uJf0-  1 is only 
correct a t  those frequencies [ where a([) # 0. Frequencies a t  which - 0 are always 
filtered out by the optimal filter, regardless of the li ht level. Second, even if a([) > 0 
for all [, it is usually the case that a([) - 0 as I[!+ m. In this case it is true that 
uoHo([) - 1 for each F,  but the limit is not uniform in [. At any fixed u,, therefore, we 
will still have Ho([) - 0 as l[l- m, and the optimal filter has a “high frequency 
cutoff’ that moves out to higher frequencies as uo increases. 
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FIGURE 1. Simulation of photon noise and optimal filter: square pulse. Upper frame (SCENE) is 
the graph of the reflectance of a sample scene chosen at random from an ensemble of scenes. (See 
text for a precise description of the ensemble.) Left-hand column (PHOTON IMAGE) shows 
simulated results of photographing this scene at exposures that increase by factors of 10. (The 
numbers in the center column, .04, .4, 4, 40, give the exposure in arbitrary units.) The photon 
image is plotted as a histogram with 128 bins; note variable scale. Right-hand column (FILTERED 
IMAGE) shows the results of applying the optimal filter to the photon image. In the filtered image, 
the ordinate is the reconstructed conrrusr of the scene (see Equation 9). The optimal filter (not 
shown) is different for each exposure; it becomes sharper as the exposure is increased. The design 
of the optimal filter is based upon the statistical properties of the ensemble of scenes, but not upon 
the particular scene being photographed. 

We conclude this section with some examples generated by computer simulation. 
The examples are one-dimensional and the space is periodic with period 2 r .  Therefore 
the relevant Fourier transform is the Fourier series. We construct a stationary 
ensemble of scenes in two different ways. In the first case, let 

(30) 

where uI  is a constant,fis a given periodic function with period 2n, and where 0 is a 
random variable uniformly distributed on the interval (0, 2 r ) .  In this case the entire 
ensemble is characterized by the single random variable 0, and the symbol E takes on 
the concrete meaning 

u(x ,  0) - u l u  +m - ON, 
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Letf(x)  be represented by the Fourier series 

and similarly for +(x) and cP(k). We leave it as an exercise for the reader to show 
that 

uo = u, ( l  + F ( O ) ) ,  (33) 

cP(0) = 0, (34) 

Thus the correlation function is easily expressed in terms o f f ,  which defines the 
ensemble. Substituting (34-35) into (29) we obtain a formula for the optimal filter. 

FIGURES 1 , 2  and 3 show some results for this type of ensemble. In FIGURE 1 , f is  a 
square pulse; in FIGURE 2,f is  a sinusoidal pulse; and in FIGURE 3, f i s  simply a sine 
wave. In  all three figures the upper frame shows the functionfwith its random phase 
superimposed on the background (14, = S). The left-hand column shows simulated 
“photographs” of this scene at  different light levels increasing by factors of 10 (the 

S C E N E  

‘s\i\i. 
PHOTON IMAGE 

3 

F I L T E R E D  I M A G E  

. 0 4  lvAuA- 
‘1 

FIGURE 2. Simulation of photon noise and optimal filter: sinusoidal pulse. See legend of FIGURE 
1. 
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FIGURE 3. Simulation of photon noise and optimal filter: sine wave. See legend of FIGURE 1. 

relative brightnesses are shown in the middle column). These photon images are 
presented as histograms with 128 bins; the plot shows the number of photons that 
happened to fall in each bin (note variable scale). For each light level an optimal filter 
is constructed on the basis of the correlation function of the ensemble of scenes. This 
optimal filter is applied to the photon image and the results are presented in the 
right-hand column. (Recall that the filtered image is an approximation to the contrast 
in the scene. As such, it has mean zero by definition, and its scale is also different from 
that of the scene, except in the special case when uo - 1 .) 

The filtered images in FIGURE 1 clearly show the gradual sharpening of the optimal 
filter as the light level is raised. Note that a clear-cut peak in the right place is already 
present at the light level .4; such a peak is not easy to discern in the photon image at  this 
brightness. In FIGURE 2, a fair approximation to the sinusoidal pulse also emerges at  
the level .4, and, in FIGURE 3, the filtered image is spectacular a t  all light levels. 

FIGURE 4 shows similar results for an ensemble constructed in a different way. The 
scene is constructed as the real part of a complex Fourier series in which the constant 
term (background) is given and all other coefficients are independent Gaussian 
random variables with mean zero and specified variance. The variance may be 
different for different coefficients. In the particular case shown in FIGURE 4 only a few 
coefficients are allowed to be different from zero. This is a more difficult case in the 
sense that the ensemble of scenes is characterized by more than just a single random 
variable. 
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VISION 

In  the case of vision, the situation differs from the foregoing in that time is an 
important variable. In this section, we consider the design of an optimal filter for 
smoothing the photon noise under conditions in which the scene varies in space and 
time. Thus, the scene is represented by a function u ( x ,  t ) ,  which gives the expected 
number of photons per unit area per unit time, and the capture of a photon is an event: 
(X,, T k ) .  The attempted reconstruction of the scene takes the form 

where the function h ( x ,  1 )  now satisfies the important constraint of causality 

h ( x ,  I )  = 0 for t  < 0, (37) 

which means that the response to a photon cannot occur before the photon arrives. 
Equation 36 is a direct generalization of (8). but the new feature here is the causality 
constraint (37). As we shall see, this constraint makes it much more difficult to solve for 
the optimal filter. 

SCENE 
11 

PHOTON IMAGE F I L T E R E D  IMAGE 

FIGURE 4. Simulation of photon noise and optimal filter: superposition of a few harmonics. See 
legend of FIGURE 1. 
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Up to and including (25), the theory in the space-time case is exactly the same as 
the theory for the purely spatial case that was developed in the foregoing section. Just 
replace x everywhere by (x, t )  to obtain the corresponding result. Thus (25) becomes 

0 = f f h , ( X ,  T )  Iho(X, T )  

+ uo f f ho(X’,  T’)4(X - X’, T - T’)dX’dT‘ - 4(X,  T)}dXdT.  (38) 

It is a t  this point that the constraint of causality plays a critical role. The functions ho 
and h ,  are both causal functions (zero for negative time). Therefore, h ,  is not arbitrary, 
and the most we can conclude is that the quantity in { } = 0 for t > 0. We express this 
by writing 

h o ( X ,  T )  + uo f f hO(X’ ,  T’)+(X - X’, T - T’)dX’dT’ - 4(X, T )  

= +(X, 7-1, (39) 

where +( X, T) is an anticausal function (for each X): 

$(X, T) = 0 for T >  0. (40) 

We now need Fourier transforms with respect to space and time. As before, let capital 
letters denote the spatial Fourier transform 

H~(€, t )  - f e-+’ ho(x, t ) d x  

H o ( € ,  w) = f c i w ‘  H~(€, t )dt .  

(41) 

and use the notation for the temporal Fourier transform: 

(42) 

Applying both transformations to (39), we obtain 

fro(€* 0) + U&O(€% w ) i ( € ,  w) - &(€, = +(€? w). (43) 

and applying the spatial transformation only to the causality conditions (37) and (40) 
we obtain 

I fo([ .  t )  = 0 for t < 0, (44) 

*(€, t )  = 0 for t > 0. (45) 

As we shall see, the system (43-45) determines the optimal filter Ho. Note that [ is 
merely a parameter in this system. That is, we have a separate system for each 4. This is 
not true of w because the causality conditions couple together the different temporal 
frequencies. In the following, we focus attention on w and t ,  and all the statements that 
we make should be understood to hold for each 5. 

The system (43-45) can be solved by the Wiener-Hopf technique of spectrum 
fact~rization,)-~ which takes a particularly simple form in the present case. The key to 
this technique is the correspondence established by the Fourier transform between 
functions of time that are causal and functions of complex w that are bounded and 
analytic in the lower-half plane. The first step in the Wiener-Hopf technique is_the 
factorization of the spectrum 1 + uo@ into the product of two functions, A ( + )  and A(- ) ,  
such that A(+) and l /A‘+)  are both the transforms of causal functions, while 
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A(-) and 1 /kc-) are both the transforms of anticausal functions. The factorization can 
sometimes be achieved by inspection (when 9 is a rational function), but the following 
algorithm works nicely even when 9 is only given in the form of numerical data for real 
w.  

Let 

8 = log ( 1  + uo6) .  (46) 

For real w,  6 is a real, positive, even function of w, so there is no difficulty with this 
definition of B ,  and B is also an even function. Moreover, in typical cases, 
9 - 0 as w - m, so B inherits this property. The (temporal) inverse transform of B is a 
time function B ( [ ,  1 ) .  and we partition this function into its causal and anticausal 
parts: 

where B, is a causal function and B _  an anticausal function of t. Taking Fourier 
transforms of B+ and B- and exponentiating, we get the required factorization: 

I + uo+ = exp (8)  = exp (8 , )  exp (k)  = A(+) A(-), (48) 
where 

A(+) = exp ( k + ) ,  (49) 

As functions of complex w, A(+) and its reciprocal 1 /A(+) are bounded and analytic in 
the lower-half plane. This follows from the foregoing construction, since B+ is a causal 
function, since exponentiation is analytic everywhere, and since I exp(z) I I exp I z I. The 
corresponding argument shows that A" and I / & )  are bounded and analytic in the 
upper-half plane. 

Having obtained the factorization, we are now ready to consider Equation 43, 
which we rewrite as follows: 

(51) 
- -  

( 1  + u o 9 ) ( H o  - u o ' )  = s. - UiI. 
Dividing by k( -), we obtain 

This equation holds for real w. But the function on the left (right) can be extended as a 
bounded, analytic function in the lower- (upper-) half plane. Let F ( w )  be the function 
on the left for w in the lower-half plane and let F ( w )  be the function on the right for w in 
the upper-half plane. Then F is analytic and bounded in each half plane and it is 
continuous on the real axis. The only function with these properties is a constant. 
Therefore 

A(+)(& - 240') = c. (53) 

We can evaluate C by letting w - * m. From the construction of a(+) it is clear that 
A(+) - I as w - * GO. Moreover, it seems reasonable to impose the regularity condition 
k,([, w )  - 0 as w - * m. In that case, we have C = - u,' and 
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This is better expressed if we let 

SO that $ + I  - 0 as w - f m. Then 

This is the formula for the optimal filter. An important remark is that $+) depends on 
uo, so the dependence on light level is not as simple as it appears to be in Equation 56. 

As in the foregoing section we now consider the low-light and high-light limits. 
These are most easily read off from the equation 

( 1  + uo6)Ho - 6 = *. (57) 

When uo = 0, we have 
- 

H o - 0 = 9  (58) 

or 
- -  

Ho - it = 9 + 0-, (59) 

where 6, and 6- are the Fourier transforms of the causal and anticausal parts of 
a(& t ) .  It follows that 

- -  
Ho = 0,. (60) 

This should be compared with the low-light limit of the unconstrained filter, which was 

When uo is large, on the other hand, we may neglect the 1 in (57) in comparison 

(61) 

Ho = a. 

with u00. In that case, we have 

(uoko - I ) *  = *, 

which is clearly solved by setting uoko = 1 and * = 0. We conclude that 

lim uoHo = I .  
y0-m 

This is the same high-light limit as in the unconstrained case. The reader may want to 
verify that the low-light and high-light limits can also be obtained from the formula 
(56). This can be done by studying the behavior of the factorization for small and large 
values of uo. 

To illustrate the behavior of the optimal filter in more detail, we consider the design 
of a “retina” for looking at an ensemble of spots of light (or shade) that execute 
Brownian motion in the plane against a fixed background. We assume that the spot k 
makes its first appearance at  (Xj, T j ) ;  these events (not to be confused with photon 
events) are distributed as a Poisson process in space-time with uniform density po (per 
unit area per unit time). Following its appearance, the kth spot of light executes a 
Brownian motion (continuous random walk) in the plane so that its trajectory is given 
by 

X , ( t )  = xi + Y,( t  - T i )  

where Y,(t) is an independently chosen Brownian motion path with Y,(O) = 0 and 
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diffusion coefficient D. Spot k remains turned on for a random time T k ,  which is 
independently chosen from the exponential density u0 exp (-vat). The ensemble of 
scenes may therefore be written 

U ( X . 1 )  = U , ( I  + x f ( X  - X! - Y k ( f  - T ! ) ) S ( t  - T i ) S ( T !  + Tk - t ) t ,  (64) 
k 

where f is a fixed function describing the shape of the individual spots of light and 
where S ( t )  is the unit step function ( S ( t )  = 1 for t > 0, S ( t )  = 0 for t < 0). We leave it 
as a (fairly difficult) exercise for the reader to show that 

where 

A crucial role in  the derivation of (66) is played by a density function p(x ,  t ) ,  which 
satisfies the heat equation with leakage 

where A is the Laplace operator. The Fourier transform of this equation (in space and 
time) involves the operator 

iw  + D ( € ( ’  + u0 = iw + oo(t). 
This explains the appearance of w o ( t )  in the formula for &. 

factorization of 1 + uo9 can be carried out by inspection: 

(70) 

The power spectrum 9 derived above is a very simple rational function of w, and the 

- w2 + w; + 2 u 0 a w 0  

w2 + w; 
1 + uo* = 

(71) 

iw + (w; + 2u0aw0)1 /2  -iw + (Lo; + 2u0aw0)1 /2  

= ( iw + wo ) ( - i w  + wo 

- - J t )  /j-). 

Therefore 
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We shall approximate this formula for the optimal filter in the range of light levels 
and spatial frequencies for which 

That is, we consider the low-light or high- (spatial) frequency behavior of the optimal 
filter. Making this approximation, we find 

a (8 
( iw  + I €120 + Yo)  + uocy(€) 

fro(€, w )  = 

Incidentally, although this expression was derived for low-light levels, it has the correct 
high-light limit: u,,Ho - 1 as uo - a. 

Note that the approximate optimal filter given by (74) cap be realized by the 
feedback network shown in-FIGURE 5 .  In this figure the input is I, the output is 0, and 
the difference signal is E. The mean light level u, appears as a simple gain 
(independent of frequency) in the feedback path. All other elements are independent of 
the mean light level. The box a([)  represents a static network with no dynamics. In 
fact, in the special case where the spots of light in the scene are concentrated a t  
individual points,f(x) = 6(x), and F ( [ )  = F ( 0 )  - 1, so a is independent of [. The box 
(io + I [ 1'0 + uo)-I computes the solution of the diffusion equation with leakage. In 
neural terms it can be realized by a dendrite-like network (such as  the horizontal cell 
network) with current input and voltage output. The operation of the feedback loop can 
be understood as follows. Under low-light conditions the feedback is negligible, and the 
receptive field is determined by the solution of the diffusion equation. As the light level 
is raised, the feedback becomes more and more important. This has the effect of 
driving E towards zero, which means that the approximation I = uoO becomes better a t  
higher levels of light. This has the effect of sharpening and speeding up the response to 
a photon. Note that these changes in the overall spatial and temporal dynamics of the 
receptive jield are achieved merely by altering a single feedback gain; there is no 
selective adjustment of nearby versus faraway connections nor is there any resetting of 
time constants of the individual components of the system. 

Does the retina in fact function as an optimal filter? This is an active area of 
current research for us. Tranchina et aL6 have measured temporal frequency transfer 
functions of horizontal cells in the turtle retina. The stimulus was spatially uniform 
light with time dependence uo + a, cos ( 2 r f t ) ,  where uo is the mean light level, a, is 
the amplitude of the sinusoidal component, andfis the frequency. The response was of 
the form u I  + a ,  cos (27rft + 0). The temporal transfer function H ( f )  is defined as  
H ( f )  = ( a , / a , )  exp (i0). It was found that a family of temporal transfer functions 
measured over a large range of mean light levels could be fit by a feedback model in 
which the gain of feedback is proportional to the mean light leveL6 The transfer 
function of such a feedback model is of the form 

where M ( f )  is the low-light limit of H and where L - ' ( J )  is the high-light limit of 
u,H. Note that Equation 75 can be realized by the feedback network shown in FIGURE 
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6. The resemblance to the feedback network of FIGURE 5 is striking. The most 
important difference is the presence of the nontrivial network L (f) in the feedback 
pathway. This is a consequence of the fact that the observed high-light limit is not flat, 
but tends to emphasize the higher frequencies. 

To incorporate such behavior into the optimal filtering theory requires a general- 
ization of the simple form of the theory presented in the foregoing. That is, we have to 
assume that the retina is designed not to reconstruct the contrast of the original scene 

Therefore: 

FIGURE 5. Feedback realization of the (approximate) optimal spatiotemporal filter for looking 
at a collection of spots of light that: (i) turn on at random points in space-time, (ii) move according 
to Brownian motion paths with diffusion coefficient D. and liii) turn oRat  random times with vo 
k i n g  the probability of extinction per unit time. I - input, E - difference signal, 
0 = output. The box labeled a([) is a static (that is, instantaneous) network with no dynamics. 
The box labeled (iw + I [ I2D + yo) - '  is a dendritic network such as  the horizontal cell layer of the 
vertebrate retina. The feedback path contains a simple gain proportional to the mean light level 
uo. In this model retina, light adaptation is achieved entirely by changing this one parameter. 
Note that the effects of uo on the overall spatiotemporal transfer function are  complicated. In 
particular, the response of the network to a photon becomes faster and sharper as  uo is increased. 

per se, but rather to construct a filtered version of the contrast of the original scene. We 
are now working on a quantitative test of the generalized theory. 

NUCLEAR MEDICINE 

We now consider the problem of designing an optimal linear filter for removing the 
photon (or other particle) noise from a nuclear medicine scan. There are several 
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differences between the nuclear medicine case and the problems that we have 
considered up to now. 

First, the ensemble of “scenes” or photon densities now becomes a concrete reality: 
it is a record of the scans of all (or a selected group of) patients who have received a 
similar nuclear medicine scan in the past. The definition of “similar” raises interesting 
problems that are outside the scope of this paper. Another difficulty with the design of 
a filter based on an ensemble of patient scans is that the scans are themselves noisy; this 
does not turn out to be a major obstacle, however. A third objection may be the 
difficulty of storing and retrieving the large amounts of data involved, but these 
difficulties are being rapidly overcome by progress in the development of computers. 
Perhaps the most serious question is whether it makes sense to use information from 

r n n 

I M .  2 0  

b + # 
n 

- u  0 -  L +  
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A n  n r  
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A A *  
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FIGURE 6. Feedback model of light adaptation in the turtleTetina.6 i = input, ,6 - difference 
signal, 0 = output. M ( f )  - forward gain at  frequencyf, u & / )  = gain of the feedback path, 
where ua = mean light level, When ida is small, there is essentially no feedback and the transfer 
function is app[oxima_tely M. When u,, is large, the difference signal is small, so that we have 
approximately I = uaLO. Compare FIGURE 5 .  

previous patients to process the picture of a given patient. This idea may seem less 
radical when we recall that this is exactly what a doctor does when he makes a 
diagnosis. The symptoms are not considered i n  isolation; they are evaluated in the 
context of the a priori probabilities (sometimes called the “index of suspicion”) that 
the patient may have a particular disease. These apriori probabilities are learned from 
“experience.” This means that the physician has in the back (maybe in the front) of his 
mind a record of the ensemble of patients that he has either seen himself or heard of 
through the medical literature. Every physician makes extensive use of such informa- 
tion in arriving at  a diagnosis. Here we apply the same idea in a quantitative way. 

The second new feature in the nuclear medicine case is that the patient ensemble is 
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certainly not stationary. This is because the nuclear medicine camera is always being 
pointed at something. The organ in question is centered in the image, which therefore 
has a natural origin. This means that the Fourier transform, our main tool up to now, 
will no longer be useful. It also implies that the ensemble has to be characterized in a 
more complicated way. The expectation over the ensemble is now a function of position 
and the correlation function is now genuinely a function of two variables, not just of 
their difference. For the same reason, the idea of “contrast” is no longer useful and the 
mean values cannot be thrown away. Our goal will be to reconstruct the true photon 
densities. The lack of stationarity is the major mathematical difficulty in the nuclear 
medicine case. 

This difficulty is compensated by an advantage, however. Since we are free to 
process the nuclear medicine scan “off-line,” the constraint of causality does not apply 
even when time is an important variable, as in nuclear medicine scans of the heart. 
That is, once the study is complete and the data have been stored, there is no reason 
why the filter cannot look both forward and backward in time. Thus, time and space 
play identical roles here and we shall not even bother to distinguish between them. 

Finally, there is the following minor difference: a nuclear medicine scan is usually 
recorded in discrete cells called pixels. Thus the data take the form of the number of 
counts in each pixel and not the form of a list of the coordinates of the individual 
photon events. We shall develop the theory in this section accordingly, but we 
emphasize that this is not a fundamental issue, since the discrete and continuous 
versions of the theory (while they look somewhat different) are essentially the same. 

Let the pixels in a nuclear medicine scan be designated by an index p = 

I ,  2,. . . f. The order is of no significance and we use this notation even when the 
study involves time. For example, pixels I . . . p ,  might be the first frame in time, 
p ,  t 1 . . . 2p, the second frame, and so on. Let N p  be the number of counts recorded in 
pixel p. For a given patient this is a random variable distributed according to the 
Poisson distribution 

(76) u,. f r { N p  = n ]  = - e  up, 

n!  

where Up is the expected number of counts in  pixel p for the patient in question. Note 
that ( U ,  . . . U p )  are random variables only because we regard the selection of a patient 
from the ensemble as a random process; for any particular patient ( U ,  . . . U p )  have 
definite numerical values. These values are, however, unknown, and the point of 
performing a nuclear medicine scan is to determine them (approximately). For a given 
patient, the random variables N p  and N ,  are independent, for p # q. Note the 
important point that N p  and N ,  are only conditionally independent, the condition being 
that the expected values Up and U, are known. Once these expectations are known, we 
cannot obtain any further information about N p  by measuring N,. It could happen, 
though, that when we consider the ensemble as a whole, Up and U,, are strongly 
correlated. In that case, if we do not know Up and U,, then a measurement of N p  tells us 
a lot about N,. 

Since the individual patient is characterized by the list of numbers U ,  . . . U p ,  a 
complete description of the ensemble would be a statement of the joint probability 
distribution function 

F ( u ,  - . u p )  = f r { U ,  5 u ,  and - - - and U p s  4.1. (77) 

Fortunately, we have no need for the function F per se, but we only need the ensemble 
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average and the correlation function: 

Note that the correlation function here is not normalized. Also, 0, d g e n d s  on p and 
4, is not merely a function of p - q. The problem of how to measure Up and & will be 
considered below. For now we regard them as given functions. 

In summary, the data N, are generated in a two-step stochastic process. The first 
step is the selection of a patient U, . . . Up from the ensemble. Then, given U ,  . . . U p ,  
the counts N ,  . . . N p  are generated independently in each pixel using the Poisson 
distribution with mean values U ,  . . . Up,  respectively. 

Our goal is an optimal linear reconstruction of U, . . . Up from the data N ,  . . . N p .  
That is, we  seek a reconstruction of the form 

P 

V, = 0, + x H,(N, - u9). 
9- I 

The first term in (80) is just the ensemble average. It would be our best guess in the 
absence of data. The second term is a correction to the ensemble average in the form of 
an arbitrary linear combination of the deviations from the ensemble average in the 
different pixels. The function H ,  is the (nonstationary)-filter; it remains to be 
determined. The error in pixel p is simply V, - Up (not V, - Up);  therefore we seek H, 
to minimize E [( V, - U,)’] .  Note that this is a separate problem for each p ;  we 
minimize the error in each pixel separately with no trade-off between different pixels. 
It will turn out, though, that all of the different problems are linear systems of 
equations with the same matrix (but different right-hand sides). 

We now proceed (as in the foregoing sections) to evaluate the mean square error 
and then choose H to minimize the resulting expression. It is convenient to start in the 
following way: 

The last term is just 4,,, by definition. To evaluate the other two terms we first take the 
expectation with U = (U,  , . . U p )  given; then we take the expectation over the patient 
ensemble: 

E [(v, - u p ) *  I u1 = HpqHM E [ ( N 9  - V,) (Nd - I UI. (84) 
q.d 

This last expression must be evaluated with care. For q # q‘, N,, and Nd are 
independent (given U). Therefore 

(85) E [ ( N ,  - U 9 ) ( N 9 ,  - o d ) l U ]  = (U9 - u 9 ) ( U d  - ad), q Z q’. 
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On the other hand, for q = q' we get 

where we have used the important property of the Poisson distribution that the 
variance is equal to the mean. Thus, when 9 = 9' the extra term Uq appears. It follows 
that 

Substituting Equations 83 and 88 into Equation 81, we get the required formula: 

E [( vp - = z H& uq + E Hp4H&dqq* - 2  E H,dP4 + dPP. (89) 

To find the optimal Hpq set H ,  = H", + c Hiq ,  differentiate with respect to c, and set 
the result equal to zero for c = 0 and arbitrary HL.  Alternatively (since the problem is 
discrete), just differentiate with respect to Hpp and set the result equal to zero. In either 
case, we get the following linear system for H,: 

4 44' 4 

Hp4Uq f Hpq4qqf = f#JP4. (90) 
q' 

For each p. this is a linear system of equations for the un-&nowns ( H p ,  . . . H p p ) .  The 
matrix of the system is independent ofp ;  its qq' element is U,,P,,. + dqd .  It is easy to see 
that this is a symmetric, positive definite matrix. Symmetry IS a direct consequence of 
the definition of 4, and positivity is proved as follows. Let X ,  be an arbitrary vector (not 
identically 0). Then 

In practice it may not be convenient to store the matrix Hp4.  since the number of 
elements in  this matrix is the square of the number of pixels in the study. In practical 
cases the correlation function dW may be sparse (contain mostly zero elements). This 
would happen if each pixel were correlated only with a limited number of other pixels. 
We could, for example, set 4, = 0 when 14" is measured to be less than some 
predetermined tolerance. Nevertheless, the filter Hp4 would usually be dense. We 
therefore consider alternative strategies to the direct computation and storage of H,. 

First, we-summarize_the foregoing results in matrix-vector notation. Let V = 

( V ,  . . . V p ) ,  U = ( U ,  . . . U p ) ,  etc. Similarly, let H.4 be the matrices with elements H ,  
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and 4w respectively. Also let D ( u )  be the diagonal matrix with 0, . . . 0, on the 
diagonal. Our reconstruction takes the form 

V =  i7+ H(N - a), 

H ( D ( D )  + 4) = 4. 

(92) 

where H is the solution of 

(93) 

The idea now is to eliminate H from these equations. We do this by introducing the 
vector W, which is defined as the solution of 

(94) ( D ( U )  + 4 ) W =  N - U. 

v =  i7+ H ( D ( U )  + 4)w 

Substituting this expression for N - Uinto (92) we obtain 

= v +  4w. (95) 

Therefore, we can avoid any explicit reference to H by using the following algorithm to 
obtain the reconstruction V. Given data N on a particular patient, we solve the linear 
system (94) for W. Then we use the result in (95) to obtain V. With this approach we 
have to solve a linear system for each patient. If 4 is sufficiently sparse and H is dense, 
however, the cost of solving for Wmay be less than the cost of merely multiplying H by 
(N - U). Also, we avoid the difficulty of storing H. 

We now turn to the important problem of determining Uand 4 from data in the 
form of a concrete ensemble of patient scans. Let the scan of the jth patient in the 
ensemble be denoted (N{ . . . NI),Let n, be the number of patients in the ensemble, so 
j 1 . . . n,. We want to estimate Wand 4, and the difficulty is that these quantities are 
defined in terms of (Uj. . . U;), which are unknown! 

Fortunately, this difficulty can be overcome. First we note that 

This suggests the estimate 

which is the obvious way to estimate the expected number of counts in pixel p .  
Next, we combine (85) and (86) to obtain 

E[(Np - LI,)(N, - 0 , ) I W l  = Upsw + (up - op)(u, - a,), (98) 

from which it follows that 

E[(N, - U,)(Nq - Qq)l = up& + 4w 
= + 4)w. (99) 

This suggests the estimate: 

(100) 
1 nr 

ne j -1  
( D ( 0 )  + 4)E) = -x (N{ - ~ ~ u ' ) ) ( N ~  - up')). 
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This result is more surprising, since the right-hand side looks like a n  estimate of 4 
alone. In fact, however, the additional diagonal terms emerge out of the fluctuations in 
the data! Another nice feature of this method for estimating D(U) + 4 is that 
the estimate is automatic_ally symmetric and positive definite. 

It is easy to see that Uy) is an unbiased estimate. That is 

If we apply the same test to the matrix estimate we find (after a calculation that is 
omitted here) 

Thus the diagonal terms are underestimated (on the average)-by an amount which is 
O( I / n e ) .  This can be easily fixed up (if desired) by adding Uba‘)/n, to the diagonal 
terms of the matrix. 

VERTICAL HORI ZOHTAL 

FIGURE 7. Vertical and horizontal cylinders for computer simulation of nuclear medicine scans. 
The cylinders are filled with a medium containing radioactive isotope. The 5 x 5 grid in the 
foreground shows the simulated camera pixels. The two cylinders have the same (square) 
projections onto this grid, but their scans will differ because the expected number of counts in a 
pixel is proportioned to the volume of cylinder behind the pixel. 

Once an estimag of the matrix has been obtained, we obtain an estimate of 4 by 
simply subtracting Ujat) from thepth diagonal term of the matrix. 

We shall test the method outlined above by computer simulation. We choose an 
ensemble consisting of just two “patients.” Each element of the ensemble is a cylinder 
filled with isotope (see FIGURE 7). The height and the diameter of the cylinders are 
equal, so the projection of each cylinder onto the camera face is a square. The two 
“patients” differ in that the axis of the cylinder is vertical in one and horizontal in the 
other. This does not alter the square projection, but it does make a difference in the 
nuclear scan because each pixel in the camera records an expected number of counts 
proportional to the volume that projects onto the pixel in question. In fact we have 

up = porIpl (103) 

where Up is (as before) the expected number of counts in pixel p ,  po is the number of 
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disintegrating events per unit volume per unit time, up is the volume that projects onto 
pixel p .  and t is the exposure time. 

Thus the pixels aligned with the axis of the cylinder should receive the greatest 
numbers of counts because the volumes projecting onto them are greatest. 

Since the ensemble is known in this case, we can compute the optimal filter directly 
without observing the scans of a large number of patients. Thus, we defer to future 
work the question of how many patient scans are  needed to obtain an adequate version 
of the optimal filter. For this reason, the results obtained with the filter are labeled 
“ideal filter” in FIGURE 9. 

FIGURE 8 shows the raw (unfiltered) data a t  three different exposures for the 
vertical and horizontal cylinders. The results have been normalized by the exposure so 
that the mean level is the same in all three cases, but there is less noise a t  the higher 
exposures. The discrimination task (between vertical and horizontal) is difficult a t  all 
three exposures, but it is certainly possible a t  the highest exposure. FIGURE 9 shows the 
improvement obtained by filtering the data a t  the middle exposure (20 sec). The 
discrimination between the vertical and horizontal cylinder is far easier with the 
filtered images than with the raw data; moreover, the filtered images are very close to 
those labeled ideal data, which are simply plots of the expected number of counts Up in 
each of the two orientations. 

CONCLUSIONS 

At low levels of light in vision, and at  low dose of isotope in nuclear medicine, 
resolution is limited by the photon noise. This statement applies both to temporal 
resolution and also to spatial resolution. One strategy for dealing with the photon noise 
is to use a filter that attempts to reconstruct the image by smoothing each photon event 
and then summing the results. We have shown in this paper how the optimal smoothing 
can be obtained. This optimal filter always has the feature that it is faster and sharper 
when more photons are available. 

An important and perhaps unexpected feature of the optimal filter is that its design 
is dependent on certain statistical information concerning the ensemble of scenes that 
the filter is designed to process. In the case of nuclear medicine, we have a concrete 
(albeit noisy) record of the ensemble in the form of similar nuclear medicine scans that 
have been obtained in the past. We have shown how such data can be used to extract 
the necessary statistical information concerning the ensemble. In the case of vision, it is 
much less clear what constitutes the ensemble of scenes. One possibility is that the 
retina of each species has adapted in the course of evolution to the typical scenes that 
are relevant for that species. Another possibility is that the retina functions as an 
adaptive filter, adjusting its transfer function to the statistical properties of the current 
retinal image. 

We believe that the theory developed in this paper will be useful in explaining the 
changes in the behavior of the retina that occur as the ambient light level varies. We 
also believe that the class of optimal filters described in this paper will provide a 
practical method for processing nuclear medicine images. In the latter case we should 
be able to improve the image quality a t  any given dose or alternatively achieve the 
same quality with a lower dose of isotope. 

SUMMARY 

This paper is concerned with the construction of optimal filters for smoothing the 
photon noise that arises under low-light conditions in vision and under low-dose or 
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short-exposure conditions in nuclear medicine. In the case of vision, the paper explores 
the hypothesis that the retina functions as an optimal filter. The consequences of this 
hypothesis for light adaptation are studied. In the case of nuclear medicine, a method 
for constructing optimal filters is introduced, and the method is tested by computer 
simulation. 
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DISCUSSION 

DR. M. GREEN (City College of CCJNY, New York, N.Y.):  What is the definition 
of the diffusion constant in your transform in the gain loop for the retina? 

DR. C. PESKIN: I think that you are asking how we pick the diffusion constant for 
the retina. It would come from the diffusion coefficient of the process, that is, that 
retina was designed for looking at  this particular collection of scenes. Part of the 
definition of that process was that the fireflies (the spots of light) have a certain 
random walk with a certain diffusion coefficient. So the two would be matched to each 
other. 

GREEN: In other words, it is not purely a retinal property. It is partly a property of 
the ensemble of scenes. 

PESKIN: Yes. The fundamental point that I want to make is that an optimal filter is 
a function of the class of scenes a t  which you intend it to look. It obviously is not a 
function of the particular scene. If you knew the particular scene, you would not bother 
to make a filter, for you would know the answer already. But the important concept 
here is that one has a certain class of scenes that are related in some way and one can 
design a filter for that whole class to pick out the individual one as best possible. 

DR. F. STRAND (New York University, New York. N.Y.): I have a more general 
question: What is happening in terms of retinal sensitivity to photons when there is a 
reversal of background in an optical illusion such as one in which the background first 
appears to be white and then black? 

PESKIN: I am sorry, I don’t know. 


