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1. Introduction

The aim of this paper is to describe two intriguing problems in
the field of physiological fluid dynamics: flow patterns around heart
-valves and wave propagation in the inner ear. These problems both in-
“volve an elastic boundary that is immersed in a viscous, incompressi-
‘ble fluid. These boundaries are the heart valve leaflets and the

- basilar membrane of the inner ear.

Despite this common physical basis, the fluid dynamics are very
“different in the two cases. In the heart we have to deal with vortex
“'dynamics in flow at substantial Reynolds numbers, so the problem is
"highly nonlinear. In the ear, the amplitude of the motion is exceed-
ingly small, so the convection termé_of the Navier-Stokes equations
can be neglected. Nevertheless, the problem is interesting because of

-the large variation in stiffness of the basilar membrane from oneé end

~to the other.

The research described in this paper has been carried out by the
~author and his colleagues over a period of several years, and this re-
search program is still very active: Only an overview of this work
~will be given here, with emphasis on the formulation of the problem
and with samples ‘of numerical results. Details of the numerical meth-

ods are published elsewhere (see references).
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2. Flow patterns around heart valves

a. Physiology

A e
Each ventricle of the heart has an inflow and an outflow valve 0

(see 'Fig. 2.1). We shall describe the function of these valves on the
left 'side of the heart, but their function on the right side is simi-
lar. When the left ventricle is relaxed, its inflow valve (the mitral
valve) is open and its outflow (aortic) valve is closed. In this
situation the left ventricle forms a common chamber with the left
atrium and it receives blood from the left atrium at low pressure (5 
ﬁm. Hg.). When the left ventricle contracts, the mitral valve closes
and the aortic valve opens. The left ventricle then forms a common
chamber with the aorta, and it pumps blood into this artery at high
pressure (120 mm. Hg.).

The valves themselves are thin elastic membranes and their mo-
tions are primarily determined by the fluid that surrounds them. It
is important to realize, however, that the valve leaflets also have
profound influence on the fluid in which they are immersed. This tw
way interaction makes the heart-valve problem interesting from a

mathematical point of view.

b. Equations of an immersed valve leaflet

In this section we state the equations of motion of a mechanical

system that consists of an elastic boundary of zero mass immersed in
a viscous incompressible fluid. The region of space occupied by the
entire system will be called © ; the immersed boundary B(t) moves

about in the interior of Q. We shall write equations of motion that
apply on Q as a whole; this avoids the difficulties of working with
the fluid domain Q-B(t). :

Fig. 2.1 Heart valves and pressures.
LV = Left Ventricle; LA = Left Atrium; Ao = Aorta;

P = Pressure; and t = time.
The fluid has density p , viscosity u , velocity u(x,t) , and

pressure p(x,t): On account of viscosity, the velocity is continuou
across the immersed boundary, and the restriction of u(x,t) to B(t)

gives the velocity of the material points of the boundary at time t

The immersed boundary will be described in parametric form
. X(s,t). When Q is three-dimensional, s will stand for thexpair of
_ parameters (sl,sz) énd ds will stand for dslds2. The domain of s
will be denoted by B_. Thus B(t) = {X(s,t)|s & BO}. The choice of
parameters is arbitrary except that fixed s must mark a material

point.

Thus we use a Lagrangian description for the immersed boundary
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and an Eulerian.description for the fluid. With this notation, the
equation of motion may be stated as follows:
ow
O[g{ + E'VEJ = -Vp + pyAu + F (2.1)
Vew = 0 (2.2)
F(x,t) = I £(s,t)8(x-X(s,t))ds (2.3)
B
o
3%
3% (s/t) = u(X(s,t),t)
= Jg(§,t)6(§-§(s,t))d§ (2.4)
Q
£ ,8) = S(X(,1) (2.5)

This system of equations is not at all standard, and it requires

considerable explanation.

Equations

(2.1-2.2) are the Navier-Stokes

equations for a viscous incompressible fluid with an applied force-

density F.

dary on the fluid. It follows

support on the immersed boundary B(t).

force/volume, but the boundary

The explicit form of F is
§(x)8(y)S(z). The

pletely remove the singularity

stands for

one less than the dimension of

F will be O(h_l) and the volume of its support will belo(h).

The exact meaning of £(s,t) can be found by integrating Eq. (2.3)

Here we use F to represent the force of the immersed boun-

that F( ,t) is a distribution with
(Recall that F has units of

exerts a finite force in zero volume.)

given in Eqg. (2.3) in which

integration in Eq.

8 (x)
(2.3) does not com-
since the dimension of the boundary is

Q. In our numerical method, therefore,

over an arbitrary region Ql C Q. The result is
[ F(x,t)dx = [ f(s,t)ds (2.6)
1 By

where B) = {s]x(s,t) € Ql}.

Thus £ 1is the density of the boundary

force with respect to the

dary on the region @
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% boundary element ds

that lies in Q..

felt instantaneously throughout the incompressible fluid.

this comes about, take the divergence of both sides of Eqg.

1

591

(6) asserts that the force of the boun-
can be attributed to the part of the boundary

, and Eq.

the fluid.

1 In other words, the boundary force acts locally in

Despite the local nature of the boundary force, its effects are

result.is

Thus

V-E

EQ.

Ap = -pu-Vu + V-F

acts as a source of the pressure field.

To see how
(2.1) .

The

(2.4) simply asserts that the boundary moves at the local

fluid velocity; here, we regard this as an equation of motion of the

boundary and not as a constraint on the fluid velocity.
equality in Eg.
we write out to emphasize a certain symmetry with Eqg.
(2.3) and
the fluid,

 remarked above, this expresses the local nature of the interaction.

Egs.

Eq.

_ is determined by the boundary configuration.

(2.4)

(2.3).

and the é§-function appears as a kernel in both cases.

The second

(2.4) is just the definition of the &-function, which

Together,

express the interaction between the boundary and

As

(2.5) makes the important assertion that the boundary force

our assumptions that the boundary is elastic and massless.

boundary is an elastic curve (Fig.
in the unstressed

curve,

& nmass,

Consider an arc
the total

and let T

2.2). Let s
configuration, let T

be the boundary tension. Then

9X/9ds

|3x/23s]

=]
]

o(|ox/3s| - 1)

(a,b) of the boundary.

force on this arc must be zero:

b b
J f ds + Tz
a

a

This is a consequence of
To illus-
 trate this point, consider a two-dimensional example in which the
measure arc length

be the unit tangent to the

(2.8)

(2.9)

Since the boundary has zero

(2.10)
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Fig. 2.3 Comparison of theory and experiment.
Computed results are shown in (a,c) and

unit

boundary configuration

The forces at the ends of

Tension; T

T

X(s,t)

at time t.

2.2 Boundary force.
tangent;

Fig.

experimental results from the labora-
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g gg VhlEq. (2.10), the first term is the force of the fluid on the arc
+ %I}E - (a,b) and the second term is the force of the rest of the boundary on
Q—
gngg - this arc. Since a and b are arbitrary, this shows that
OH PN
Y oA
g hES a
BN £ = 55 (TD) (2.11)
Q0,008
T owgn
.3 gﬁ mw Substituting (2.8) and (2.9) in (2.11) , one can obtain an explicit
-ogks example of the kind of relationship that is summarized by Eq. (2.5).
- B
:’Eg‘ 4rﬁ‘ The system of equations (2.1-2.5) is remarkable in that the fluid
Q= .
™ :’4ﬂg stress tensor evaluated at the boundary never appears explicitly. As
4*‘§£§ we have just seen, this is a direct consequence of the massless charac-
0 HY 0
B oh88 8 ter of the boundary. If the boundary were massive, then we would need
% ﬁE;:E an equation for its acceleration. This equation would involve the sum
Yooa
msfiﬁﬂ of the elastic and fluid forces on an element of the boundary, and
§’3tF83 there would be no way to avoid explicit reference to the fluid stress
W - a2

| tensor.

:c.Computer test chamber for prosthetic mitral valves

We have discretized equations (2.1)-(2.5) to obtain a numerical
method for the heart valve problem (Peskin, 1972, 1975, 1977;
-and McQueen, 1980). Since the details of the method have already bkeen

published, only its use will be considered here.

Peskin

We use the method to solve the equations of motion of blood in a
two-dimensional model of the left heart. The model has a left atrium
and a left ventricle with contractile walls that have the physiologi-
cal properties of heart muscle. The model heart is floatlnq in fluid,
so its walls as-well as its valves are modeled as 1mmersed boundaries.
There is a source in the atrium that corresponds to pulmonary venous

Ieturn, and there is a sink around the edges of the domain that ac-

(a,b) are transmitted to the fluid

§  cepts the volume displaced as the heart fills.

ﬁ At the junction of the atrium and ventricle, we mount a model mi-

ﬁ  tral valve, natural or artificial. With the natural valve in place,

g Weadjust the physiological properties of heart walls until the re-
33 sults are in reasonable agreement with animal experiments as judged by
o o

records of presure and flow as functions of time.
2.3.

The comparison is
shown in Fig. In this figure all scales are the same except that
the flow curves have been scaled arbitrarily on account of the diffi-
culty of comparing three-dimensional flow (volume/time) with two-

dimensional flow (area/time). The computed streamlines of the natural
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mitral valve are shown in Fig. (2.4).

Once we have established physiological conditions, we are in a
position to test artificial valveé in the computer and conduct parame-
tric studies on the design of artificial valves. 1In Figs. (2.5)-(2.7)
.we,show the computed flow patterns of a ball valve, and two pivoting

disc valves.

The pivoting discs differ only in the position of the pivot poinh
and we do not impose any constraint on the maximum angle of opening.
We find, however, that this angle depends on the position of the pivot
point so that the valve in Fig. (2.7) opens much less than the valve
in Fig. (2.6). This illustrates how the method can be used for para-
metric studies.

The principal limitations of this work are that the model is two

dimensional and that our numerical experiments are conducted at low
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Reynolds number.

The Reynolds number appropriate for dog hearts

(where heart valve experiments are often done) 1is about 500.

Our nu-

merical results were obtained at a Reynolds number of 20.

As mentioned

above, the computed and experimental results appear to agree despite

this discrepancy. Nevertheless, it would be desirable to remove this
limitation.

d. Vortex methods

A high Reynolds number method for the incompressible Navier-Stokes
equation is the vortex method of A. J. Chorin (1973), and we conclude
this discussion with a brief description of some papers that apply

this method to the heart valve problem. In the thesis of Mendez (1977),

a new method for the creation of vorticity at an immersed, elastic
boundary is introduced. This method can be derived by taking the  curl

of Eq. (2.3) and noticing that each element of.the boundary force acts "Fig. 2.4 Streamlines of the natural mitral valve at

) ' equally spaced times. (Note that streamlines
cross moving boundaries.) In (1), the ven-
tricle is relaxing and the valve is opening.
Vortex formation occurs in (2) and establishes
the characteristic flow pattern of ventricular
avoids the difficulty of solving Laplace's equation numerically to filling. Contraction of the atrium strengthens
’ the jet in (6-7). Valve closure has just

begun in (7); it is completed by contraction
of the ventricle in (8).

as a source of a vortex dipole. In Peskin and Wolfe (1978), the vor-
tex method is combined with conformal mapping and used to study the

formation of the aortic sinus vortex. The use of conformal mapping

compute the potential part of .the flow. It also provides high resolu-
tion near corners where the slip velocity may be infinite. 1In
McCracken and Peskin (1980), a vortex-grid method for the problem of
blood flow in the heart is introduced. In this method, vorticity is

stored either in the form of moving vortex blobs or on a fixed compu

tational mesh. Tangential forces create vortex dipoles which are re
tained only for a fixed number of time steps; then their vorticity is
transferred to the mesh.
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Streamlines of a caged ball valve. Note
the distinction between the flow pattern
when the ball is opening (1) and after it
has reached the open position (2). Simi-
larly compare the closing flow pattern (8)
with the closed flow pattern (9). As long
as the ball is moving it is not an obstacle
to the flow.

Fig.

2.

6

Streamlines of a pivoting disc valve. In
This computation, we impose no mechanical
constraint on the angle of opening, which
is set by the fluid dynamics. Our purpose
is to study the effect of the position of
the pivot point on the angle of opening
(compare Fig. 2.7).
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i

Fig.

2.

7

Effect of moving the pivot point. The
valve in this figure is identical to the
valve in Fig. 2.6 except that the pivot
point has been moved closer to the center
of the valve. The angle of opening is
substantially less than before.
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3. Fluid dynamics of the inner ear

a. Physiology

The inner ear (cochlea) is a cavity in the temporal bone of the
skull. Unlike the outer and middle ear, which are filled with air,
the cochlea is filled with an essentially incompressible fluid. An
g}astic structure, the basilar membrane, runs along the length of the
cochlea and divides it into two main parts. The wave motions that
occur in the cochlea propagate along the basilar membrane. Although
they occur in response to sound, these disturbances are not sound waves
in the ordinary sense. Instead, they are vibrations in which the mass
of an incompressible fluid is coupled to the elasticity of an immersed
boundary. The kinetic energy of these waves is entirely a property of
the fluid and the potential energy is entirely a property of the elas-
tic boundary.

The physiology of the cochlea as we understand it today was first
elucidated by George von Bekesy (1960). Using static tests with a

constant pressure difference, von Bekesy discovered the important fact

that the stiffness of the basilar membrane decreases exponentially

with distance into the cochlea. Von Bekesy also studied the pattern

of vibration of the basilar membrane in response to a pure tone (sine
wave) . His method was to observe the motions of the basilar membrane
directly using a microscope with stroboscopic illumination. Von
Bekesy found that the response of the ear to a steady pure tone takes
the form of a wave. The points of constant phase propagate into the
ear at a velocity that decreases with distance. The amplitude of the
wave is a steady function of position that rises gradually to a unique
maximum and then decays rapidly on the far side of this maximum. The

point of maximum amplitude varies as the negative logarithm of the

frequency of the stimulating sound. In fact, when the frequency of

the sound is changed the whole pattern of vibration translates to a new
position without much change in form. This correspondence between fre-
quency and position (the cochlea map) is important because the fibers
of the auditory nerve are distributed along the length of the basilar
membrane. Thus each nerve fiber responds best to a particular fre-

quency, and a complex sound is transmitted to the brain with its dif-

ferent frequency components carried along different nerve fibers.

This is an important aspect of the mechanism of separating signals -

from noise in hearing.

It should be mentioned that the problem of constructing a theory

to account for these observations has attracted the attention of many
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investigators (Lesser and Berkley, 1972; Siebert, 1974; Steele, 1974;
Inselberg and Chadwick, 1976; Cole and Chadwick, 1977, Allen, 1977;
Steele and Taber, 1979a, 197%b).

Nevertheless, the work that will be described here (see also Pes-
kin, 1976, and Isaacson, 1979) is different in the following respects.
First, we show how a simple conformal mapping can be used to reduce
the inviscid cochlea problem to a sfandard water-wave problem. Second,
we show how the corresponding viscous problem can be reduced to an
integral equation on the basilar membrane, and we give two numerical

methods for solving this integral equation.

b. Two-dimensional model

The model that we shall use is shown in Fig. 3.1. The boundaries
at y = ta are rigid, and the model is unbouné;d in the positive and
negative x-direction. The moving boundary corresponding to the basilar
membrane is described by the unknown function vy = h(x,t). We assume
that the displacements of all fluid particles are small, so we neglect
the non-linear terms in the Navier-Stokes equation, and we apply the
boundary conditions appfopriate for y = h(x,t) to the undisturbed

"position of the basilar membrane which is y = 0.

We assume that the fluid is incompressible with density p and vis-

cosity u. The fluid velocity and pressure will be denoted (u,v) and p.

The equations of the model are as follows

PaE tax T M
v 3p  _
o3Etay T MOV F f(x,t)8(y)
du v _
x bty - O
f(x,t) = —soe—xxh(xlt)
h
%E (x,t) = vi(x,0,t)
u(x,0,t) = 0

]
(=}

u(x,xa,t) = v(x,za,t)

FLUID DYNAMICS OF THE HEART AND THE EAR

h(xt)

b

Fig. 3.1 The model cochlea

— — — —— g—

AQ

The transformed problem. The conformal mappin iven
Egs. (3.14)-(3.16) takes the lower half—cogﬁleg gnto tﬁg
wedge shown here. The inviscid cochlea problem is
equivalent to gravity waves on a sloping beach with the
source at the beach and the waves going out.

601
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In these equations f(x,t) corresponds to the force per unit length

exerted by the basilar membrane on the fluid. The resulting pressure
difference across the membrane can be found by integrating (3.2) across

y=0. The result is

(Pl = u[g—§1 + £ (3.8)

when [ ] denotes the jump in a guantity across y=0. From (3.3) and
the boundary condition wu=0 at y=0 , we see that dv/3y = 0 on
both sides of the membrane. Therefore

p] = £ = -se ™ (3.9)

where we have used (3.4).

Equation (3.4) contains the physics of tﬁ;]model basilar membrane.
According to this equation, the basilar membrane has zero mass, and it
exhibits linear elastic behavior at each x with a spring stiffness of
the form soe_kx
comes directly from the static measurements of von Bekesy (1960). The
reader should notice that the different points of the basilar membrane
are not coupled to each other by Egq. (3.4). That is, there are no
terms involving the space derivatives of h. This comes about because
the real basilar membrane is narrow and supported along its edges, see

Peskin (1976).

Finally, we have to discuss how the model cochlea is driven. The
real cochlea is excited at the stiff end by the piston-like action of
two elastic membranes, one of which is connected to the eardrum by a
chain of tiny bones. These two membranes are on opposite sides of the
basilar membrane, and one moves out while the other mew=2s in so that
the total volume of the cochlea is conserved. 1In the model we assume
that there is a sinusoidal source (with the appropriate antisymmetry)
at x = -,
into the boundary conditions, but we shall be deliberately vague on
this point since the details of how the cochlea is driven have very
little effect on the form of the wave that results. Some reasons for

this will appear below.

c. The inviscid case (u=0)

In this section we study the behavior of our model cochlea when
U=0. In this case it is reasonable to look for potential flow solu-
tions in which (u,v) = grad ¢. Because of the antisymmetry in the way

The exponential dependence of stiffness on position

In a careful treatment of the problem, this would be built
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that the cochlea is driven, it is also reasonable to look for solutions
that'satisfy

¢ (X,7,t) + ¢ (x,-y,t) = 0 (3.10)

Under these conditions, our equations reduce to the following system
in the strip -a <y <0

—-AX
22 4, 2of 3 _ vy =0 (3.11)
= , - .
> 2p 7y
A = 0, -—a <y <o (3.12)
3 .
33 = 0 y = -a (3.3

The boundary condition at the basilar membrane (3.11) was obtained from
(3.9) by differentiating with respect to time and using the relations

pdp/9t + p = 0 , odh/dot = (3¢/3y)y=0 ; and [¢] = —2¢y=o_

Equations (3.11)-(3.13) are very nearly the same as the equations
for gravity waves of small amplitude in a channel of finite depth. The
only difference between the two cases is that here the role of thé
gravitational constant g is played by the coefficient soe_AX/Zp ’
which depends on x. We can get rid of this space-dependence, however,

by applying the conformal mapping

X = e>\x cos Ay (3.14)

Y = &M sin Ay (3.15)
which can also be written

z = e (3.16)

where z = x + iy and %2 = X + iY. This mapping takes the strip
-a <y < 0 into the wedge -}a < arg(z) < 0. Along y=0 , we have

99  _ AX 30
e re 5 (3.17)
so that our problem becomes
2 s A

9°9d o 9o

@-‘\LWW = 0 Y—O, X >0 (3.18)
A = 0 -la < arg(z) < 0 (3.19)
90
WS 0 : -la = arg(2) (3.20)
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where 09®/3N stands for the normal derivative. ©Note that the factor
e_AX has disappeared and that we have transformed our problem into the
problem of gravity waves on a sloping beach (see Fig. 3.2). 1In our
case, the source is at the shoreline and the waves go out, because

x = —-» maps into X=Y=0.

We do not need a detailed solution to this problem. Instead we
can look at the behavior for large X. If the source has time-depen-

dence elwt, then this will generate a wave that propagates away from

the shoreline. For large X this wave looks like

i(wt—kX)ekY

o (X,Y,t) = e
_ ei(mt—kZ) (3.21)
where 2
2pw
k = P (3.22)
s A
o

Note that (3.21) satisfies (3.18) and (3.19) exactly, but not (3.20)
Nevertheless (3.20) is satisfied approximately for large X because of
the exponential decay as Y - -». Note also that our approximate solu-
tion is independent of the depth of the original cochlea model. It is

"also independent of the details of how the cochlea is driven.

Transforming back to the coordinates of the cochlea model, we

find 3
. V4
b (x,y,0) = ellwtTker™) (3.23)

To find the vertical velocity we evaluate

L ) = ne'® (3.24)
3y (X,y,t) Ae
where
(Ax+kekxsin AY)
a kie ¥ (3.25)
6 = wt - keAX cos Ay + Ay (3.26)
For y=0 we have simply
a = kre'¥ (3.27)
6 = ot - ke'¥ (3.28)
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According to these expressions, both the amplitude and the spatial fre
quency (-96/9x) of the basilar membrane velocity blow up exponentially
as x » ®. This pathological behavior is a consequence of leaving vis-
cosity out of the model. Nevertheless, we find something interesting

if we examine the solution at a fixed depth -Avy = & > 0. Then the

amplitude A has the form

. AX .
A = k)\e-ux_ke sin §) ) (3.29)

which has a unique maximum at X given by

_ 1
)\Xp = lOg m (3.30)

The expressions for A and 9 can be written more simply in terms of

X - xP as follows

A= A (x-e”) (3.31)
r
6 = wt -6 - EE%‘E (3.32)
where
r = A(x - Xp) (3.33)

This result is sketched in Fig. 3.3. At any finite depth, then, the
solution is very well-behaved. The amplitude A given by (3.31) rises
exponentially for ‘r << 0 , achieves it maximum at r=0 (x=xp), and
decays very rapidly (%exp(—exp(r))] for r >> 0. The spatial fre-
quency still blows up exponentially but this is not a serious problem
since the amplitude is decaying so rapidly. These results are consis-
tent with the pathological behavior when y=0 because xP + ® as

y »~ 0.

Perhaps we can use this inviscid solution to get an idea how the
model basilar membrane will behave when the fluid viscosity is small
but not zero. By "small" fluid viscosity we mean that the boundary
layer thickness (u/pw)!i is small compared to A-l. In these circum-
stances we expect the inviscid solution to be valid outside the boun-
dary layer and we can get a rough idea of what the basilar membrane is
doing by evaluating the inviscid Sglution at the "edge" of the boundar:
layer. This motivates setting y = —(u/pw)l/2 so that § = k(u/pm)%.

By assumption, ¢ is small, so we set sin § = & in (3.30).
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h

Fig.

3.3

Form of the cochlea wave as calculated
by evaluating the inviscid solution

at the edge of the viscous boundary
layer. The direction of propagation

is from left to right. Note the
asymmetry of the envelope, which decays
much more rapidly to the right than to
the left. The spatial frequency
increases exponentially from left to
right.

>\(X'XP)
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Recalling the formula for k (3.22) we find the following expression
for the cochlea map

W

Yo

R N
Axp = 5 log

2 1
where wy = (so/4pu) /3.

We are now in a good position to discuss the physics of the
cochlea wave under conditions of small viscosity. The waves in the
cochlea are concentrated near the basilar membrane with a depth of
pPenetration into the fluid that is roughly equal to the local wave-
length. The wavelength decreases as the wave propagates into the
cochlea, however, so the depth of penetration decreases and the ampli-
tude rises as the energy of the wave is compressed against the basilar
membrane. When the wavelength becomes less than the boundary layer
thickness, however, essentially all of the energy is in the viscous
boundary layer and the amplitude of the wave decays rapidly. Thus the
point of maximum amplitude occurs near the place where the wavelength
and boundary layer thickness are equal. This condition determines the
form of the cochlea map. J

d. The viscous case: reduction to an integral equation

In this section we return to the viscous problem (3.1)-(3.7) and
we consider solutions that are harmonic in time. These solutions
satisfy a certain integral equation for the basilar membrane displace-

ment. The derivation of this integral equation proceeds as follows:

First, express all quantities in terms of their complex ampli-
tudes, e.g., let

h(x,t) = Re(H(x)el®t) (3.35)

Next, take the Fourier transforms in the x-direction, e.g., let

)

Ag) = L Jh(x)e_igxdx (3.36)
e

©

After these manipulations, the fluid equations (3.1-3.3 with boundary
conditions 3.5-3.7) become a system of ordinary differential equations
in y with £ as a parameter. These equations can be solved explicitly
for a relationship between H and F of the form

f(z) = -R(g)F(g) (3.37)
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where
. 2,,.2, . L.
A 1 & 20&(l-cosh &£a cosh ca) + (¢“+£“)sinh Ea sinh oa (3.38)
K(g) = 2 2 o cosh £a sinh ca - & sinh £a cosh aa
pu“o
o= V2 + 139 (3.38a)

When a = @ , this expression simplifies as follows:

~ 1 1
K(g) = 3 g2 - e (3.38b)
pu 1+ ——%
ue

which behaves like |&| for small |£| and like |g| ~ for large

lg]-

From (3.4) we also have
F(x) = -s e H(x) (3.39)

To combine these eguations, we introduce the following operator

notation
F = Fourier transform (3.40)7
E = Multiplication by e_kx (3.41)
R = Multiplication by R
-Note that F is unitary,.so F* = F_l. Taking the Fourier transform of
(3.39) and substituting in (3.37), we find
i = sokFEF*ﬁ ‘ (3.43)
which can also be written
B = s F*KFen (3.44)

we can think of (3.44) as an eigenproblem for the operator F*KFE, which

is not self-adjoint. Suppose we have found an eigenfunction H corres-

. -1
ponding to some eigenvalue S

It is easy to check that the translates
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of H are also eigenfunctions corresponding to different values of S
Iﬁ this way we can show that the spectrum of F*KFE contains the posi-
tive real axis if it contains any point on fhat axis. We can there-
fore prescribe Sq arbitrarily and try to deterﬁine H. For numerical
purposes it is useful to state this problem in least-squares form:

Find H subject to

[ lg%ax = 1 (3.45)

that minimizes

f g - sOF*RFEHIZ dx : (3.46)
o

e. Two numerical methods for the viscous problem

The methods that will be outlined here were developed by Peskin
(1976) and Isaacson (1979). Both are based on the least-squares formu-
lation (3.45)-(3.46). Upon discretization, this leads to the problen
of finding an eigenvector corresponding to the smallest eigenvalue of
A*A, where A is the matrix that arises from the discretization of
(I - soF*EFE). Such an eigenvector can be found by the inverse power
method
1

araw™tl = G T (3.47)

The two methods of this section use different discretizations, however,

and they solve (3.47) in different ways.

In Peskin's method, the problem is discretized by introducing a
mesh of W equally spaced points on the x-axis and a similar mesh on the

£-axis. The mesh-widths are chosen as

1

_ Mg 2m)® :
}\AX = T = [T] (3.48)
so that Ax A§ = 27/N , and
. L2T .
-ix. & s -i=jk
e 37k e 1(34x) (kAg) = e N (3.49)

Then the operator F is replaced by the discrete Fourier transform of
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order N, which has matrix elements, given by (3.49). The multiplica-
tion operators K and E are replaced by the appropriate diagonal

matrices.

The matrix A*A that results from this process of discretization
is not sparse, but this matrix is not needed explicitly, since (3.47)
is solved using the subroutine package SYMML{) (Paige and Saunders,
1973), which is a variant of the conjugate gradient method. This
method needs the matrix of the system to be solved only in the form of
a subroutine which can multiply this matrix by an arbitrary vector.
In our case, multiplication by A*A can be broken down into a sequence
of steps which are Fast Fourier Transforms or multiplication by dia-
gonal matrices. Thus we can multiply by A*A in O(N log N) operations
and solve our linear systems in O(Nzlog N) operations, since N multi-
plications by A*A are required. (In practice scaling is required to

achieve the solution in N steps; see Peskin, 1976, for details.)

Some computational results obtained using this method are shown

in Fig. 3.4. These results are for the simplest case which is a = =.
(3.45)-(3.46) is achieved
by means of the Rayleigh-Ritz procedure with the Hermite functions as

That is,

In Isaacson's method, discretization of

the minimization is performed over the
Note

an orthonormal basis.
subspace of L2 that is spanned by the first N Hermite functions.
that the Hermite functions are eigenfunctions of the Fourier transfor-

mation.

It turns out that a good solution can be computed for moderate
values of N, so Isaacson computes the matrix elements of A*A explicitly
and uses the Cholesky factorization in the solution of (3.47). In com-
puting the matrix elements, Isaacson uses Gauss-Hermite quadrature, and
he takes advantage of the following identity
H(E - )

(FEH) (E) = (3.50)

~ ~
The expression H(£-)A1i) always makes sense when H is a linear combina-

tion of -Hermite functions, since the Eermite functions are entire

Fig. 3.4
functions. g

In practice Isaacson's méthod is much faster than Peskin's be-
cause a comparable solution can be achieved with a much smaller value
of N.
cochlea wave at several frequencies for a realistic finite depth and
This

Therefore his method was used to compute the form of the

to construct a numerical cochlea map for the viscous problem.

map is plotted in Fig; (3.5).
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The cochlea wave (left) and its Fourier transform (right).
In the cochlea wave, note the gradual rise and rapid fall
of the envelope as well as the increasing spatial frequency
of the wave. 1In the Fourier transform note the predomi-
nance of negative frequencies which correspond to waves
moving from left to right. This occurs despite the absence
of any explicit reference to a source at in the
computation.

X = -
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The computations apply to the viscous, finite-depth

case with the following_parameters: a= 0.2 cm,
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