Accuracy of the Immersed Boundary Method
in Fixed-Point Arithmetic

Gabor J. Ferencz, Jr.', Eric R. Peskin', and Charles S. Peskin?
Electrical and Microelectronic Engineering Dept., Rochester Institute of Technology, Rochester, NY, USA
2Courant Institute of Mathematical Sciences, New York University, New York, NY, USA

Abstract— The immersed boundary (IB) method is an al-
gorithm for simulating elastic structures immersed in a
fluid. The IB method can be used, for example, to simulate
blood flow in the heart. Even running on supercomputers,
software implementations require on the order of seven
CPU-days to simulate one heart beat. The IB method has
significant, inherent, fine-grain parallelism available. This
parallelism makes it a good candidate for implementation in
hardware, such as a field-programmable gate array (FPGA).
While floating-point arithmetic is possible on FPGAs, fixed-
point arithmetic is more efficient and takes less space to
implement. This paper presents a study of the accuracy of a
fixed-point implementation of the IB method.

Keywords: Fixed-point arithmetic, round-off error, immersed
boundary method, floating-point to fixed-point conversion.

1. Introduction

The immersed boundary (IB) method [1] models the inter-
action of a viscous, incompressible fluid with an immersed
elastic boundary or structure. This method was originally
introduced to study blood flow in the heart and has been
used for numerous other applications, especially in but
not limited to biofluid dynamics. In all of its applications,
the IB method has been very demanding of computational
resources, especially computer time.

One specific application of the IB method is prosthetic
heart valve simulation. The IB method requires a significant
amount of computation time for modeling even a single
heartbeat. Current implementations can take days to perform
the calculations needed for a single simulation, in spite of
the fact that they are running on supercomputers. If the
simulation runs faster, more heartbeats can be simulated in
the same amount of computation time. The extra data can
aid in detecting anomalies that might be missed in smaller
simulations. Given that the analysis can indirectly aid in
saving a life by creating a better prosthetic heart valve, a
reduction in the time requirement for simulation would be
of great benefit.

The question therefore arises whether a hardware imple-
mentation would provide significant speedup in comparison
to the traditional software implementations that have been
done until now. The first step in pursuing a hardware

implementation is determining whether or not the algorithm
will support a fixed-point implementation [2].

AccelDSP [3] is a tool that ports MATLAB code to a
fixed-point field-programmable gate array (FPGA) imple-
mentation through an automated process. A number of other
tools exist [4], [5] for automatically converting floating-point
code into fixed-point code. Automated conversion works
well for code written specifically for the tool, allowing
caveats of the conversion tool to be addressed in advance.
The floating-point code is not written with automatic con-
version in mind, and would therefore require many changes
to be effectively processed by an automatic tool. Thus,
manually converting the algorithm and empirically analyzing
the data is chosen in favor of automated tools.

Although the technique of manual conversion with em-
pirical analysis is chosen, the conversion is not completely
manual. MATLAB’s Fixed-Point Toolbox [6] is employed
to aid in the design of the fixed-point implementation. The
Fixed-Point Toolbox implements some of the basic fixed-
point functions. The numerical formats are manually chosen
for top-level variables and some of the internal variables.
Other internal variables are allowed to grow in word length,
based on rules defined within the Fixed-Point Toolbox.

FPGAs are often used to exploit parallelism in order to
improve performance [7]-[9]. In one such example, Gu and
Herbordt [10] present an FPGA-based engine for molecular
dynamics simulations. Their formulation of the problem has
much in common with the IB method. In both methods,
particles move in a continuous coordinate space, but must
interact with computations that are done on a discrete Carte-
sian grid. The interaction is handled through interpolation
using a weighted average. However, both the weighting
function itself and also our approach to the computation
of the weighting function differ in two main ways. First,
Gu and Herbordt use semi-floating point [11] calculations.
In contrast, a fixed-point implementation of the IB method
is studied in present work. Second, in [10], the weighting
function is evaluated arithmetically at run time. In contrast,
the IB weighting function in the implementation described
here uses table look-up. The motivation for both fixed-point
representation and table look-up is to simplify the hardware
and improve performance. Table look-up also makes it easy
to change the weighting function.

Gu and Herbordt demonstrate an 11 x speedup [11] with-

BB BB BB A
6E3~~»-i~»-~_»-~~_~09»40-4@ »»»»» g o
. . O O
: : O: : : : :
5 m om0 m o omo o @ . @
: Y : : o :

X Ne) X X X @) X
Y/Ti: R m o [. o = FR oo
: 0 : : : oF :

: O : : 0
3m o L [. O o 4 o
: ; : : 0 :

: - O : O: : :
2pE @ g @O B g
W oo TSR SO S
o)1 = £ £ = = = £
0 1 2 3 4 5 6 7

Figure 1: A fiber immersed in a fluid (N = 8, N, = 26).

out fixed-point representation or table look-up. Provided that
the accuracy can be sufficiently maintained with fixed-point
representation, fixed-point arithmetic, and table lookup, a
speedup of greater than 11x appears to be feasible for an
FPGA-based IB method implementation.

In this paper, a fixed-point implementation of the IB
algorithm is presented. The implementation is written in
MATLAB, using the Fixed-Point Toolbox [6]. The accuracy
of the fixed-point implementation is compared to that of
the double-precision floating-point version of the IB method
applied to the same physical problem.

Section 2 further describes the IB method. Section 3
explains calculation changes that serve to facilitate an FPGA
implementation. Section 4 describes the experimental setup
and presents the results. Finally, Section 5 draws conclusions
and outlines directions for future work.

2. The Immersed Boundary Method

The IB method models the fluid as a regular Cartesian grid
of fluid points. The grid has finite extent, with /N points in
each dimension. The grid is treated as periodic, such that the
last grid point in each row is treated as being adjacent to the
first grid point in that row, and similarly in each dimension.
The velocity u of the fluid is stored at each point on the grid.
In principle, the grid can have any number of dimensions.
Figure 1 depicts a two-dimensional case with N = 8. The
fluid grid points are indicated by the small squares at the
intersections of the grid lines.

The immersed boundary is modeled as a collection of
Ny, discrete fiber points, each of which stores its current
position X. The circles in Figure 1 represent fiber points. A
fiber point is not restricted to be at the same position as a
fluid grid point. The position of a fiber point is stored with
significantly greater precision than the fluid grid.

Herein lies the central problem within the immersed
boundary method. The velocity of any fiber point should be
equal to the velocity of the fluid at that position. However,
the fluid velocity is only stored on the discrete Cartesian
grid. Unless a fiber point happens to be at exactly the same
position as a fluid grid point, the fluid velocity at the position
of the fiber point is undefined. The solution is to interpolate
the velocities of the fluid at grid points in a neighborhood of
each fiber point’s position. At each time step, the velocity of
each fiber point is set to a weighted average of the velocities
of the fluid grid points in its neighborhood. The weights are
determined by the fiber point’s relative position within the
neighborhood. Figure 1 highlights one of the fiber points
(the dark disc) and its four-by-four neighborhood of fluid
points (the dark squares).

Similarly, the elastic forces exerted on a given fiber point
by its neighbors should be imparted to the fluid ar the
position of the given fiber point. The same problem arises
that the position of a fiber point may not be equal to that
of any given fluid point. Therefore, the forces on fibers are
spread to the fluid points in the neighborhood of that fiber
point. The same neighborhood and the same weights are
used as in the interpolation of velocity discussed above.

Figure 2 shows how the state variables of the IB method,
the position X(¢) and the velocity u(t), are updated from
time ¢ to time ¢ + At. A second-order accurate Runge-Kutta
type time-stepping scheme is used. The basic strategy is to
define intermediate quantities at time ¢ + % and then to
use those intermediate quantities in the update of the state
variables from time ¢ to time ¢ + Af.

The first step is to interpolate the fluid velocity u(t)
around the positions X (¢) of the immersed boundary points
to obtain the immersed boundary velocities U(t), which are
then used to update the immersed boundary configuration
from X (t) to X(t+ %) This intermediate configuration of
the immersed boundary is then used to compute the elastic
force density F(t + %) that is applied by the immersed
boundary to the fluid. Note that F(t + 4!) is defined only
on the immersed boundary itself.

The next step is to spread the force density out onto the
fluid grid to obtain the grid-based force density f(¢ + %)
Note that the force-spreading operation is the transpose, or
adjoint, of the velocity-interpolation operation.

The next step is to update the fluid velocity under the
influence of f(t + 4!). This is done in two stages, thus
generating u(t + 4%) and then u(t + At). The intermediate
velocity u(t + %) is then interpolated at the intermediate
positions X (¢t + %) of the immersed boundary points to

Interpolate

f(t—|— g) Fluid

2 / Solver
u(t+ 4t
% Interpolate
Move At
(full step) % Ut +5)
X(t+ At) u(t + At)

Figure 2: Data flow within one iteration of the IB method.

obtain the intermediate boundary velocity U(t+ 4!), which
is used to update the immersed boundary configuration from
X(t) to X(t + At). Since both of the state variables have
been updated, the time step is complete.

In the remainder of this paper, we use double letters to
refer to the intermediate quantities. Thus, for example, the
notation uu will refer to the velocity field at an intermediate
time ¢ + %, where ¢ is an integer multiple of At.

3. FPGA-Centric Optimizations

Several changes are made to the code in order to more
readily support an optimized FPGA implementation. These
changes also provide benefit for the fixed-point implemen-
tation, as they take away operations not directly supported
by the Fixed-Point Toolbox, such as square roots and expo-
nential calculations.

3.1 Program Units

The floating-point implementation of the IB method uses
physical units. In contrast, the fixed-point implementation
uses program units as follows. The unit of distance A is the
distance between adjacent fluid grid points. The unit of time
At is one time step of the simulation. The unit of mass m
is the mass of the fluid contained in one fluid grid box. This
choice of units causes the numerical value of several constant
IB parameters to become 1. This is especially convenient for
an FPGA, since the original IB equations frequently multiply
and divide by such constants. The use of program units thus
eliminates several multipliers and dividers.

3.2 Implementing ¢ as a Table

For the two-dimensional case, in program units, the equa-
tion for interpolation is given in (1).

U, = Z u(x)p(z1 — Xp,1)d(xe — Xp 2) (D

XENE
N = Ng,1 X N2 2
ki = Xk =1, [Xei) + 2} 3)

where:
o Uy, is the velocity of fiber point k.
e x = (x1,x2) is the position of a fluid grid point.
o Xy = (Xk,1,Xk,2) is the position of fiber point k.
e ny is the four-by-four neighborhood of fiber point k.
e u(x) is the velocity of the fluid at position x.
e ¢(r) is a weighting function.
The interpolation function ¢ is given by (4) [1].

o(r)

—~

3—2lr| + /I + 47| — 47»2) . <t

)
5 — 2lr| — /=7 + 12]r] — 47"2) , 1< <2

= 0ol

The ¢ function, as defined in (4), involves square roots
which are costly to implement in FPGAs and not fully

supported within the Fixed-Point Toolbox. To avoid the
square roots, ¢ can instead be pre-calculated and accessed
using table look-up. Note that the mathematical dual of
interpolate, i.e., the spreading function, uses the same ¢
function. Thus the savings in implementing ¢ as a lookup
table are doubled.

Let s; = X; — | X;]. Thus, s;, the fractional part of
X, represents the relative position of fiber point k within
its current fluid grid box, along dimension %, in program
units. For each dimension 4, the following weights must be
computed:

Wi = 9(~1 - 50) = 3 — 61— 1) ©)

wa; = G(—5;) = d(s;) (6)

ws,; = ¢(1 — ;) 7
(

Wi =62 s) =3 —d(-s) =5 —dls) ©

(6) and (8) rely on the fact that ¢ is an even function:
¢(—r) = ¢(r). (5) and (8) rely on the following property of
¢ [11:

S -5 = olr i) =4 ©)

J even 7 odd

which ensures that shifting the argument of ¢ by 2 com-
plements its output with respect to %, provided that the
argument remains within the support of ¢. This observation
is used to reduce the memory required for table look-up as
follows.

wa,; = ¢(s;) and ws; = ¢(1 — s;) are stored in tables.
These two tables can be accessed in parallel. Then w; ; and
wy,; are computed as follows: wq ; = % — w3, and wy; =
% — wa ;. This ensures that the property of (9) is preserved
exactly, regardless of the precision of the tables. This method
also cuts the storage requirements for ¢ in half, because
separate tables are not required for wy ; and wy, ;.

The table index s; is simply the fractional part of the
fiber-point position X;. The values stored in the tables are
also quantized. Because the range of the function ¢ is [0, %]
the table values are unsigned and have no integer part. The
current implementation uses the same number of bits for the
fractional part of each entry in the table for ¢, as are used
for the fractional part of velocity.

3.3 FFT/IFFT Twiddle Factor Table Lookup

At its core, the fluid solver uses fast Fourier transforms
(FFTs) and inverse fast Fourier transforms (IFFTs). Twiddle
factors [12] are the constant complex coefficients used in the
FFT and IFFT. These values come at high computational
cost, as they are complex exponentials. Since the inputs to
the FFT and IFFT are of a constant size N x N, these
twiddle factors can be pre-computed and accessed through a
lookup table, as done for ¢ in Section 3.2. This is common
practice in hardware implementations and has significant

performance benefits [13]. The twiddle factors for the FFT
versus the IFFT are simply the complex conjugates of one
another, but are stored in two separate tables in the current
implementation to avoid computing the complex conjugate
on each table access during the IFFT.

4. Test Methodology and Results

A two-dimensional slice of a simple generalized cylinder
immersed in a fluid is simulated. The fiber-point positions
are started in a circular ring configuration. An initial shear
fluid-grid velocity is applied to perturb the system, causing
the ring to oscillate and rotate. The simulation runs for 400
times steps, which allows the system to return to equilibrium.

While this simulation is less complex than a production-
level implementation, the key issues and calculation diffi-
culties of the more complex problem remain intact. The
simpler simulation is chosen to reduce the amount of time
each simulation requires, as a large number of simulation
runs are necessary to provide more meaningful results.

Several stages of experimentation are used in order to
find acceptable bit-widths for this problem. At each stage,
results are compared to results of the original floating-point
implementation stored in a MATLAB data file. The state of
the system in this IB computation is represented by an IVj-
length vector of fiber-point positions and an N x N matrix
of fluid-grid velocities. All tests are performed with N = 64
and N, = 202.

The overall accuracy of the fixed-point implementation is
measured by the absolute value of the difference between the
fixed-point results and the floating-point results. Acceptable
quantitative error depends largely on the application. One
percent of a fluid-grid box is chosen as a desired maximum
error in this implementation. Qualitatively, acceptable error
is determined by observing the output of the simulation for
the floating-point and fixed-point implementations on the
same graph. When there are far too few bits, the ring is
destroyed by the end of the simulation. Bit widths close to
the acceptable range show deformities in the ring, but the
fiber point positions still roughly resemble a ring. Bit widths
equal to, or greater than the acceptable error are a very close
visual match to that of the floating-point implementation.
The maximum, average and root mean squared (RMS) error
of these absolute differences is measured for each time
step, as well as across an entire simulation run of 400
time steps. These errors are examined in the fiber-point
positions, as well as the fluid-grid velocities. The errors in
the internal variables are examined as required for debugging
and development purposes.

4.1 Operating Range of Variables

The first stage in moving to a fixed-point implementation
involves examining the operating range that each of the
variables takes throughout the simulation. The goals of this
stage are to decide if the quantities in an IB computation

Table 1: Operating range of top-level IB method variables.

Variable f\?(?r?f)zhétr% Absolute Signed or Units
Minimum Maximum Unsigned
X 10.7223 53.2777 Unsigned h
XX 10.7208 53.2792 Unsigned h
U 1.0483 x 10796 0.6385 Signed £
UU 1.8766 x 1079 0.6379 Signed £
—06 : m
FF 4.6670 x 10 0.3917 Signed @02k
ff 1.3307 x 1014 0.3895 Signed ﬁ
uu 1.0956 x 10718 0.6943 Signed £
u 1.8725 x 10719 0.6944 Signed £

are good candidates for fixed-point representation, and if
80, to determine a suitable fixed-point numerical format
for each of the variables. We do this first from theoretical
considerations for the position and velocity variables. Then
we use empirical observations to check these bounds and
also extend them to force density variables.

The position X = (X;,X3) of any given fiber point
is restricted such that 0 < X; < Nh and 0 < X5 <
Nh. In program units, h = 1, and the integer portion
of each component of fiber position must lie in the set
{0,1,..., N — 1}. Thus, X; and X are unsigned quantities,
and each requires [log, N bits for the integer part. The
use of a fixed-point value for position essentially defines a
finer grid for fiber points, embedded within the coarse fluid
grid. Fiber points are restricted to positions on the finer grid.
In program units, the integer portion of position serves as
an index into the containing fluid grid box. The fractional
portion of position identifies the relative position within that
box. Supporting M subdivisions per fluid grid box along
each dimension requires [log, M bits of fractional part for
position.

For stability, the IB method requires that a given fiber
point cannot skip over any entire fluid grid box in one time
step. Thus, the magnitude of each component of the velocity
of each fiber point must be less than one fluid grid box per
time step: |U;| < %. Since fiber velocity is interpolated
from fluid velocity, the same restriction applies to the fluid
velocity: |u;| < 45. In program units, b = 1 and At = 1.
Thus, any of Uy, Us, u1,us can be represented as a signed,
fixed-point number, with no integer part. U is used to update
X at each time step.

The signedness, the absolute (non-zero) minimum, and the
absolute maximum values of each of the variables within
the IB method are observed for the complete simulation.
It is shown in Table 1 that the important IB quantities have
upper bounds in known, moderate ranges. The lower bounds
indicate that without a large number of bits, underflows
cannot be prevented, particularly for u, uu, and ff. Using
the numbers obtained in this experiment, a portion of which
are seen in Table 1, it is decided that the numbers are indeed

Average X Error, X, , from X and u Initial Condition Disturbance

err

ORI

OSSN IL 7SS
10° NS :‘\“v ‘v‘%‘“ﬂ
R S W VU

SISO K o>

-30 -30
I X
99, X gisturbance) 109, (Ugisturbance)

Figure 3: Average X error from X and u initial condition
disturbance.

well-suited for a fixed-point implementation.

4.2 Initial Condition Disturbance

The second stage in moving to a fixed-point implemen-
tation involves examining the response to a perturbation
in the initial condition. In this stage, which again takes
place within the floating-point implementation, a random
disturbance of varying weight is applied to the input state and
the propagation of this disturbance throughout a simulation
run is observed. The weights applied are in powers of two
in order to represent quantization error that will later be
introduced by the fixed-point implementation. The goal of
this stage is to examine how small errors propagate through
the closed-loop system. It also serves as a way to determine
the least amount of error that should be expected, given state
variables quantized at fractional bit lengths corresponding to
the weight of the input disturbance.

It can be seen in Figure 3 that disturbing the initial
conditions of the state variables with decreasing fractional
bit lengths leads, for the most part, to an increase in overall
error. There are instances where increasing the disturbance
(which models decreasing the number of available fractional
bits) leads to a decrease in error. The non-monotonic nature
of the error in response to initial condition disturbance is
due to feedback through the closed loop system. Other than
at the very high disturbances, these figures do not indicate
a significant advantage in choosing a different number of
bits for X and u. The higher disturbances, i.e., those that
correspond to using fewer than ten bits, show errors in
position greater than 10~4 h. While this magnitude of error
is not unreasonable, it is high given that the noise is only
injected into the initial conditions.

Table 2: Average maximum error for X and u under different
top-level rounding modes.
Average Maximum Error in

Rounding Mode ~ X/h w/(L)
Nearest 0.0337 0.2535
Round 0.0337 0.2535
Convergent 0.0337 0.2535
Random 0.0743 0.3558
Floor 0.0851 0.2036
Fix 0.1602 0.3625
Ceiling 0.1938 0.5143

4.3 Top-Level Quantization

The third stage in moving to a fixed-point implementation
involves top-level quantization of the state variables. This
stage quantizes the state variables at each time step, but
performs all calculations in floating point. Given that the
calculations in this step are performed with much higher
resolution, a problem with a particular bit-width at the top
level would not likely work in the full fixed-point imple-
mentation. Thus this experiment tests the lower boundary of
applicable bit widths.

An important observation taken from this step is which
rounding mode to use in later testing. In this particular test,
the fractional part of X runs from one to twenty-two bits.
The number of bits in u is equal to the number of bits in X
plus additional bits, ranging from zero to fifteen. The results
for each of the rounding methods can be seen in Table 2.

All of the rounding modes listed in Table 2 are doc-
umented in [6], with the exception of random roundoff.
Random roundoff rounds up with probability equal to the
fractional part of the number that is being rounded [14],
[15].

The results indicate that there is a modest advantage
in the nearest, round, and convergent modes of rounding
in comparison to the other methods. Within these three
rounding modes, there is no clear advantage to any one of
them. The nearest mode is therefore chosen for subsequent
studies within this paper because of its lower implementation
cost [6].

4.4 Full Fixed-Point Implementation

The first three stages took place within the framework of
the floating-point implementation. The final stage involves
implementing the computation in fixed-point arithmetic. This
stage provides the framework within which data can be
collected for different bit widths to aid in the design of a
future hardware implementation.

With the large potential for accumulation of error in the
fluid solver, which relies heavily on FFT and IFFT, a study
is performed to determine whether more bits in the fluid
solver would aid in decreasing the error accumulation. As
seen in Figure 4, adding extra bits to the fluid solver, despite
introducing a much more non-monotonic graph, does indeed

Average X Error, xe", 0-4 Extra Bits in Fluid Solver

p ol vl vl il

Lol

,_.
,

S
\

12 -13 -15 14

Iogz(x

resolution) 109, (Uresotution)

Figure 4: Average X error for zero through four extra bits
in the fluid solver.

Average X Error, X
err

-1 =
) 8 24

log,(X
2% resolution 109, (Uresoiution)

Figure 5: Average X error in the fixed-point implementation.

aid in decreasing error accumulation. It is also worth noting
that most of the benefit comes from the first extra bit;
adding more than one additional extra bit does not yield
further significant improvement. (The lower three surfaces
in Figure 4 are nearly coincident.)

Figure 5 and Figure 6 show the accumulated errors of
X and u, respectively, that occur upon limiting the number
of fractional bits of the X-like and u-like variables. The
X-like variables are those that are always positive and
bounded between by the domain, zero to N, i.e., the position
variables. The u-like variables are those that are signed
numbers, bounded between negative one and one, i.e., the
velocity and force density variables. These tests are run using
one extra bit within the fluid solver. Lower bit widths than

Average u Error, u
err

Uy, /(N7 A1)

) -18 -24

‘OQZ(XrESD\u(mn

109, (Uresotuion)

Figure 6: Average u error in the fixed-point implementation.

those shown are not practical, as they result in overflows
that quickly lead to catastrophic error.

5. Conclusions and Future Work

The end result of this study is the discovery that the
IB method is indeed well-suited for a fixed-point imple-
mentation, at least in terms of accuracy. From the tests in
Section 4.4, it is determined that at least ten bits are required
for the fractional part of the X-like variables, and at least
fourteen bits are required for the fractional part of the u-like
variables. There is a large improvement of error in moving
to twelve bits for the X-like variables, and sixteen bits for
the u-like variables. Under these bit widths, the average X
error after 400 time steps does not exceed one percent of a
fluid grid box.

As noted in Section 3.2, the ¢ lookup table in the current
implementation uses all of the bits of the fractional part
of the fiber-point position to index into the table. This table
quickly grows in size as the fractional bit width is increased,
as each additional bit doubles the size of the table. These bits
may not all be necessary to determine the position weight to
a sufficiently accurate value. A future study is intended to
determine whether the lookup table can be further compacted
without unreasonable loss of accuracy.

Ongoing research seeks to implement the IB method on
reconfigurable hardware, specifically, an FPGA. Moving for-
ward, optimization and parallelization will need to be used in
order to obtain a reasonable performance comparison. With
a parallelized implementation of the IB method meaningful
performance comparisons can be made to production IB
code — including existing, parallel, FORTRAN and C++ im-
plementations that run on supercomputers. A performance-
based study can use the results of this paper as both a starting
point and a way to check results. Once a complete hardware

implementation is established, evaluation on the trade-offs in
cost and speed can be studied. Using such comparisons as a
guide, optimizations can also be explored that further adapt
the IB method to take advantage of the unique opportunities
of reconfigurable computing.

References

[1] C. S. Peskin, “The immersed boundary method,” Acta Numerica,
vol. 11, pp. 479-517, 2002.

[2] C.Inacio and D. Ombres, “The DSP decision: fixed point or floating?”
IEEE Spectr., vol. 33, no. 9, pp. 72-74, 1996.

[3] P. Banerjee, M. Haldar, A. Nayak, V. Kim, V. Saxena, S. Parkes,
D. Bagchi, S. Pal, N. Tripathi, D. Zaretsky, R. Anderson, and J. R.
Uribe, “Overview of a compiler for synthesizing MATLAB programs
onto FPGAS,” IEEE Trans. VLSI Syst., vol. 12, no. 3, pp. 312-324,
2004.

[4] D. Menard, D. Chillet, F. Charot, and O. Sentieys, “Automatic
floating-point to fixed-point conversion for DSP code generation,”
in CASES ’02: Proceedings of the 2002 international conference on
Compilers, architecture, and synthesis for embedded systems. New
York, NY, USA: ACM, 2002, pp. 270-276.

[5] C. Shi and R. W. Brodersen, “Automated fixed-point data-type op-

timization tool for signal processing and communication systems,”

in DAC ’'04: Proceedings of the 41st annual Design Automation

Conference. New York, NY, USA: ACM, 2004, pp. 478-483.

Fixed-Point Toolbox User’s Guide, 3rd ed., The MathWorks, Inc.,

Sep. 2009. [Online]. Available: http://www.mathworks.com/access/

helpdesk/help/pdf_doc/fixedpoint/FPTUG.pdf

[7]1 K. Sano, O. Pell, W. Luk, and S. Yamamoto, “FPGA-based streaming
computation for Lattice Boltzmann method,” in Field-Programmable
Technology, 2007. ICFPT 2007. International Conference on, 2007,
pp. 233-236.

[8] S.R. Alam, P. K. Agarwal, M. C. Smith, J. S. Vetter, and D. Caliga,
“Using FPGA devices to accelerate biomolecular simulations,” IEEE
Computer, vol. 40, no. 3, pp. 66-73, 2007.

[9] L. Zhuo and V. K. Prasanna, “High performance linear algebra
operations on reconfigurable systems,” in SC ’05: Proceedings of the
2005 ACM/IEEE conference on Supercomputing. 1EEE Computer
Society, 2005, p. 2.

[10] Y. Gu and M. C. Herbordt, “FPGA-based multigrid computation
for molecular dynamics simulations,” in Proc. IEEE Symp. Field-
Programmable Custom Computing Machines (FCCM). 1EEE Com-
puter Society, 2007, pp. 117-126.

[11] Y. Gu, T. Vancourt, and M. C. Herbordt, “Explicit design of FPGA-
based coprocessors for short-range force computations in molecular
dynamics simulations,” Parallel Comput., vol. 34, no. 4-5, pp. 261-
2717, 2008.

[12] W. M. Gentleman and G. Sande, “Fast Fourier transforms: for fun and
profit,” in AFIPS ’66 (Fall): Proceedings of the fall joint computer
conference. New York, NY, USA: ACM, Nov. 1966, pp. 563-578.

[13] I. Uzun, A. Amira, and A. Bouridane, “FPGA implementations of
fast Fourier transforms for real-time signal and image processing,”
IEE Proceedings - Vision, Image, and Signal Processing, vol. 152,
no. 3, pp. 283-296, 2005.

[14] G. E. Forsythe, “Reprint of a note on rounding-off errors,” SIAM
Review, vol. 1, no. 1, pp. 6667, 1959.

[15] J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, and P. Bou-
card, “Programmable active memories: Reconfigurable systems come
of age,” IEEE Trans. VLSI Syst., vol. 4, no. 1, pp. 56-69, 1996.

[6

[t}

http://www.mathworks.com/access/helpdesk/help/pdf_doc/fixedpoint/FPTUG.pdf
http://www.mathworks.com/access/helpdesk/help/pdf_doc/fixedpoint/FPTUG.pdf

	Introduction
	The Immersed Boundary Method
	FPGA-Centric Optimizations
	Program Units
	Implementing Phi as a Table
	FFT/IFFT Twiddle Factor Table Lookup

	Test Methodology and Results
	Operating Range of Variables
	Initial Condition Disturbance
	Top-Level Quantization
	Full Fixed-Point Implementation

	Conclusions and Future Work
	References

