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Computational Biofluid Dynamics

CHARLES S. PESKIN AND DAVID M. MCQUEEN

ABSTRACT. The aims of this paper are (1) to give a general mathematical
formulation to the central problem of biological fluid dynamics, which is
the interaction of a viscous incompressible fluid with an elastic and possi-
bly active material; (2) to describe a numerical method for the solution of
the biofluid-dynamic problem; and (3) to illustrate both the mathematical
formulation and the numerical method by considering the problem of blood
flow in the heart. The work described in this paper is based on a mixed
Eulerian-Lagrangian formulation. In computational terms this means that
the fluid equations are solved by finite-difference methods on a fixed rect-
angular mesh, whereas the elasticity equations are modeled in terms of a
network of moving material points connected by springs. Communication
between Eulerian and Lagrangian variables is required in order to apply
the elastic force to the fluid and to move the elastic material at the local
fluid velocity. Such communication is mediated by an approximation to the
Dirac delta function.

1. Introduction

Generally speaking, biological fluid dynamics involves the interaction of a
viscous incompressible fluid with an elastic incompressible material. In some
cases, the elastic material is active, which means that its elastic parameters may
change with time in such a way that the material is capable of doing net work
on the fluid.

The range of phenomena covered by this description is vast: it includes most
(if not all) of the topics discussed at this conference. Some examples are the
heart, the inner ear, the kidney, swimming, flight, filter feeding, blood flow in
arteries, red cell transport through capillaries, and platelet aggregation during
blood clotting.
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Thus, it seems fair to say that the biofluid-dynamic problem is the interaction
of a viscous incompressible fluid with a (possibly active) incompressible elastic
material. The purpose of this paper, then, is to give a general mathematical
formulation of the biofluid-dynamic problem and to describe an algorithm for its
numerical solution.

Some, but not all, of the topics listed above have already been studied by the
methods outlined here (Refs. 1-15). Perhaps one result of this conference will
be the broader application of the computational approach to biofluid dynamics.

2. Equations of motion

It is a little-known fact that the equations of an incompressible elastic body
can be written is such a way that they closely resemble the equations of an incom-
pressible fluid (Refs. 16a, b). This “fluid-dynamic” formulation of incompressible
elasticity is particularly useful when the body in question actually interacts with
an incompressible fluid, for it then becomes possible to give a unified description
of the composite system.

The fluid-dynamic formulation of the equations of incompressible elasticity
may be obtained as follows. Let curvilinear coordinates (g1, g2, ¢3s) = q be intro-
duced into an elastic substance in such a way that fixed q marks a material point.
Let X(q,t) be the position at time ¢ of the material point that carries the label q.
Let the set of all permissible values of q be denoted Q. Then the region of space
occupied by the elastic body at time ¢ is given by X(Q,t) = {x : x = X(q, )
for some q € Q}. We assume that this is some fixed region 2, independent of
t. The function X( ,t) maps Q@ — Q; we say that it describes the configuration
of the elastic substance at time ¢. The description of the motion in terms of
X(q,t) is called a Lagrangian description. Later, we shall introduce an Eulerian
description that is based on functions defined on 2 instead of Q.

For simplicity, we consider the case in which Q and  are both the whole space
R3, but we retain the notational distinction between Q and  for conceptual
clarity. We assume that all disturbances of the elastic medium are sufficiently
localized that (1) the integrals that appear below are finite, and (2) there are no
boundary terms when we integrate by parts. This approach avoids the technical
difficulties associated with boundary conditions and allows us to concentrate on
the equations that hold in the interior of the elastic medium.

The local state of deformation of the elastic material is described by the 3 x 3
matrix 6X/0q, with components 0X;/8q;, i,j = 1,2,3. This matrix enters the
theory in two ways. First, its determinant J = det(0X/8q) gives the ratio of
volume elements d3X = Jd3q. Since the material in question is incompressible,
this ratio is independent of time:

det (@) = J(a) M

Second, the matrix 0X/dq determines the local density of elastic (potential)
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energy. Thus
0X
EP(t) = / 8(6_((1, t)y q, t)) d3q> (2)
Q q

where Ep(t) is the potential energy of the system at time ¢t and where & is a func-
tion that characterizes the material (relative to the chosen system of curvilinear
coordinates). Note that £ has explicit position- and time-dependence in addi-
tion to that which it inherits from 0X/dq. It is this explicit time-dependence
that makes the material “active,” as described in the Introduction. For a passive
elastic material, this explicit time-dependence is not present, so the arguments
of £ are only 6X/8q and q. (If the material is both passive and homogeneous,
and if the coordinates are such that the homogeneity is manifest, then & is a
function only of 6X/dq.)
The kinetic energy of the system is, of course, given by the expression

0xX

——(q, t)

2
; d*q, ®3)

Bx(t) = 3 [ m(a)
Q
where m(q) is the local mass density with respect to the measure d2q. (Since
the mass of a material element is conserved, m is independent of time.)

Given the expressions for kinetic and potential energy together with the con-
straints on the motion of the material, we can derive the equations of motion
from the principle of least action. (A limitation of this approach is that it fails
to take viscosity into account; we shall put in the viscous terms later.)

The action, denoted S, over the time interval (0,T) is defined as follows:

S= /0 " (Bre(t) — Ep(0)] de

=/OT/Q{%m(q)'%§(q,t)

We seek X(q,t) to minimize S subject to certain constraints. These constraints
are (1) the motion is incompressible [eq. (1)], and (2) the initial and final con-
figurations X( ,0) and X( ,7T') are regarded as given. Note that the second
constraint is artificial in the sense that we are rarely interested in the solution of
an initial-final value problem. Nevertheless, it is part of the formulation of the
principle of least action, which is used to obtain the equations of motion. These
equations can then be solved with other boundary conditions, for example, the
standard initial-value problem in which X( ,0) and (0X/8t)( ,0) are regarded
as known.

Let X(o)(q, t) be the solution to the optimization problem stated above, and
consider the expansion

X(q,t) = XO(q, 1) + XN(q,8) + ... (5)
This induces a corresponding expansion of S:

S=80 4esMy (6)

-& [%—f—(q, t),q, t]} d3qdt. (4)
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Since X (%) minimizes S, we require that S() = 0 for all X that are consistent
with the constraints. This leads to the equation

T ax® ax® B axM
0:/ / mx A N (ki Sy L 7
where oe ax
&ii = —— |—(q,1),q,t{, 8
.55 |5 @0 ] ®

and where the superscript 0 on &;; means that it is to be evaluated at X = X,
In equation (7), integrate the kinetic energy term by parts with respect to ¢
and the potential energy term by parts with respect to ¢;. In both cases, the
boundary terms drop out. In the case of the kinetic energy this is because of
the formulation of the principle of least action as an initial-final value problem
in which X( ,0) and X( ,T) are given. It follows from this that X()( ,0) =
X(l)( ,T) = 0. In the case of the potential energy, the boundary terms drop out
because of our explicit assumption that the disturbances are sufficiently localized
for this to happen. The result is

T 3 2 (0) 3
9°X; O ) 53
_ i (¢ ( dt.
0 /0 /Q > | ;::1 ( dqjg”) X d3q )

In the expression #gij, we use the notation of an ordinary derivative as a
reminder that one must differentiate with respect to both occurrences of the
argument g¢; [see eq. (8)]. Thus,

3

d&;; 02X 0&;;
e A i bl —, 10
dg; ,C,Z,; "M oqdq; " 0g; (1
where o2e
G = 50X, [62;)0(0%x [0q1) ()
Now let . i i, .
1= . dq_j .
j=1
Then equation (9) can be written as
T 2% (0)
0:/ / (ma X —f(O)) XM @3qdt. (13)
o Jo ot?

Recall, however, that X(1) is not arbitrary. In particular, it must be consistent
with the constraint of incompressibility. Thus, we cannot conclude that the
coefficient of X() is zero.

To proceed further, it is convenient to switch to Eulerian variables. These
are functions of (x,t) where x € Q. For example, u(x,t) is the velocity at time
t of the material point which happens to be at position x at time ¢. (Note the
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absence of any information about which material point this is.) At timet+dt, a
different material point occupies the position x, so ‘Z—‘t‘(x, t) does not measure the
physical acceleration of any material point. We:can, on the other hand, define
a function %(x, t), which gives the acceleration at time ¢ of the material point
which happens to be at position x at time ¢. The functions u(x,t) and %(x, 1)
are implicitly defined as follows:

X ()

u [XO)(q,t),¢] = ——(a,t), (14)
u 2%(0)
Du x0q,,4 = - @), (15)

Differentiating equation (14) with respect to time, one can show that

Du Ou
Et———a—t—+u-Vu. (16)

By analogy with the Eulerian velocity u(x,t), we can introduce an Eulerian
vector field v(x,t) corresponding to the Lagrangian perturbation X(l)(q, t). The
implicit definition of v(x,1) is as follows:

v [x<°>(q, ), t] = XW)(q,1). (17)

In this definition, note that v is evaluated at the unperturbed position X(O)(q, t).

The Eulerian form of the incompressibility constraint can be obtained as fol-
lows. Let du/0x be the 3 x 3 matrix with elements Ou;/0xz;. Differentiating
equation (14) with respect to q yields the matrix equation

o 9x©®  52x(0) 18
8x 0q  9qdt’ (18)

or
du  92X©® [ox©@\ ! Lo
8x ~ 0qot ( dq ) ‘ (19)

It follows that

o . du\ _, 82X /oxO\
-1 = trace (5;) = (race 8q6t ( 6(1 )

d X (® d

_4d _4d ©)

Ll logdet( - ) — log [7O(a)]

=0, (20)

where we have used the general formula for the derivative of a determinant:
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[log det A(t)]" = trace[A’(t)A~1(¢)]. Similarly,

ov oxX() /oxON 7t
V - v = trace (&> = trace [ 7 (—éq—-)
Lt aZX(aX"1
T 0T  Bqde \ 9q

.0 X

.0
= lim —-log J(a) = 0, (21)

since J(q) is independent of €. (All motions under consideration are consistent
with the incompressibility constraint.)

Formulas for the conversion between Lagrangian and Eulerian variables can
also be expressed in terms of the Dirac delta function. In particular, we shall
make use of the following:

X(l)(q,t) = /nv(x,t) 63 [x—X(O)(q, t)] d3x (22)
X X0 = [ P 1) vix 116 [x - XO 3y
s (@0 XV = [ Zox 0 vie )8 | X(wﬂdkm

Equation (22) is equivalent to equation (17), and equation (23) is equivalent to
the result obtained by taking the dot product of equations (15) and (17).

Finally, we introduce the mass density p(x,t) and the Eulerian force density
F(x,t) according to the following definitions:

pwﬂ=4m@9h—w%wﬂfm (24)

F(x,t) = /gf(o)(q, t) 63 [x - X(O)(q, t)] d3q. (25)

Note that the integrals in equations (24) and (25) are to be done with respect
to the variable q € @, whereas the integrals in equations (22) and (23) are to
be done with respect to x € Q. It is easy to check that p(x,t) satisfies the
continuity equation 0p/dt + u-Vp = 0. [Since V -u = 0, this is equivalent to
Op/0t + V - (pu) = 0.]

Having set up all of this Eulerian apparatus, we are now ready to convert
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equation (13) to Eulerian form. This is done as follows:

T 2+ (0)
0= [ [ @S (a.) XD, 1) dads
o Jo ot
T
—/ /f(o)(q,t)-x(l)(q,t)dath
0 Q
T
:/ / /m(q)&l-(x,t) v(x,t) 8 [x—X(O)(q,t)] d3xd3qdt
0 oJa Dt
T
—/ / /f(o)(q, t) - v(x,t) 53 [x—X(o)(q,t)] d3x d3q dt
o JoJa
:/ /p(x,t)—(x,t)-v(x,t)dsxdt—/ /F(x,t)-v(x,t)d3xdt
o Ja Dt o Ja

:/{)T/n(p%‘ti_p) v dxdt. (26)

Equation (26) is required to hold for all v such that V-v =0, v(x,0) = 0,
and v(x,T) = 0. This will be true if and only if

P —E=-Vrp (27)

for some scalar p, which is conventionally called the pressure. To prove that
equation (27) => equation (26), one simply notes that

—/Vp-vdax:/p(v-v)dsxz(), (28)
Q Q

since V - v = 0. To prove the converse is only a little more difficult. First, let p
be defined as the solution of the Poisson equation

-Vip=V. <p% - F> , (29)
and let
w= (p% - F) +Vp. (30)
It follows from equation (29) that
V.-w=0. (31)

Therefore, we may choose

v(x,t) = ¢(t)w(x,1), (32)
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where ¢(0) = ¢(7) = 0 and ¢(t) > 0 for 0 < t < T. Now since [, v -Vpdx =0,

as shown above, we have

T
Du
0:/ /p(——F)-vdsxdt
o Ja \Dt

:/OT/nw-vd"‘xdt:/oT ¢(t)/n|w(x,t)|2 P dt. (33)

It follows [since ¢ > 0 in the interior of (0,7')] that w = 0 and hence [see eq.
(30)] that p2% — F = —Vp, as claimed.

We may now collect together in one place the system of equations for the
incompressible elastic material. In so doing, we shall arbitrarily add a viscous
term pV2u, since viscosity was omitted from the foregoing derivation. (Also, we
now drop the superscript 0 which previously distinguished the true motion from
the perturbed motion.) The equations are

p(g—l; +u-Vu)+Vp:,uV2u+F, (34)

V-ou=0, (35)

plx, 1) = /Q m(@)6® [x — X(q,1)] d%, (36)

F(x,t) = /Q £(q, 1)8° [x — X(q,8)] d%q, (37)

%t}-(-(q, £ = /ﬂ u(x, )6 [x — X(q,1)] &x, (38)
2. dg;

fi= ];1 -d—q;- (39)

These equations provide a mixed Eulerian-Lagrangian description of the mo-
tion. Equations (34) and (35) may be recognized as the Navier-Stokes equations
of a viscous incompressible fluid that carries a nonuniform mass density p(x, t)
and that moves under the influence of an external force density F(x,t). Here,
however, the force density is not external, but arises from the elastic stresses in
the material itself. Since these stresses are determined by the configuration of
the elastic material, their computation requires a Lagrangian description of the
motion. Equation (39) gives the formula for the Lagrangian force density f in
terms of the elastic potential energy density & [see also egs. (8), (10), and (11),
which define &;; and d&;;/dg;].

Equations (36)—(38) are the interaction equations which connect the La-
grangian and Eulerian variables. All three of these are integral transformations
involving the kernel 62[x — X(q, t)]. In the first two cases, however, the integra-
tion is with respect to q whereas in the third it is with respect to x. Although
the interaction equations could be rewritten in such a way as to avoid the use
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of the Dirac delta function, the particular formulation given here is useful be-
cause 1t leads directly to an effective numerical scheme, as explained in the next
section.

As stated at the beginning of this section, the formulation given here adapts
itself to the situation in which an elastic incompressible material interacts with
a viscous incompressible fluid. In that case, we can simply think of the fluid as a
part of the elastic material in which the elastic energy density £ happens to be
zero, and the equations given above can be used unchanged. (Alternatively, one
can think of the elastic material as a part of the fluid where additional stresses
are applied; the equations are the same whichever way we happen to think of
it.)

When the system is partly fluid, it should be noted that the Lagrangian
description of the fluid part of the system is unnecessary, provided that the fluid
in question is homogeneous, since the great virtue of a homogeneous fluid is that
it consists of “interchangeable parts,” and the Lagrangian label q is therefore
irrelevant. We can exploit this by confining the Lagrangian description to the
elastic part of the system. This means that X(Q,t), the image of Q under the
map q — X(q,1), is no longer the entire space Q but only the part of Q that
is occupied by the elastic material. Of course, this part can change with time
as the elastic material moves about in the fluid. Under these circumstances, we
must modify equation (36), since we are no longer keeping track of the mass of
the fluid in Lagrangian fashion.

Let po be the constant mass density of the fluid and let m(q)d®q be rein-
terpreted as the additional mass of the element d3q of the elastic material. By
additional mass is meant the difference between the actual mass and the mass of
the fluid displaced by the element in question. (Note that the additional mass
can be negative.) Then the total mass density p(x,t) is given by

p(x,1) = po + /Q m()8® [x - X(q,8)] d*q, (40)

which replaces equation (36). An important special case is the situation in
which the elastic material is neutrally buoyant in the fluid. Then m(q) = 0, and
p(x,t) = po, independent of x and ¢.

As a further generalization of equation (34)-(39), consider the case in which
the elastic material is confined to a surface. We refer to such a surface as an
immersed elastic boundary. There are many biological examples in which an
elastic membrane interacts with a viscous incompressible fluid, for example, heart
valve leflets and the basilar membrane of the inner ear, as well as the fins of fish
and the wings of birds and bats. In the case of an immersed elastic boundary,
the Lagrangian part of the formulation becomes two-dimensional whereas the
Eulerian part remains three-dimensional. The interaction equations now take




170 C. S. PESKIN AND D. M. MCQUEEN

'the form
P(%,1) = po + /Q m(gr, 42)6%x — X(q1, 02, )] dgadga,  (41)
F(x, ) = /Q £(q1, g2, 8)6%]x — X(q1, 02, 0)] dqndaa, (42)
ox .
E(Qh q2,t) = nu(X, £)8°[x — X(q1, ¢2,t)] dx (43)

[although it is often the case that the mass of the membrane may be neglected,
in which case eq. (41) reduces to p(x,t) = po.] Note that equations (41) and
(42) involve the three-dimensional delta-function, but only a two-dimensional
integral. Thus, the result is singular with the same type of singularity as a
one-dimensional delta-function. In particular, the force density F(x, ) is infinite
on the immersed elastic boundary and zero everywhere else, but its integral is
always finite. Indeed, let ' be any subregion of . Then

/ F(x, £) d*x = / £(q1,2,1) / 5[ — X(a1, 3, 1)] Pxdgrdaz
Q' Q o

1) X ) :t € Qf
=/ f(411,42,t){ (01,05, 1) } dq1dq
Q

0, otherwise
= / £(q1, q2,t) dgadga, (44)
Q'(t)
where
Q'(t) ={q1,92: X(q1,92,t) € Q'}. (45)

In other words, the force on the region Q' comes from that part of the immersed
elastic boundary that lies in .

In summary, we have derived a mixed Eulerian-Lagrangian formulation of the
equations of incompressible elasticity. This formulation uses the Dirac delta-
function to make the connection between the two modes of description of the
motion, and it lends itself well to the description of a variety of situations in
which an elastic material interacts with a viscous incompressible fluid.

3. Numerical method

In this section we describe a method for the numerical solution of equations
(34)—(39). Recall that these equations involve two conceptually distinct spatial
domains: 2, the domain of the Eulerian variables, and Q, the domain of the
Lagrangian variables. For simplicity, we made the assumption that each of these
domains was coincident with R3, and we retain that assumption here. (In prac-
tice, though, we replace R3 by a periodic domain which has the advantage of
being finite while retaining the translation-invariant character of R3.)

Let Q be represented by the cubic lattice of points

Qp={xeQ:x=jh for some j € 2%}, (46)




COMPUTATIONAL BIOFLUID DYNAMICS 171

where h is a positive parameter called the mesh width and where Z denotes the
set of all integers [so Z2 is the set of all ordered triples of integers (ji, jz, )]
Similarly, let Qp be the cubic lattice

Qh:{qegzq_—_kah forsomekEZs}, (47)

where « is some fixed constant independent of A, so that the mesh widths of the
Eulerian and Lagrangian grids are proportional as h — 0.

The grids Q5 and Qp, are, of course, fixed in their respective domains, but
the set X(Qp,t), which is the image of Qp under the map q — X(q, 1), is an
array of points in €2; they are not restricted to the cubic lattice 5 on which the
Eulerian variables (such as velocity and pressure) are defined. This immediately
brings up the problem of communication between the Lagrangian and Eulerian
variables.

The key to such communication is contained in the interaction equations,
equations (36) to (38). Recall that these are integral transformations with the
kernel §3[x — X(q,t)]. For computational purposes we replace the integral by a
sum and the kernel by 63[x — X(q, t)], where 63 is defined as follows:

63(x) = 6n(x1)6n (z2)6n (z3), (48)
where x = (21, 22, 3) and where

Sn(z) = {

The motivation for this particular choice of 8y, is discussed in References 1 and
2. Thus, we are led to the discrete interaction equations

p(x,) = Y m(q)8i[x — X(a, t))(«h)?, (50)

(1 +cosZE) |z| < 2h

49
0 |z| > 2h (49)

qEQr

F(x,t)= Y £(a,05x ~ X(a,O](ah)", 1)
q€EQr

U(q,t) = Z u(x, )83 [x — X(q,t)]h3, (52)
XEQp

where we have introduced the notation U = 9X/Jt. Note that equations (50)
and (51) are used only for x € Qj and that equation (52) is used only for q € Q.
One of the properties of the function §; defined above is that

> sax—-X)h* =1 (53)
xEQ
for all X € Q (not just for X € Q). Because of this property (and because
63 > 0), equation (52) defines U(q,t) as a weighted average of u(x,t). The
average is taken over the 4 x 4 x 4 sublattice of Q5 which is most nearly centered
on the point X(q,t). Thus, we may describe equation (52) as an interpolation
formula.
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Something a little more complicated is going on in the case of equations (50)
and (51). This is because

Y S —X(d, )l(ah)’ £ 1, (54)

q'€EQn
not even approximately. To see the reason for this, recall that

3 ' 3. _ 1

/Qa be— X, D] ' = 7, (55)
where x and q are related by x = X(q,%¢). Thus the sum in equation (54) is
an approximation to 1/J(q), which is independent of time but is not necessarily
equal to 1. It follows that we cannot (in general) interpret p as the weighted av-
erage of m, nor can we interpret F as the weighted average of f. [This distinction
becomes even more clear in the case of an immersed elastic boundary; see egs.
(41)—(43). There, m and f are finite quantities, but p and F are infinite in the
continuous formulation, and O(h~!) in the corresponding discrete formulation.]
The correct mathematical interpretation of the operation defined by equation
(51) is that it is the adjoint of the operation defined by equation (52). [The
operation in eq. (50) is essentially the same as that in eq. (51), the only difference
being that it is applied to scalars instead of vectors.) To see this, define the inner

product of two functions defined on Qj, as follows:

(u,v)q, = Z u(x) - v(x)hd. (56)
XEQ

Similarly, define

(£,8)en = Y £(a) - g(a)(ah)®. (57)

qEQnR
Note that
(F)u)ﬂh = Z Z u(x,t) - f(q, t)5,3;[x - X(q, t)](ah)3h3
x€QNR Q€L

= (f,U)g,. (58)
If we call the interpolation operator .S, so that U = Su, then equation (58) reads
(F,u)q, = (f,Su)g,, (59)

which shows that
F = S*f, (60)

where S* denotes the adjoint of S.

Incidentally, the identity given by equation (58) states that the total power
is the same whether we calculate it in Eulerian or in Lagrangian form. This is
certainly true in the continuous formulation of the problem, but it is only true

in the discrete formulation because we use the same function 63 in equation (51)
as in (52).
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We now turn to the discretization of equation (39), which is the Lagrangian
computation of the elastic force density from the instantaneous configuration of
the elastic material. Let the difference operators D* be defined as follows:

$(0 + A6) — ¢(6)
A§ ’ (61)

(D*4)(6) =
(D™¢)(0) =

and let a subscript on D* denote the independent variable that is involved in
the differencing operator (all other independent variables being held constant).
Note that ‘

> #(O)(DH)(0)A0 = =y (D 4)(0)$(0)A0, (63)
0 6
where the sum is over the one-dimensional lattice of points of the form § = jA#,

where j is any integer. This “summation by parts” identity is easily proved by
shifting indices as needed.
Given the operators Dt and D™, we discretize equation (39) as follows:

3
fi=)Y Dy &;(---DfXi -+ ,q,1). (64)
Jj=1

Here, the function &;; is the same as in the continuous case [eq. (8)], but the
argument 0 Xy /0q; has been evaluated at D;;Xk.

We remark that equation (64) may be derived by considering the variation of
the discrete elastic energy function

E= )Y &(--D}Xi--,qt)(ah)®. (65)
qEQn

As above, £ is the continuous energy density function, but its argument 6X;/0q;
is evaluated at D;; X;. Now consider a small change in configuration and evaluate
the corresponding change in E to first order:

3
dE = E Z Eiji(-- 'D;Xk S q, t)(Dqt,dX,-)(cvh)3
q€EQn i,j=1

== > > (Dg&;i(--Di X+, q, t)dXi(ah)?, (66)

q€EQn i,j=1

where we have used the summation by parts identity, equation (63). By the
principle of virtual work, we also have

dE = — ) fidX;(ah)?, (67)
qELQn

and comparison of equations (66) and (67) shows that f; is indeed given by
equation (64). Note that —f is the gradient of E' with respect to the discrete
inner product defined by equation (57).
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Equation (64) defines f in terms of the configuration X of the elastic material.
During the computation, time proceeds in steps of duration At, and the question
arises whether the configuration at the beginning or the end of the time-step (or
perhaps some intermediate configuration) should be used to compute the force for
the step. Of course, the most expedient choice is the initial configuration of the
time-step, since it has the virtue of being known. The resulting numerical scheme
is called explicit, since it involves an explicit formula for f. The use of the final
configuration of the time-step has the alternative virtue of enhancing the stability
of the computational method (Ref. 17), but it requires the solution of a dense
nonlinear system to find the unknown final configuration. A scheme based on this
choice is called implicit, because the material configuration from which the elastic
force is computed is only implicity defined. Here, we describe an approximately
implicit scheme, in which an approximation to the final configuration is used at
each step.

Let time proceed in steps of duration At, and let a superscript n be the time-
step index so that X"(q) = X(q,nAt), and similarly for all other functions of
time. Then the approximately implicit scheme for the computation of the elastic
force may be stated as follows:

in-{-l —_ X" + Xn—l

™ (At)? =f"+, (68)

3
= Z D, &Y (DEX, q), (69)
j=1

where D(“l')~(”+1 denotes the 3 x 3 matrix whose kl entry is D;;)?g"’l. Equations
(68) and (69) constitute a nonlinear system in the unknowns )~("+1(q),f"+1(q).
This system is solved by Newton’s method. No further use is made of the ap-
proximate final configuration i"“, but f*+! is used as the elastic force for the
time-step from ¢t = nAt to t = (n + 1)At.

We remark that the scheme given by equations (68) and (69) is precisely the
backward-Euler method for the numerical solution of the Langrangian equations
of motion that one would get from the principle of least action by ignoring the
constraint of incompressibility [see eq. (13)]. These equations are

m

82 X; > d
ETe =fi= —»S,'j. (70)

The backward-Euler discretization of these equations has the effect of filtering
out high-frequency components of the force that would otherwise de-stabilize the
computation.

Finally, we consider the Eulerian variables, which satisfy the Navier-Stokes
equations [eqs. (34)—(35)]. These equations are solved by Chorin’s projection
method (Refs. 18, 19) on the regular cubic lattice Qy; the irregular geometry of
the Lagrangian marker array plays no role at all in this part of the computation.
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To state the projection method, we make use of the difference operators D*
introduced above, and we also define

D° = %(DJr + D7) (71)
0 _ 0
D° = (D] ,D;,,D)). (72)

Note that DO is the vector difference operator corresponding to the vector dif-
ferential operator V.

The goal of the projection method is to compute u™+! and p"*! given p", u”,
and F7*1, This is accomplished in a series of implicit fractional steps in which
several intermediate velocity fields are found. These are denoted u™t!*, where
s = 1,2,3. Then, in the last fractional step u"*! and p"*! are computed. The
equations to be solved are as follows:

n un+1,0 —u"

=FH! 7

P — : (73)
unrtls — gntls-1

o ( At + u?Dg,ule’s) =uD} Dy u™*th* for s =1,2,3,

(74)
n+l _ . n+1,3

pﬂ% + D%t =, (75)
DO . 'u"+1 = 0, (76)

legs. (75)—(76) should be regarded as a system in the unknowns u™*!, pn+1].
To see the correspondence between the projection method and the Navier-Stokes
equations, add equations (73)—(75) [keeping in mind that eq. (74) is really three
separate equations]. Note that all intermediate velocity fields cancel out of the
time-derivative term. The result is

u*tt —u” 2 0 1 0 1 2 1 1
o (BN S g i) 4 D = u 3 DF Do
s=1

At
(77)
This is consistent with the first of the Navier-Stokes equations [eq. (34)] because
u™t1? is within O(At) of u™ or u™*! for all s.

Equation (73) is a separate equation for each lattice point x of Qp, so it is
n+1,0

s=1

easily solved for u

For each s, equation (74) has coupling only in the z, direction. Moreover,
this coupling is only between a point and its nearest neighbors. Thus, equation
(74) amounts to a tridiagonal system for each row (when s = 1), for each file
(when s = 2), or for each column (when s = 3) of Q5. These systems are linear
because p" and u™ are known. [Note that u™ = (uf, uf,u}) is always used as
the convection velocity.]

Equations (75) and (76) constitute a system in the unknowns u"*?, p"*+!. This
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pair of equations can be reduced to a single Poisson equation for the pressure

D°. pinDoan _ _Al_tDo S Y (78)
Despite the appearance of (At)~!, the right-hand side is O(1) because D°-u"*13
is O(At). In the important special case p"(x) = po, independent of x, equation
(76) has constant coefficients and may be solved by Fourier transform techniques.
Otherwise, iterative methods are required (Ref. 20). Once the pressure is known,
equation (75) is easily solved for u™+!.

We have now described all of the ingredients of the numerical method for the
solution of equations (34)—(39). These ingredients are combined as follows.

At the beginning of a time-step, X" and u™ are known. (The data X"~! are
also known from the previous step.) The goal of the method is to compute X"+1
and u™*!. The first step is to find the elastic force £*+! by solving the nonlinear
system.

inﬁ-l —oXn +Xn—1
(At)?

=+ (79)
3 ~
=" D ert(DEX M q). (80)
j=1

At this point the Lagrangian mass and force densities m and f**! are converted
to Eulerian form:

pr(x) = D m(q)s[x — X" (q)](ah)?, (81)
qQEQn

F*H(x) = > £+ (q)83[x — X"(q))(ah)>. (82)
qEQn

Equations (81) and (82) hold for all x € Q5. In both of these equations, the
argument of §3 involves the initial configuration X™ rather than the approximate
final configuration X"*t!, With p" and F"*! determined, we proceed to the
solution of the Navier-Stokes equations: First set
At

) (83)

un+1,0 — un + =
pTL

Then solve successively the following systems, in which the unknown in each case
isu™ths fors =1,2,3:

n (un+1,s _ un+1,s—1
pP
At

+ u?Dgsu"H's) = uD:', D;su""'l”, (84)

Next, find the pressure by solving the (variable-coefficient) Poisson equation

D°. Loyt = KI;DO Sunths, (85)
p
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and evaluate ut! as follows

At
utt =u" - —D%"*! (86)
P
Finally, move the elastic material according to the formula
X" (a) = X"(a) + At Y u"H(x)8}[x — X(q)]h®, (87)
XEN

which holds for all q € Q. Since the velocity and configuration have been
updated, this completes the time-step.

4. Application: the heart

The purpose of this section is to give an example which illustrates the math-
ematical formulation and numerical method described above. The example we
choose is the heart.

Cardiac muscle is an incompressible elastic material which (to a reasonable
approximation) is neutrally buoyant in blood. The elastic parameters of cardiac
muscle are strongly time-dependent; it is this explicit dependence of the elastic
parameters on time that makes the heart beat (Ref. 21).

Another important property of cardiac muscle is its anisotropy. The muscle
is organized in such a way that there is a definite fiber direction at each point.
The fiber direction varies continuously as a function of position in the heart wall.
For empirical descriptions of the fiber architecture of the heart, see References
22-24; a mathematical theory which explains some observed features of the fiber
architecture has also been developed (Refs. 24, 25).

Consider, then, an elastic material made of fibers in which the elastic energy
density depends only on the strain in the fiber direction. Let the curvilinear
coordinates ¢1, g2, and g3 be chosen in such a way that ¢, and g3 are constant
along the fibers. Then the fiber strain is determined by |0X/8¢: ]|, and the elastic
energy is of the form

& =£(10X/0q:|,q,1). (88)
It follows that
5'-———-——66——0 for j#1 (89)
9= 9(0X:/0q5) T
while 6%, /0
Xi/0q1 ~

&= ——=E'(10X/0q1|, q,1), 90
= 0% o] 4, (40)

where £ denotes the derivative of £ with respect to its first argument. To derive
equation (90) (an exercise which we leave to the reader), it is helpful to write
out [0X/0q¢;| as follows:

- [; (%_)Z“)z] 1/2. (91)

o
oq
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Note that &;; is the ¢ component of a vector which may be denoted T'r where

3X/6q1
= Swia 92
"= /ol %2
is the unit tangent to the fibers, and where
T =&'(|16X/0q1],q,t) (93)

is the fiber tension in the sense that T dgs dgs is the force transmitted by the
bundle of fibers dgs dgs.

According to equation (80), the Lagrangian elastic force density f is given by
fi = E?=1 d&;j/dg;. In our case, only the first term in the sum is nonzero, so
fi =d&n/dqs, or

d
f= E!—I (TT). (94)

For an alternative derivation of equation (94), see Reference 8.
Equations (92)—(94) are discretized as follows:

D{ X
= 95
" oix] )
T = £'(|DfX|, A} a,t), (96)
f = D, (Tr). (97)

In equation (96), we have exploited the one-dimensional character of the fibers
by replacing q by A;’l q, where A;‘l is the forward averaging operator defined by

1
(A;"l 6)(q1,92,93) = 5 [6(q1 + ah, g2, 43) + (g1, 92, ¢3)]- (98)
2
Thus,
ah
A;’lq =(q1+ 592 g3)- (99)

This shift provides centering that makes equations (95)—(97) a second-order accu-
rate discretization of equations (92)—(94), despite the formal first-order accuracy
of the forward and backward difference operators. To make this second-order
accuracy evident, think of the variables T' and 7 as being associated with the
links between marker points instead of with the markers themselves. Then equa-
tions (95) and (96) provide second-order accurate values of 7 and T at the points
(1 + 0‘7", 42, 93), and equation (97) provides a second-order accurate value of f
at (q1, 92, 93)-

The foregoing discussion applies to any elastic material made of fibers in which
there is a definite fiber direction at each point and in which the elastic energy
density depends only on the strain in the fiber direction. To specify a model of
the heart, one must also say how the fibers are arranged in space. This is done
according to the following principles:

1. We set up a specific arrangement of cardiac muscle fibers that will be used
as the initial configuration of the model heart. This configuration is intended to
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model the heart at the beginning of diastole, which is the phase of the cardiac
cycle in which the ventricles relax and fill with blood. If the model heart is run
through several cycles, however, it will eventually find its own periodic steady
state, and there is no reason for it ever to return to the precise configuration
that we specify at time zero. Thus, the configuration that we specify determines
the dynamic anatomy of the model heart, but only indirectly.

2. According to Thomas, cardiac muscle fibers begin and end at the valve
rings (Ref. 22). There are four such rings, one for the inflow valve and one for
the outflow valve on each side of the heart. These rings are roughly coplanar,
and the plane that (more or less) contains them is called the base of the heart.
In the initial configuration of the model, the valve rings are actually coplanar.
Each fiber of the model heart is a closed-space curve which begins at some point
on one of the valve rings, follows some path through space that eventually arrives
at a (possibly different) valve ring, and then closes on itself by running along the
rings themselves and along certain straight-line connections that make possible
smooth transitions from one ring to another.

3. According to Streeter et al., the cardiac muscle fibers of the left ventricle
are geodesics (curves of shortest length) on a nested family of toroidal surfaces
in the interior of the left ventribular wall (Ref. 24). We exploit this observation
by specifying surfaces rather than individual fibers. Once the surfaces have been
specified, the geodesic fiber paths are determined merely by specifying an initial
point and direction for each fiber. For some of the surfaces that we use, the
geodesic fiber paths can be determined analytically, but in any case they can be
found numerically.

Further details concerning the construction of the model heart are shown in
Figure 1. Overall, it contains left and right ventricles; left and right atria; the
mitral, tricuspid, aortic, and pulmonic valves; and segments of the following
great-vessels: the aorta, the main pulmonary artery, the superior and inferior
vena cavae, and the four pulmonary veins. The model great-vessels have blind
ends, but these are equipped with sources and sinks which connect the model
heart to a simulated circulation. (Since the pulmonary veins are small, we use a
single source in the left atrium instead of a separate source in each pulmonary
vein.) The computational apparatus needed to specify sources and sinks is de-
scribed in Reference 2.

Once the anatomy of the model heart has been specified, its physiology can
be determined by postulating a stress-strain law for its elastic fibers and espe-
cially by stipulating the position- and time-dependence of the elastic parameters
that appear in that constitutive equation. We use a two-parameter stress-strain
law, the parameters being the stiffness and the resting length. For valves and
great-vessels, these parameters are constant, but for the atria and ventricles
they are functions of time. At present, we vary these parameters synchronously
throughout the atria and synchronously throughout the ventricles, but with dif-
ferent time-dependence in the atrial case and in the ventricular case. Thus, we
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do simulate the time-delay between the atrial contraction and the ventricular
contraction, but we do not (as yet) simulate the wave-like character of the con-
traction within the atria or within the ventricles. This is a refinement that can
be made later.

Some results of our computations are shown in Figure 2. The snapshots of
the flow patterns are made by taking a thick cross section of the model and
recording the trajectories of fluid particles within that cross section over several
time-steps. (Each particle is shown as a dot in its current position with a tail
showing its recent trajectory.)

These computations are preliminary; the three-dimensional heart model de-
scribed here has not yet been put to use. Ultimately, we hope that it will be used
for improved understanding of normal cardiac function, for computer modeling
of diseases affecting the mechanical function of the heart or its valves, and for
computer-assisted design of prosthetic cardiac valves. All three of these potential
applications have already been realized in the case of a two-dimensional heart
model developed earlier (e.g. Refs. 4-T7).

5. Conclusion

A general method for the numerical solution of problems in which an in-
compressible fluid interacts with an incompressible elastic material has been de-
scribed. Since most problems of biofluid dynamics are of this type, the method
has broad applicability.

A particular strength of the method described here is its geometric versatility.
The geometry of the elastic material can be complicated, time-dependent, and
unknown (since it is determined as part of the solution of the problem). This
versatility arises from the use of a mixed Lagrangian-Eulerian description of the
motion. The Lagrangian description is used to compute elastic forces, which are
then transferred to the Eulerian computational lattice, on which the discretized
Navier-Stokes equations are solved. The computed Eulerian velocity field is
then used to update the Lagrangian configuration of the elastic material. The
transfer of information in either direction between the Eulerian and Lagrangian
descriptions is mediated by an approximation to the Dirac delta function.

The method is here illustrated by its application to the heart, but this confer-
ence has seen the presentation of a broad array of fascinating phenomena, ranging
from filter feeding to bird flight and to which the method should be adaptable.
Most of these problems seem too complex for further theoretical progress along
purely analytic lines, but the method of this paper offers the hope that computer
simulations of such complex phenomena are not out of reach.
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FIGURE 1. Fiber architecture of the model heart. (A) Construction
of the left ventricular wall. At left, a double-sheeted layer of left
ventricular fibers with the aortic and mitral valve rings at the top.
There is space between the two sheets for other layers of fibers which
are nested there. Fibers begin and end at the valve rings. They
make a smooth transition from one sheet to the other at the lower
ring in the figure. Middle, a larger layer of the same type. At right,
the two layers shown together with the smaller one nested between
the sheets of the larger. (B) The mitral and aortic valves. At left,
a layer of fibers which surrounds both ventricles, penetrates the left
ventricular wall at the apex of the heart, and returns to the valve
rings via the inner surface of the left ventricular wall. Middle, the
mitral valve, including chordae tendineae and papillary muscles, and
the aortic valve, including the root of the aorta. At right, the mitral
and aortic valves installed in the model heart. (C) Relation of the
right and left ventricles. At left, the left ventricle with the mitral and
aortic valves in place. Middle, the right ventricle has been added. At
right, the model ventricles with all four valves in place. (D) Inflow
structures. At left, the model ventricles. Middle, the atria, veins,
and atrioventricular valves. At right, the inflow structures and the
ventricles shown together. See pages 184 and 185.

FiGURE 2. The model heart in action. Top row: filling. Bottom
row: ejection. In both rows the frame at left shows the fibers (atria
and veins deleted for clarity), whereas the middle and right frames
show selected cross sections of the flow pattern. Flow is visualized in
terms of streak lines with a dot showing the current position and a
tail showing the recent trajectory. See page 186.
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