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INTRODUCTION

This report describes our progress towards the development of a
three-dimensional computer model of the heart. The components
of that model are (1) a subroutine FLUID that solves the
incompressible Navier-Stokes equations on a cubic lattice, (2) a
subroutine FIBER that computes the elastic forces generated by a
system of fibers under tension, (3) a general-purpose program
HEART3D that calls FLUID and FIBER as well as certain
interaction routines to solve the coupled equations of motion of
a viscous incompressible fluid containing an immersed system of
elastic or contractile fibers, and finally (4) a particular
arrangement of fibers that models the detailed anatomy of the
heart, its valves, and the nearby great vessels.

Future applications of the model will include computer
experiments concerning the normal and pathological function of
the heart, computer-assisted design and evaluation of prosthetic
cardiac valves, and computer simulation of cardiac imaging
techniques. (For specific examples of such applications, see
our earlier work Dbased on a two-dimensional model of the left
heart and the mitral valve [1-7].)

Of the four model components described above, the first
three are operational (and tested), and the fourth is under
development at this writing. In this paper, we shall give a
summary description (with references) of the first three
components, and then we shall conclude with a report on the
fourth component: the construction of the cardiac model itself.
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SUBROUTINE FLUID

A detailed description of this routine appears in [8].
Subroutine FLUID solves the 1incompressible Navier-Stokes
equations in a cubic box with periodic boundary conditions.
Chorin's projection method [9,10] is used with a uniform, cubic
computational lattice. The method involves solution of
(periodic) tridiagonal systems on each column, row, and file of
the lattice. This is followed by the solution of a discrete
Poisson equation for the pressure, which is used to restore the
incompressibility of the computed velocity field. In the
Poisson-equation step, the Fourier-Toeplitz method is used [11].
This fast Poisson solver employs two-dimensional (fast) Fourier
transforms on each horizontal 1lattice plane, solution of
(periodic) tridiagonal systems on each column of the lattice,
and (fast) inverse Fourier transforms on each horizontal plane.

Our implementation of the projection method in Subroutine
FLUID allows for the option of out-of-core storage of all
three-dimensional arrays on an SSD, in case the program is being
run on a CRAY X-MP and the problem size is too 1large for the
central memory to accommodate such arrays. The basic strategy
under the out-of-core option is to organize the
three-dimensional data into horizontal planes and to store in
central memory only a few adjacent planes at a time.
Asynchronous input/output is used to overlap i/0 with
computation. 1In a typical sweep through the lattice, the data
associated with plane K+1 are read into central memory while the
data of plane K are updated, possibly using (but not modifying)
the data of plane K-1, which are simultaneously being written
out to the SSD. The central-memory arrays are organized as
circular Dbuffers so that there is no unnecessary data movement
within central memory during such sweeps through all lattice
planes. When ‘the above-described strategy is used, the central
memory requirements of the method grow only as the square, and
not as the cube, of the number of lattice points in each space
direction.

It is obvious that the foregoing strategy is applicable to
those parts of the algorithm in which operations are performed
separately on the different planes (e.g., the horizontal
tridiagonal systems or the two-dimensional Fourier transforms on
horizontal planes). Note, however, that the same strategy also
works for the vertical tridiagonal systems, provided that those
tridiagonal systems are all solved "at once". This means that
the inner loops run over the different tridiagonal systems while
the outermost loop controls the actual algorithm for solution of
the tridiagonal systems.

The 1last remark also explains how Subroutine FLUID is
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vectorized. 1In general, everg step of the algorithm can be
decomposed into either N or N° instances of the same sequence of
operations to be performed essentially in parallel on different
data. This allows for easy vectorization by letting the inner
loops run over the different instances of the computation in
question while the outer loops control the computation itself.
A good example of this occurs 1in the two-dimensional Fourier
transform, which we compute by first taking the Fourier
transform in x and then in y. While taking the N separate
transforms in the x direction, we let the inner loops run over
y, and vice versa. This is so simple that even a wuser can do
it! There 1is no need to worry about vectorization of the
individual instances of the FFT computation.

For a detailed performance report on Subroutine FLUID, see
[8]. Here, we note some key statistics that were obtained on a
CRAY X-MP/SSD configuration with only one processor in use and
with the machine dedicated to a single wuser. In the case
considered here, the computation is performed on a 1287 lattice.
In these circumstances, the computational machinery of
Subroutine FLUID runs at an average rate of 116 Mflops/sec. The
overhead associated with communication between the SSD and
central memory reduces this to an effective computation rate of
77 Mflops/sec.

SUBROUTINE FIBER [12,13]

This routine solves for the fiber forces, which are functions of
the positions of the fiber points. These functions are
constructed by postulating that adjacent points along a fiber
are connected by springs, the elastic parameters of which may be
constant [12] or time-dependent [13].

To improve the numerical stability of the method, the fiber
configuration that is used in the computation of the fiber
forces 1is not the configuration that is given at the beginning
of each time step, but rather a configuration that approximates
the wunknown fiber position at the end of the time step. The
approximation takes into account the influence of the fiber
forces themselves on the fiber configuration at the end of the
time step. This leads to a nonlinear fixed-point problem on
each fiber. These problems are solved by Newton's method. The
linear systems that arise at each Newton iteration take the form
of periodic block-tridiagonal systems, with 3 x 3 blocks.

Vectorization and the optional use of the SSD are much the
same in Subroutine FIBER as in Subroutine FLUID, described
above. A complication here, however, is that the fibers may
contain different numbers of points. This 1is handled by
partitioning the fibers into groups, where all fibers in a group
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contain the same number of points. Within a group, all of the
nonlinear fixed point problems are solved "at once", so that
vectorization is achieved by letting the innermost 1loops run
over the different fibers.

HEART3D: A GENERAL-PURPOSE FIBER-FLUID CODE [12,13]
The general-purpose program HEART3D solves the coupled equations
of motion of a viscous, incompressible fluid containing an

immersed system of elastic or contractile fibers. These
equations may be stated as follows:
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Equations (1)-(2) are the incompressible Navier-Stokes
equations in Eulerian form: u(x,t) is the fluid velocity, p(x,t)
is the fluid pressure, and F(X ,t) is the density of the force
applied to +the fluid by the immersed system of elastic or
contractile fibers. The constants p and p are the fluid density
and viscosity. Equations (1)-(2) are solved by Subroutine
FLUID, described above.

Equations (5)-(7) are the equatlons that define the fiber
force in terms of the fiber configuration. Here g(q r,s,t) is
the fiber configuration as a function of the Lagrangian
parameters q,r,s which are chosen 1in such a way that q,r =
constant along a fiber. The parameter s measures arc length
along a fiber in the unstressed configuration only. In general,
|3X/9s|-1 is the fiber strain. The function T(q,r,s,t) is the
fiber tension (T dq dr = force transmitted by the bundle of
fibers dq dr), and I(q,r,s,t) is the unit tangent to the fibers.
The function o defines the generalized Hooke's law that relates
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See Color Figures P. 535 for fig. 1 (a, b).

the fiber tension to the fiber strain. Finally, f(q,r,s,t) dq
dr ds 1is the force applied to the fluid by the fibers that lie
in the region swept out by dq dr ds. Equations (5)-(7) are
solved by subroutine FIBER, as described above.

Equations (3)-(4) are the interaction equations, i.e., they
couple the Eulerian variables and the Lagrangian variables.
Note that both of these equations may be expressed in terms of
the Dirac §-function which expresses the local character of the
fiber-fluid interaction. 1In the computational method, Equation
(3) leads to a recipe for spreading the fiber force out onto the
nearby lattice points of the fluid computation, while Equation
(4) leads to an interpolation formula for the fluid velocity and
hence to a prescription for how the fiber points should be
moved.

Vectorization and the optional use of the SSD are more
complicated 1in the interaction routines than in FLUID and FIBER
themselves. Fundamentally, this is because the communication
pattern is not fixed and because each fiber may interact with
many (or even all) of the planes of the computational lattice of
the fluid computation. Algorithms that overcome these
difficulties are discussed in [12].

For empirical evidence of convergence of the computational
method implemented in HEART3D, see [12]. Here, we give some
results from a computation involving a fiber-wound toroidal tube
in which the fibers are contractile [13]. This computation was
performed on the CRAY-2 at the Minnesota Supercomputer Center,
so the central memory size was adequate, and the out-of-core
option (described above) was not used. The tube is made up of
two nearby layers of spiral fibers, the inner layer having the
opposite pitch to that of the outer 1layer. A wave of
contraction propagates around the tube and pumps the internal
fluid in the direction of the wave by a process that is known as
"peristaltic pumping".

Figures 1-2 (see also Color Figure 1) show a cross section
of the tube at three selected time steps (#8116, 1008 and 1200).
In each figure, the wupper row shows results for a weak
contraction, while the lower row shows the corresponding results
for a stronger contraction.

Figure 1 shows velocity vectors in the laboratory frame of
reference. The weaker and stronger contractions look
qualitatively the same in this figure, although the distortion
of the tube and the magnitude of the flow are obviously greater
in the case of the stronger contraction. Figure 2, however,
reveals a qualitative difference between the two cases. This is
done by 1looking at the results from a frame of reference that
rotates with the wave. 1In this frame, the wave appears still,
and the particle trajectories (streaklines) reveal that, in the
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Figure 1 (TOP) and Figure 2 (BOTTOM)
PERISTALTIC PUMPING IN A CONTRACTILE TUBE
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See Color Figures P. 536 for fig. 2 (a, b, ¢, d); P. 537 for fig. 2 (e, f, g, h).

case of the stronger contraction only, there is a small region
of trapped, recirculating fluid that is convected along at the
speed of the wave.

FIBER ARCHITECTURE OF THE HEART

HEART3D is a general-purpose code. To apply it to any
particular problem, one must specify the (initial) arrangement
in space of the fibers that interact with the fluid. In our
case, this means that we must specify the anatomy of the heart
in terms of its muscle fibers. (This is a much more difficult
task than just specifying the location of the heart walls.
Cross sections of the heart at different phases of the cardiac
cycle are available from medical images, but such images do not
reveal the directions in which the muscle fibers run.)

Fortunately, there have been a few empirical studies of the
fiber architecture of the heart. Dissection techniques that
make it possible to follow individual bundles of muscle fiber
over great distances were developed by C. E. Thomas [14], who
used these techniques to reveal the global fiber architecture of
the right and 1left ventricles. Quantitative measurements of
fiber angle in the left ventricle have been made by Streeter and
his colleagues (15,161, who ultimately arrived at the
generalization that the left ventricular fibers follow geodesic
curves on a nested family of toroidal surfaces [16]. (For a
theoretical study that accounts for this result, see Peskin
(171.)

Our first three-dimensional model of the heart, now under
construction, is primarily based on the qualitative observations
of Thomas, although we also make use of Streeter's more detailed
description of fiber architecture of the left-ventricular wall.
The ventricular part of the model 1is complete and will be
briefly described here. The valves, the atria, and the great
vessels remain to be constructed.

The upper border of the model ventricles is a plane called
the "base", which contains the four valve rings. Below the base
and parallel to it is a plane called the "equator", in which the
model ventricles achieve their greatest diameter. Below the
equator, the model ventricles taper down to a point which is
called the "apex" of the heart.

The part of the heart below the equator consists of several
fiber layers in the form of generalized cones. Each such layer
has two sheets. The layers have the following names and
descriptions. (See Color Figure 2.)

Outer/inner layer This consists of two conical sheets, one
inside the other. The sheets have a common apex at the apex of
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the heart. The outer sheet surrounds the heart as a whole and
the inner sheet forms the innermost 1lining of the left
ventricle. The fibers are rays which make a transition from one
sheet to the other at the apex.

Right-inner/left-outer layer This layer also consists of two
conical sheets but side by side. The right sheet is the inner
lining of the right ventricle and the 1left sheet 1is the
outermost layer of the left ventricle except for the outer sheet
of the outer/inner layer. The two sheets of the
right-inner/left-outer layer have a common apex at the apex of
the heart, and they coincide along the right face of the
interventricular septum. The fibers are horizontal as they
cross the midline of the septum. From there, they follow
geodesic curves which eventually bring them up to the 1level of
the equator.

Toroidal layers These layers make up the bulk of the left
ventricular wall. The name "toroidal" comes from the work of
Streeter et al. [16] in which the bulk of the left ventricle is
described as a nested family of toroidal shells. (Thomas calls
this whole structure "the cylinder of the left ventricle".)
Following Streeter et al. [16], we model the part of each
toroidal 1layer that l1lies below the equator as a double-sheeted
truncated cone. The two sheets have a common axis (but not a
common apex). They meet along a circle at which the fibers make
a smooth transition from one sheet to the other. Away from this
circle, the fibers spiral up to the equator following geodesic
curves that become more nearly vertical as the fibers ascend.

In all of the layers that we have Jjust described, the
fibers eventually reach the equator. From there, the fibers
must be continued somehow to reach the valve rings [14]. We do
this in the following expedient way. Let the equatorial plane
be denoted z = 0 and let the plane of the base be denoted z = 1.
Suppose we have a layer whose cross section in the plane of the
equator is fo(x,y) = 0 and we want to continue this 1layer in
such a way that its cross section in the plane of the base
coincides with one or more of the valve rings which are
collectively described by f1(X,y) = 0 in the plane z = 1. For
example, the layer in question may have an elliptical
cross-section in the equatorial plane, z O:

£o(x,7) = ag(x-xg)2 * B(x-xq) (¥-¥g) *+ Yo(y-yg) = 1 (8)

and it may Jjoin with a pair of elliptical valve rings in the
plane of the base
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Then the surface
0 = f(x,y,z) = (1-2) fu(x,y) + z £(x,y) (10)
has the required cross-sections in the planes z = 0 and z = 1

and is given by a simple analytic formula. (In the example
considered here, the surface f(X,y,z) = 0 defines a tube with a
bifurcation: the cross section is a single ellipse at z = 0 but
a pair of ellipses at z = 1.) Once we have an analytic formula
for the surface, it is not too difficult to solve (numerically)
the differential equations for a geodesic on this surface and
hence to continue the fibers up to the valve rings. This
completes the construction of the ventricles.

SUMMARY AND CONCLUSIONS

We have developed a general-purpose program HEART3D which can be
used to solve the coupled equations of motion of a viscous
incompressible fluid and an immersed system of elastic or
contractile fibers. We have applied this program to the problem
of peristaltic pumping in a contractile, fiber-wound tube, and
we have prepared for computations involving the heart by
constructing a fiber-based model of the cardiac ventricles.
When this model has been expanded to include the valves, the
atria, and the great vessels, we shall be ready for computer
experiments on cardiac fluid dynamics. It is our hope that such
experiments will prove wuseful in the study of normal and
pathological heart physiology and also in the design of
prosthetic cardiac valves.
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(b)

Figure 1 (a, b): (from Charles S. Peskin and David M. McQueen, pg. 131) (a) Two-
layer fiber-wound contractile tube. (b) Fluid particles in the interior of the tube.
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(b)

(c) (d)

Figure 2 (a, b, ¢, d): (from Charles S. Peskin and David M. McQueen, pg. 133) Fiber
model of the cardiac ventricles. (Only the part below the equator is shown. The view is
looking down towards the apex.) (a) Outer/inner layer. (b) Right part of right-
inner/left-outer layer. (c) Left part of right-inner/left-outer layer. (d) Largest of the
toroidal layers.

536




(e) | (f)

(9) (h)

Figure 2 (e, f, g, h): (from Charles S. Peskin and David M. McQueen, pg. 133) ()
Nested toroidal layers. (f) Toroidal layers surrounded by left-outer layer. (g) Toroidal

layers + right inner/left-outer layer (The crescent-shaped cavity is the right ventricle).
(h) All layers shown together.
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