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Abstract

Synaptic transmission is the mechanism of information transfer from one neuron 
to another (or from a neuron to a muscle or to an endocrine cell). An important 
step in this physiological process is the stochastic release of neurotransmitter 
from vesicles that fuse with the presynaptic membrane and spill their contents 
into the synaptic cleft. We are concerned here with the formulation, analysis, 
and simulation of a mathematical model that describes the stochastic docking, 
undocking, and release of synaptic vesicles and their effect on synaptic signal 
transmission. The focus of this paper is on the parameter p0, the probability of 
release for each docked vesicle when an action potential arrives. We study the 
influence of this parameter on the statistics of the release process and on the theo-
retical capability of the model synapse in reconstructing various desired outputs 
based on the timing and amount of neurotransmitter release. This theoretical 
capability is assessed by formulating and solving an optimal filtering problem. 
Methods for parameter identification are proposed and applied to simulated data.  
c© 2018 Wiley Periodicals, Inc.
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1 Introduction

1.1 Motivation and overview
Neurons form complex networks via synapses through which information prop-

agates. In this article, we consider chemical synapses, in which neurotransmitters
are involved (see Figs. 1.1 and 1.2). Information transfer at chemical synapses
occurs in three main steps [11, 17, 24, 33, 43, 48, 64, 67, 80]: (1) At the presynap-
tic terminal: Undocked vesicles bind to docking sites (release sites) and become
docked; simultaneously, docked vesicles can become undocked without releasing
their neurotransmitter through reversal of the docking process. The arrival of an ac-
tion potential (nerve impulse) leads to increased membrane potential, which opens
Ca2+ channels. Ca2+ stimulates the fusion of docked vesicles to the presynap-
tic membrane, spilling neurotransmitter molecules into cleft.1 (2) In the synaptic
cleft: Neurotransmitter molecules bind to receptors, which are ion channels located
on the postsynaptic membrane. Channels with bound neurotransmitter can open.
Neurotransmitter action is terminated by enzymatic degradation, uptake into the
presynaptic terminal, and diffusion out of the cleft. (3) In the postsynaptic neuron:
Ionic currents flowing through the open synaptic channels displace the membrane
potential. Depending on the channel type, the change may be either excitatory or
inhibitory to the postsynaptic neuron.

Unlike the all-or-none action potential, synaptic transmission is graded, since
the number of vesicles released by the arrival of an action potential, and also the
postsynaptic response to each vesicle released, may vary. The synapse is therefore
a favorite site of hormonal, pharmacologic, and neural regulation of nervous ac-
tivity. Vesicle fusion and the subsequent release of neurotransmitters is stochastic
and its likelihood of occurrence is a crucial factor in the regulation of signal prop-
agation in neuronal networks [9, 21, 29, 81]. The reliability of neurotransmitter
release can be highly variable: since the 1950’s, experimental data from electro-
physiological, molecular, and imaging studies have demonstrated that synaptic ter-
minals can individually set their neurotransmitter release probability dynamically
through local feedback regulation [9], and also that stochastic vesicle release is the
most significant source of noise in the central nervous system [2, 18]

It is widely believed that the synapse is the site at which learning takes place
and at which memory is stored [11, 61]. Work during the last half century has
shown that modification of the rate of neurotransmitter release contributes to both
short-term [1, 23, 34, 47, 50, 79, 81] and long-term changes [8, 30, 40, 46, 54, 63]
at synapses. Recently, the rate of neurotransmitter release has also been linked to
severe neurological disorders, such as Parkinson’s disease [45, 68] and Alzheimer’s
disease [53, 77]. If long-lasting synaptic adaptations are indeed a mechanism by

1 Docked vesicles can also fuse with the presynaptic membrane and release their contents sponta-
neously without the arrival of a nerve impulse, but the rate of spontaneous release has been found to
be substantially lower than the rate of undocking in some central synapses [43]. We do not consider
spontaneous release in this article.
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FIGURE 1.1. Docking, undocking, and release of synaptic vesicles. At
a chemical synapse, one neuron influences another through the release
of neurotransmitters, which are small molecules packed inside synaptic
vesicles. The arrival of an action potential at the presynaptic terminal
triggers the fusion of the membranes of some docked vesicles with the
membrane of the presynaptic neuron, leading to the release of neuro-
transmitters into the synaptic cleft. The binding of one or more neuro-
transmitter molecules with a postsynaptic receptor triggers the opening
of an ionic channel in the postsynaptic neuron, and this may either raise
or lower the postsynaptic membrane potential depending on the channel
type. The two black dots associated with each docked vesicle represent
the cross-section of a protein ring that defines a docking site.

which our experiences get translated into memories, a quantitative understanding
of how various factors in synaptic transmission determine the rate of vesicle release
is crucial to the understanding of the brain.

From a broader perspective, synaptic vesicle release is a form of exocytosis, a
biological process through which molecules produced in a cell are secreted to the
extracellular environment. Other forms of exocytosis include the release of insulin
to regulate blood sugar level [74] and the release of cytotoxic granule vesicles from
immune cells to attack foreign antigens [69]. Although we only consider synaptic
vesicle release in this article, it is possible that the model we introduce and study
herein may be more broadly applicable.

1.2 Existing models of synaptic vesicle release
The original model of synaptic vesicle release proposed by Katz [26], based on

binomial statistics, is widely cited and is still being used today. Suppose there are
ns independent docking sites, all of which are occupied, and that the probability
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FIGURE 1.2. Electron microscope cross-sectional images of two
synapses of cortical neurons in the mouse brain. The dark (electron
dense) segment of the cell membrane corresponds to the location of
docking sites, where there is a high concentration of presynaptic proteins
that tether synaptic vesicles to the presynaptic membrane and mediate
synaptic vesicle fusion. Docked vesicles are those vesicles located near
the dark segment of the membrane. Some docked vesicles are indicated
by arrows. Note that a cross-sectional image does not show vesicles that
are outside the plane of the cross-section, so there may be many vesicles,
including docked ones, not seen in the image. These two images are the
subfigures located in the upper-left corner of Figs. 1A and 1B, respec-
tively, in Wu et al. [75], used under the Creative Commons Attribution
4.0 International Public License, with arrows added to the original.

that a vesicle undergoes exocytosis following the arrival of a nerve impulse is p0,
then the mean of the number N of vesicles released is ns p0, the variance of N is
ns p0(1− p0), and the probability that k vesicles are released, Pr(N = k), is given
by

Pr(N = k) =
ns!

k!(ns− k)!
pk

0(1− p0)
ns−k.

Robinson [56] provided a set of formulae for the estimation of p0 and ns, assuming
a fixed postsynaptic response to each vesicle release event.

Katz’s binomial model enjoyed great success in interpreting vesicle release data
from the frog neuromuscular junction, but one crucial assumption weakens its ap-
plicability to other synapses: in his binomial model, it is assumed that prior to the
arrival of each action potential all of the docking sites are filled, i.e., ns is equal to
the number of docked vesicles when an action potential arrives. This assumption
is not accurate in general. Several studies have reported that the number of docked
vesicles prior to each action potential is variable [6, 10, 36, 52, 72]. To overcome
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this shortcoming, Vere-Jones [71] proposed and then carefully analyzed a model
synapse with an unlimited number of docking sites, in which vesicle docking (and
undocking) occurs by a homogenous Poisson process; this model was consistent
with several early experimental results indicating that the numbers of vesicles re-
leased seemed to be governed by the Poisson distribution, but was nevertheless
not widely accepted because of the idealized assumption of an unlimited number
of docking sites. Barrett & Stevens [4, 5] adopted a different approach to extend
Katz’s original model: they assumed that vesicle release at each docking site occurs
by a Poisson process with a time-dependent rate.

In recent years, several workers have applied the extended Katz theory to neu-
rotransmitter release at central synapses, such as those in the cerebral cortex and
the hippocampus (see [15, 70] for two examples). Evidence has also accumulated
to indicate that in many synapses the statistics of vesicle release does not follow
a Poisson distribution [51, 78, 80]. The Poisson assumption is only a good ap-
proximation when the rate of nerve impulse arrival is sufficiently high. Attempts
to loosen the Poisson assumption led to the development of models of vesicle pool
dynamics [14, 38, 44, 55, 70]. Under this framework, the arrival of each nerve
impulse triggers only the probabilistic release of vesicles in the readily-releasable
vesicle pool (RRP) [25, 59], and a set of deterministic differential equations is used
to describe the replenishment of RRP from recycle and reserve vesicle pools.

A challenge in mathematical modeling of biological systems is in the design
of models that accommodate not yet understood biological components or can ac-
count for dynamic changes in biological parameters. Some recent work in this
direction include the phenomenological models proposed by Maass & Zador [29]
and Bird, et al. [7], which allowed temporal variations of the release probability as
a means to achieve short-term facilitation (and possibly a form of depression that
is unrelated to depletion of docked vesicles). Another phenomenological model
proposed by Fellous & Corral-Frı́as [16] studied the effect of heterogeneity in the
initial release probability on the reliability and precision of postsynaptic output. In
Merkel & Lindner [39], the authors modeled a population of facilitating and de-
pressing synapses in which the spike trains from different presynaptic neurons are
independent of each other and are Poisson. They derived analytical approximations
for cross-spectra, power spectra and the coherence function between the presynap-
tic and postsynaptic signals, which showed that the synaptic coherence function is
largely independent of frequency. This result is consistent with the findings by de
la Rocha, et al. [12], in which the authors found that short-term depression does
not affect the efficacy of synaptic transmission for Poisson spike trains, but it can
enhance synaptic transmission for more realistic temporally correlated spike trains.
Using paired-cell recording in rat neocortex, Scott, et al. [60] showed that short-
term plasticity can not only improve but also reduce information transfer between
neurons. Specifically, they showed that when information is contained in the tim-
ing of individual spikes, short-term plasticity affects information transfer relative
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to its impact on the probability of neurotransmitter release, whereas when infor-
mation is contained only in the mean spike rate, the effect of short-term plasticity
depends on the range of spike frequencies that the target network can distinguish.
In Fuhrmann et al. [19], the authors analyzed the optimal frequency of presynap-
tic spike train for which the information content is maximal in a model synapse
that includes both depression and facilitation. Another interesting line of work by
Meinrenken et al. [37] and Modchang et al. [41] aims to provide a quantitative link
between spatial heterogeneity in vesicle release and residual calcium dynamics in
the presynaptic terminal.

Finally, we would like to refer the reader to some related work that also stud-
ied the functional roles of stochastic vesicle release in synaptic transmission. In
Arleo, et al. [3] and Goldman [20], an information-theoretic approach was used to
examine the effect of release probability on synaptic transmission of information.
Using Shannon’s mutual information, the authors found that, in cerebellar granule
cells and simulated model neurons, as release probability increased, the optimality
of information transfer of most stimuli did not increase monotonically but instead
reached a plateau at intermediate release probability levels. Their results are con-
sistent with the results of this article. In Rosenbaum, et al. [57], the authors con-
structed both a deterministic model and a stochastic model to study how variability
in vesicle dynamics affects signal transmission. They found that the depletion
of docked vesicles at higher rates of arrival of action potentials makes a stochas-
tic synapse act as a high-pass filter, whereas a deterministic synapse that ignores
the stochastic release of vesicles transfers information encoded at any frequency
equally well. Note that the deterministic model considered by Rosenbaum, et al. is
a continuous, deterministic approximation to their stochastic model, and therefore
is different from our vesicle release model proposed in this article (see Section 2).
In our model, vesicle dynamics is stochastic even when the release probability is
100% because vesicle docking (and undocking) is always governed by a stochas-
tic process, thus the number of vesicles released at a spike with an 100% release
probability is equal to the number of vesicles that happened to dock during the
immediately preceding interspike interval. Manwani & Koch [31] also adopted an
optimization point of view concerning stochastic vesicle release. In their model,
each synapse has a single docking site that is always filled, both the probability
of release per docked vesicle p0 and the postsynaptic response are pre-determined
based on experimental observation of the properties of cortical synapses. They
found that single stochastic synapses cannot transmit presynaptic spike density S(t)
reliably, but redundancy obtained using a small number of multiple synapses leads
to a significant improvement in the reconstruction of S(t). Our work is very dif-
ferent, since (1) we consider a model synapse with an arbitrary number of docking
sites with docking and undocking processes, (2) we do not prescribe a fixed p0 but
instead study how different values of p0 affect the fidelity of synaptic transmission,
and (3) we do not presume the biophysical details of a synapse’s postsynaptic re-
sponse to the presynaptic vesicle release events but instead use optimal linear filter
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theory to measure the capability of our idealized postsynaptic neuron in the esti-
mation of any desired signal derived from the presynaptic spike density S(t), given
that we know the statistics of the signal ensemble from which S(t) has been drawn.
Our theory of synaptic vesicle docking, undocking, and release has allowed us to
show that an appropriately chosen value of p0 improves synaptic transmission by
lowering the mean square error in the estimation of various desired signals, and
how the best choice of p0 is determined by various factors.

1.3 Our prior work
In a recent paper [76] we considered an idealized model synapse with an un-

limited number of vesicle docking sites and no undocking, in which we assumed
that vesicle docking occurs by a homogeneous Poisson process with mean rate
α0, that presynaptic action potentials arrive by a stochastic process with mean rate
s(t) > 0, and that each vesicle that is docked has a probability p0 to be released
upon the arrival of each action potential, independently of other docked vesicles.
In this idealized case, we found that the expected rate of vesicle release r(t) is
governed by

d
dt

(r
s

)
= p0 (α0− r) .(1.1)

This implies that a stimulus at any steady level s(t) = constant leads eventually
to the same vesicle release rate equal to α0, the mean vesicle docking rate. This
complete insensitivity to the absolute level of stimulation is a consequence of the
assumption that there is an unlimited number of docking sites available and is con-
sistent with several experimental observations [1, 22, 32, 81] (see also [47] for a
review). We also examined the theoretical capability of a synapse in the estimation
of desired signals using information from the stochastic vesicle release events un-
der the framework of optimal linear filter theory: we found that a small p0, such
as 0.1, reduces the error in the reconstruction of the input, or in the reconstruction
of the time derivative of the input in comparison to a larger value of p0 such as
p0 = 0.5 or 1. This implies that the probabilistic nature of synaptic vesicle release
can play a beneficial role in synaptic transmission.

1.4 Main results of this article
In this paper, we consider a model of stochastic vesicle release that is character-

ized by four parameters: the number of docking sites, ns; the rate (i.e., probability
per unit time) of vesicle docking at each empty site, α; the rate of undocking for
each filled site, β ; and the probability of release, p0, when an action potential ar-
rives, of each vesicle that is docked at that time. The input to our model synapse
is a sequence of action potential arrival times, and the output of the model presy-
naptic terminal is a sequence of random nonnegative integers, each of which is the
number of vesicles released by the corresponding action potential. Conditioning
on the sequence of action potential arrival times, we derive and solve a recursion
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relation for the expected numbers of vesicles released, and also a correlation func-
tion that partially characterizes the statistics of vesicle release. Then we adopt the
point of view that the action potentials themselves are generated by a stochastic
process and are carrying information about an underlying continuous signal, and
we ask to what extent that signal can be reconstructed by linear filtering of the time
series of numbers of vesicles released. We address this question both analytically
and numerically. In the analytic case, we make simplifying assumptions that are
not needed when the problem is tackled numerically. In both cases, we focus on
the choice of the parameter p0, and we find that the quality of the best signal re-
construction that can be done depends on this choice. Roughly speaking, the result
is that p0 should be equal to 1 when the effective number of docking sites is small,
but p0 should be small when the effective number of docking sites is large. The
latter case is interesting, since it implies that randomness in vesicle release can
be helpful for signal preservation during synaptic transmission. The terminology
“effective number of docking sites” in the foregoing refers to the influence of the
undocking process in setting an upper bound that is smaller than ns on the expected
number of docked vesicles. The optimal choice of p0 is also influenced by other
parameters such as the rate of arrival of action potentials. We conclude by showing
how the parameters of the model can be identified from experimental data, and also
how the model can be tested experimentally.

2 A model of synaptic vesicle release for spiking neurons
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FIGURE 2.1. A model of synaptic vesicle release for spiking neurons.

Throughout this paper, we make the following assumptions:
(1) The input to a synapse is a sequence of action potential arrival times

. . . tk−1 < tk . . .

Later, we will use the capital letter . . .Tk . . . when we consider action potential
arrival times that are generated by a stochastic process. When we use the lower-
case . . . tk . . ., we are assuming that these action potential arrival times are given.

(2) The synapse has some number ns of equivalent vesicle release sites. Any
particular site may be occupied or unoccupied by a synaptic vesicle.

(3) Between action potential arrival times, every unoccupied site has a probabil-
ity per unit time α of becoming occupied, and every occupied site has a probability
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per unit time β of becoming unoccupied. Thus, between action potential arrival
times, each site obeys the reaction scheme

0
α−−⇀↽−−
β

1

in which 0 denotes an unoccupied site and 1 denotes an occupied site. The changes
that occur at one site are independent of those occurring at any other site. Note that
the reaction with rate constant β does not involve the release of neurotransmitter
into the synaptic cleft. Instead it is simply the undocking of a previously docked
vesicle, without neurotransmitter release [43].

(4) At each action potential arrival time, every site that is occupied immediately
before the action potential arrival time has the possibility of releasing the contents
of its vesicle into the synaptic cleft and thereby becoming an unoccupied site. The
probability that such release occurs at any particular site is denoted by p0, and the
decision whether to release the vesicle or not is made independently for each site.
p0 is also known as the vesicle fusion probability.

Let D(t) be the number of docked vesicles at time t, and let Nk be the number
of vesicles released by the arrival of the k-th action potential. At any given time t
between action potential arrival times, D(t) changes in steps of ±1, and the proba-
bility per unit time that D(t) increases by 1 is α

(
ns−D(t)

)
, whereas the probability

per unit time that D(t) decreases by 1 is βD(t). At the action potential arrival time
tk,

Pr(Nk = n |D(t−k ) = d) =
(

d
n

)
pn

0 (1− p0)
d−n,(2.1)

and then, of course,

D(t+k ) = D(t−k )−Nk.(2.2)

We regard the sequence . . .(Nk,Tk) . . . as the output of the synaptic vesicle release
process (i.e., the output of the presynaptic terminal).

3 Synaptic vesicle release with a finite number of docking sites

3.1 Nk, the expected number of vesicles released at each action poten-
tial conditioned on the action potential arrival times

The first result of this paper is a recursion formula for the expected number of
vesicles released at each action potential (spike) time given that we know the action
potential arrival times.
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Conditioned on the action potential arrival times . . . tk . . ., we denote by ( ) the
expected value of ( ) conditioned on these action potential arrival times. We have

Nk = p0D(t−k ),(3.1)

D(t+k ) = (1− p0)D(t−k ),(3.2)

dD
dt

= α(ns−D)−βD, for t ∈ (tk−1, tk).(3.3)

The solution to (3.3) is

D(t) = D(t+k−1)e
−(α+β )(t−tk−1)+

αns

α +β

(
1− e−(α+β )(t−tk−1)

)
,(3.4)

which holds for t ∈ (tk−1, tk).
In particular, at t = t−k , we have

D(t−k ) = (1− p0)D(t−k−1)e
−(α+β )(tk−tk−1)+

αns

α +β

(
1− e−(α+β )(tk−tk−1)

)
,(3.5)

where we used (3.2).
Finally, multiply both sides by p0 and make use of (3.1) to obtain the recursion

formula

Nk = (1− p0)Nk−1e−(α+β )(tk−tk−1)+ p0
αns

α +β

(
1− e−(α+β )(tk−tk−1)

)
.(3.6)

Let

γ = α +β ,(3.7)

n∗s = αns/(α +β ),(3.8)

then the expected number of vesicles released at each action potential, conditioned
on the action potential arrival times {tk}, is given by the recurrence

Nk = (1− p0)Nk−1e−γ(tk−tk−1)+ p0n∗s
(

1− e−γ(tk−tk−1)
)
.(3.9)

We call n∗s the effective number of docking sites.
We can use Eq (3.9) to express Nk in terms of Ni for any i < k. Multiplying both

sides of (3.9) by the summation factor eγtk/(1− p0)
k, we obtain

Nkeγtk

(1− p0)k =
Nk−1eγtk−1

(1− p0)k−1 +
p0n∗s

(1− p0)k

(
eγtk − eγtk−1

)
.(3.10)

This gives, for any i < k,

Nk = (1− p0)
k−ie−γ(tk−ti)Ni + p0n∗s

k

∑
j=i+1

(1− p0)
k− je−γ(tk−t j)

(
1− e−γ(t j−t j−1)

)
.

(3.11)
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3.2 The autocovariance of Nk conditioned on the action potential ar-
rival times

Denote by ϕik the autocovariance of Nk:

ϕik = NiNk−Ni Nk.(3.12)

We first consider a synapse with a single docking site and possibly with un-
docking allowed. This should yield results that are useful in the general case, since
the individual sites are independent of each other, provided that we condition on
the arrival times of the action potentials . . . tk . . .

With a single site, Ds(t) = 0 or 1, and likewise, Ns
k = 0 or 1, in which the

superscript s is the index of the docking site (s = 1 in this case). Thus, we can re-
interpret Ds as the probability that Ds(t) = 1 and Ns

k as the probability that Ns
k = 1.

The autocovariance of the sequence of random variables . . .Ns
k . . . is defined by

ϕ
s
ik = Ns

i Ns
k−Ns

i Ns
k .(3.13)

Since Ns
k = 0 or 1 for all k,

ϕ
s
ik = Pr(Ns

i = 1&Ns
k = 1)−Pr(Ns

i = 1)Pr(Ns
k = 1).(3.14)

If i = k, this gives

ϕ
s
kk = Pr(Ns

k = 1)− (Pr(Ns
k = 1))2 .(3.15)

For i < k, we can evaluate ϕs
ik as

ϕ
s
ik = Pr(Ns

i = 1)Pr(Ns
k = 1 |Ns

i = 1)−Pr(Ns
i = 1)Pr(Ns

k = 1)

= Pr(Ns
i = 1)(Pr(Ns

k = 1 |Ns
i = 1)−Pr(Ns

k = 1)) .(3.16)

Since the definition of ϕs
ik is symmetrical under interchange of (i,k), there is no

need to consider separately the case i > k.
Note that

Pr(Ns
k = 1) = lim

i→−∞
Pr(Ns

k = 1 |Ns
i = 1).(3.17)

Thus, to obtain ϕs
ik we only need to find Pr(Ns

k = 1 |Ns
i = 1).

The Eqs. (3.1), (3.2) and (3.3) for D and Nk now become

Ns
k = p0Ds(t−k ),(3.18)

Ds(t+k ) = (1− p0)Ds(t−k ),(3.19)

Ds(t−k ) = Ds(t+k−1)e
−γ(k−tk−1)+ p∗

(
1− e−(α+β )(tk−tk−1)

)
,(3.20)

in which, as before, γ = α +β , and we have now introduced the notation

p∗ =
α

α +β
.(3.21)

Note that p∗ is the same as n∗s in the special case that ns = 1, see (3.8), but we have
introduced a special notation for this to avoid confusion when we later consider
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ns > 1, and also to emphasize that p∗ is a probability. Specifically, p∗ is the proba-
bility that a site is occupied if there have not been any action potentials for a long
time. In particular, if there is no undocking, then β = 0 and p∗ = 1.

Substituting (3.20) into (3.19), we get a recursion relation for Ds(t+k ) (instead
of the recurrence for D(t−k ) derived previously) by

Ds(t+k ) = (1− p0)Ds(t+k−1)e
−γ(k−tk−1)+(1− p0)p∗

(
1− e−(α+β )(tk−tk−1)

)
.(3.22)

This differs from (3.5) by the appearance of (1− p0) in both terms, instead of just
the first term.

To solve the above recurrence we multiply its both sides by the summation
factor eγtk/(1− p0)

k to obtain

Ds(t+k )eγtk

(1− p0)k =
Ds(t+k−1)e

γtk−1

(1− p0)k−1 +
p∗

(1− p0)k−1

(
eγtk − eγtk−1

)
.(3.23)

It follows that for any i < k

Ds(t+k )eγtk

(1− p0)k =
Ds(t+i )eγti

(1− p0)i +
k

∑
j=i+1

p∗
(1− p0) j−1

(
eγt j − eγt j−1

)
.(3.24)

Now suppose it is known that a vesicle was released by the i-th action potential,
that is

Ns
i = 1.(3.25)

Then it must be the case that

Ds(t+i ) = 0.(3.26)

Conditioning on this, (3.24) gives, for i < k

Ds(t+k ) = p∗(1− p0)
k

∑
j=i+1

(1− p0)
k− je−γ(tk−t j)

(
1− e−γ(t j−t j−1)

)
.(3.27)

Combing (3.18) and (3.19), we have

Ns
k =

p0

1− p0
Ds(t+k ).(3.28)

Recall that Ns
k is the probability that Ns

k = 1, and in this case we have done the
calculation conditioned on Ns

i = 1. Therefore, we have the result that for i < k

Pr(Ns
k = 1 |Ns

i = 1) = p∗p0

k

∑
j=i+1

(1− p0)
k− je−γ(tk−t j)

(
1− e−γ(t j−t j−1)

)
.(3.29)

Moreover, by letting i→−∞ in (3.29), we find

Pr(Ns
k = 1) = p∗p0

k

∑
j=−∞

(1− p0)
k− je−γ(tk−t j)

(
1− e−γ(t j−t j−1)

)
.(3.30)
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Substituting (3.29) and (3.30) into (3.15) and (3.16), we obtain the following result
valid for all (i,k)

ϕ
s
ik =p∗ p0

k

∑
j=−∞

(1− p0)
k− je−γ(tk−t j)

(
1− e−γ(t j−t j−1)

)
δik − (p∗p0)

2 •

[
i

∑
j=−∞

(1− p0)
i− je−γ(ti−t j)

(
1− e−γ(t j−t j−1)

)]2

(1− p0)
|k−i|e−γ|tk−ti|,(3.31)

where δik is the Kronecker delta.
Note that since all of the sites are statistically identical, the superscript s refers

to any one of the sites, and therefore it also serves as a convenient label for a
single-site quantity. The results involving this superscript do not actually depend
on s (unless we are concerned with a random variable, such as Ns

k , which does
depend on s, even though Ns

k does not).
Now we are ready to scale up to the case of ns independent sites. We have

Nk =
ns

∑
s=1

Ns
k ,(3.32)

where Ns
k is the number of vesicles (0 or 1) released at the s-th site by the k-th

action potential. Note that the whole sequence

. . .Ns1
k . . .(3.33)

and the whole sequence

. . .Ns2
k . . .(3.34)

are independent for s1 6= s2, provided that we condition on the spike times. Also
these sequences have the same probability distribution. It follows that

Nk =
ns

∑
s=1

Ns
k = nsNs

k ,(3.35)

since Ns
k is independent of s. Also

NiNk =
ns

∑
s=1

ns

∑
s′=1

Ns
i Ns′

k

= nsNs
i Ns

k +(n2
s −ns)Ns

i Ns
k ,(3.36)

and finally

ϕik = NiNk−Ni Nk

= ns(Ns
i Ns

k−Ns
i Ns

k)

= nsϕ
s
ik.(3.37)
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Substituting (3.31) into (3.37) we obtain the formula of the autocovariance of Nk,
conditioned on the action potential arrival times {tk}, valid for all (i,k)

ϕik =n∗s p0

k

∑
j=−∞

(1− p0)
k− je−γ(tk−t j)

(
1− e−γ(t j−t j−1)

)
δik −

1
ns
(n∗s p0)

2 •

[
i

∑
j=−∞

(1− p0)
i− je−γ(ti−t j)

(
1− e−γ(t j−t j−1)

)]2

(1− p0)
|k−i|e−γ|tk−ti|,(3.38)

where δik is the Kronecker delta.

3.3 Example: a regular spike train
Here we consider the special case of a regular spike train. Results from this

example will be used later for parameter estimation in Section 6. We would also
like to refer the reader to Matveev & Wang [35], in which the authors derived
analytic results for a regular spike train under a different hypothesis that at most
one vesicle can be released per spike.

Suppose tk− tk−1 = ∆t, then (3.9) has the steady-state solution given by

N = (1− p0)e−γ∆tN + p0n∗s (1− e−γ∆t).(3.39)

Subtracting (3.39) from (3.9), we obtain

Nk−N = (1− p0)e−γ∆t (Nk−1−N
)
.(3.40)

This shows that Nk→ N geometrically with ratio

(1− p0)e−γ∆t .(3.41)

This observation allows us to construct a closed-form solution of the recurrence
(3.9) for the special case of a sudden change in the rate of arrival of action poten-
tials.

Conditioned on the action potential arrival times {tk}, where

tk− tk−1 =

{
(∆t)1 for k ≤ 0,
(∆t)2 for k > 0,(3.42)

the expected number of vesicles released at the time of the k-th action potential is

Nk =

{
N((∆t)1) for k ≤ 0,
N((∆t)2)+

(
N((∆t)1)−N((∆t)2)

)
(1− p0)

k e−kγ(∆t)2 for k > 0,

(3.43)

where N(∆t) is the steady-state expected number of vesicles released at each action
potential under a constant spike train with interspike interval ∆t > 0

N(∆t) = p0n∗s
1− e−γ∆t

1− (1− p0)e−γ∆t .(3.44)
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We can re-express the foregoing in terms of the rate of arrival of action poten-
tials and the rate of release of neurotransmitter by making the definitions

sk =
1

tk− tk−1
,(3.45)

Rk =
Nk

tk− tk−1
,(3.46)

Rk =
Nk

tk− tk−1
,(3.47)

R(s) =
N(s)
1/s

= p0γn∗s

1−e−γ/s

γ/s

1− (1− p0)e−γ/s ,(3.48)

so that R(s) is the steady-state rate of release of vesicles when the rate of arrival of
action potentials is constant and equal to s.

In terms of these variables, (3.43) becomes

Rk =

{
R(s1) for k ≤ 0,
R(s2)+

(
1−wk(s2)

)
+R(s1)

s2
s1

wk(s2) for k > 0,(3.49)

where

w(s) = (1− p0)e−γ/s.(3.50)

FIGURE 3.1. The asymptotic behavior of R(s), the steady-state rate of
vesicle release defined in (3.48), for a synapse with a finite number of
docking sites. R(s) is plotted in the blue curve.

Fig. 3.1 shows the asymptotic behavior of the steady-state rate of vesicle release
R(s) as a function of s, the rate of arrival of action potentials. As s→ ∞, we have

lim
s→∞

R(s) = γn∗s ,(3.51)
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where γn∗s = αns is the mean rate of vesicle docking of the entire synapse when all
docking sites are empty. That is, for sufficiently fast arrival of action potentials, the
steady-state rate of vesicle release does not depend on the rate of arrival of action
potentials, since it is limited by the maximum rate at which docking can occur.
This shows that in the regime of fast arrival of action potentials, a synapse with a
finite number of docking sites behaves in a similar manner as a model synapse with
an unlimited number of docking sites [76]. On the other hand, as s→ 0, we have

R(s)∼ p0n∗s s.(3.52)

That is, for sufficiently slow arrival of action potentials, the steady-state rate of
vesicle release of a synapse with a finite number of docking sites is proportional to
the rate of arrival of action potentials.

-5 -4 -3 -2 -1 0 1 2 3 4 5

theory

stochastic simulation

fitted tail

FIGURE 3.2. An illustration of the autocovariance ϕik. We plot two
versions of ϕik: the theoretical result, as predicted by Eq. (3.54), is
plotted as blue circles; and the stochastic simulation result is plot-
ted as red crosses. The negative tail, obtained by fitting the values
of ϕik over i 6= k to an exponential function using the least square
method, is plotted in the red dashed curve. Model parameters are ∆t =
0.1sec (interspike interval), p0 = 0.5,ns = 100,α0 = 1000sec−1,β = 0.
To obtain the stochastic simulation result, we first compute Nk numeri-
cally by simulating the stochastic vesicle release process for an evenly-
spaced spike train that lasts 100 sec. Once Nk is obtained, we compute
its autocovariance ϕik. To improve the accuracy of ϕik, we repeat the
above process 1000 times and then take the average of ϕik over those
1000 sample paths. See Online Supplement for the algorithms used in
the stochastic simulation of Nk.
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Furthermore, in the special case of a regular spike train {tk}, where

tk = k∆t,(3.53)

for all k, the autocovariance of Nk, given by (3.38), simplifies to

ϕik = N(∆t)δik−
1
ns
(N(∆t))2 ((1− p0)e−γ∆t)|k−i|

,(3.54)

where δik is the Kronecker delta function, and N(∆t) is defined in Eq. (3.44).
Fig. 3.2 illustrates ϕik as a function of (k− i). Note that the height of the central

peak N− (N)2/ns can be larger or smaller than the amplitude of the negative tails,
which we may define by extrapolation to |k− i| = 0, and is simply (N)2/ns (in
magnitude). The ratio of these two magnitudes is

r =
N− (N)2

ns

(N)2

ns

=
ns

N
−1,(3.55)

which is greater than 1 if N < 1
2 ns and smaller than 1 if N > 1

2 ns. (Note that
r cannot be negative, since the mean number of vesicles released by an action
potential cannot exceed the number of vesicle docking sites.) The above formula
for r can be used as a check for parameter fitting (discussed in Section 6), so it
is important to note that the value of r can be determined from data on ϕik. The
numerator is simply ϕkk, and the denominator is obtained by fitting the negative
tails of ϕik to a geometric sequence.

Note that if ns is large, the negative tail of the autocovariance will be unde-
tectable. This means that, in the limit ns→ ∞, the random variables Ni and Nk are
uncorrelated for i 6= k. This observation is consistent with the limiting case dis-
cussed below of an unlimited number of docking sites, since Ni and Nk are in that
case independent for i 6= k if we condition on the spike times.

4 Synaptic vesicle release in the limit of an unlimited number of
docking sites

4.1 The conditionally independent Poisson nature of the Nk

Recall that Nk is the number of synaptic vesicles released by the arrival of the
k-th action potential. The autocovariance of Nk in (3.38) shows that, as ns → ∞,
the random variables Ni and Nk become uncorrelated for i 6= k. This suggests that
. . .Nk . . . are independent in a model synapse with an unlimited number of docking
sites; this is indeed true, as proven below for arbitrary spike trains.

Let

PD(m, t) = Pr(D(t) = m), for m = 0,1,2, . . .(4.1)
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...

α0

!
#3β

m = 2

α0

!
#2β

m = 1

α0

!
#β

m = 0

FIGURE 4.1. The stochastic process governing D(t) in a synapse with
an unlimited number of docking sites.

Between action potentials, i.e., on a time interval (tk−1, tk), the process governing
D(t) is described by the diagram in Fig. 4.1 corresponding to the equation

dPD

dt
(m, t) = α0

(
[m 6= 0]PD(m−1, t)−PD(m, t)

)

+β

(
(m+1)PD(m+1, t)−mPD(m, t)

)
,(4.2)

where the factor [m 6= 0] is 1 if the statement “m 6= 0” is true, and is 0 if “m 6= 0” is
false.

We look for a solution in which PD(m, t) is given by a Poisson distribution with
some unknown mean µD(t):

PD(m, t) =
(µD(t))m

m!
e−µD(t).(4.3)

Differentiating (4.3) with respect to t gives

dPD

dt
(m, t) =

(
[m 6= 0]PD(m−1, t)−PD(m, t)

)dµD

dt
.(4.4)

Also,

mPD(m, t) = [m 6= 0]µD(t)PD(m−1, t),(4.5)

and raising m by 1 in this gives

(m+1)PD(m+1, t) = µD(t)PD(m, t),(4.6)

in which we omit the factor [m+1 6= 0], since this is true for every m = 0,1,2, . . .
Combining (4.5) and (4.6),

(m+1)PD(m+1, t)−mPD(m, t) =−µD(t)
(
[m 6= 0]PD(m−1, t)−PD(m, t)

)
.

(4.7)
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Thus, every term of (4.2) contains the factor

[m 6= 0]PD(m−1, t)−PD(m, t),(4.8)

and (4.3) solves (4.2) if
dµD(t)

dt
= α0−β µD.(4.9)

Since µD is the expected value of D, we have µD≡D. Thus, (4.9) is the limiting
case of (3.3) obtained by taking the limits α→ 0 and ns→∞ while keeping αns ≡
α0 constant.

The above shows that if D is Poisson immediately after any action potential,
it remains Poisson up to the time of the next action potential. But we also know
that for every k the random variables Nk and D(t+k ) are obtained from the random
variable D(t−k ) by binomial splitting, that is,

Pr(Nk = n&D(t+k ) = m) = Pr(D(t−k ) = n+m)

(
n+m

n

)
pn

0(1− p0)
m.(4.10)

Noting that

Nk = p0µD(t−k ),(4.11)

µD(t+k ) = (1− p0)µD(t−k ),(4.12)

e−µD(t−k ) = e−p0µD(t−k ) e−(1−p0)µD(t−k ),(4.13)

we have

Pr(Nk = n&D(t+k ) = m) =

(
µD(t−k )

)n+m

(n+m)!
e−µD(t−k ) (n+m)!

n!m!
pn

0(1− p0)
m

=

(
p0µD(t−k )

)n

n!

(
(1− p0)µD(t−k )

)m

m!
e−p0µD(t−k )e−(1−p0)µD(t−k )

=
(Nk

n

n!
e−Nk

)((
µD(t+k )

)m

m!
e−µD(t+k )

)

= Pr(Nk = n) Pr(D(t+k ) = m),(4.14)

where

Pr(Nk = n) =
Nk

n

n!
e−Nk ,(4.15)

Pr(D(t+k ) = m) =

(
µD(t+k )

)m

m!
e−µD(t+k ).(4.16)

This shows that if D(t−k ) is Poisson then Nk and D(t+k ) are Poisson and moreover
they are independent random variables. Since D(t+k ) is the only possible link be-
tween Nk and the whole future of the process, it follows that the value of Nk has no
influence at all upon that future, i.e., that all of the Nk are independent. Thus, con-
ditioned on the spike times . . . tk . . ., if the process starts with a Poisson distributed
number of docked vesicles (e.g., 0), then all of the Nk are Poisson-distributed and



20 C. ZHANG AND C. S. PESKIN

independent. The expected value of Nk conditioned on {tk} is obtained by letting
γ → β and n∗s → α0/β in (3.9). The result is the following theorem:

Theorem 4.1. In a model synapse with an unlimited number of docking sites ob-
tained by letting ns→ ∞ while keeping αns ≡ α0 constant, let α0 be the probability
per unit time that the number of docked vesicles increases by 1 and let β be the
probability per unit time of undocking of a given docked vesicle. Also, let p0 be the
probability of release of a given docked vesicle when an action potential arrives.
Finally, let Nk be the number of vesicles released by the k-th action potential. Then,
conditioned on the action potential arrival times {tk}, if the process starts with a
Poisson-distributed number of docked vesicles (such as 0), then all of the Nk are
independent and Poisson-distributed with mean given by the following recurrence

Nk = (1− p0)Nk−1e−β (tk−tk−1)+
p0α0

β

(
1− e−β (tk−tk−1)

)
.(4.17)

It is surprising that the Nk are independent because it may seem that Nk should
depend on D(t−k ), the number of vesicles docked right before the arrival of the k-th
action potential, which in turn should depend on Nk−1. As we have seen, how-
ever, the independence of the Nk follows from the Poisson nature of the numbers
of docked vesicles, and from the behavior of a Poisson random variable under bi-
nomial splitting. We emphasize that the independence of the Nk only holds in the
limit of an unlimited number of docking sites.

Since the statistics of a Poisson-distributed random variable are determined
completely by its mean, Theorem 4.1 provides a computationally efficient way to
generate the time series of vesicle release events without the need to simulate the
vesicle docking, undocking, and release dynamics, which would require keeping
track of the number of docked vesicles. Note, however, that this shortcut is not
applicable to a case in which there is only a finite number of docking sites.

In a model synapse with an unlimited number of docking sites and no undock-
ing, the recurrence for Nk can be simplified further by letting β → 0 in (4.17):

Corollary 4.2. In a model synapse with an unlimited number of docking sites ob-
tained by letting ns→ ∞ while keeping αns ≡ α0 constant, suppose that vesicle
docking occurs by a homogeneous Poisson process with mean rate α0, and that
there is no undocking (β = 0). Conditioned on the action potential arrival times
{tk}, all of the Nk are independent and Poisson-distributed with mean given by the
following recurrence

Nk = (1− p0)Nk−1 + p0α0 (tk− tk−1) .(4.18)

This linear recursion relation has the solution

Nk = p0α0

∞

∑
l=0

(1− p0)
l (tk−l− tk−l−1) .(4.19)
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· · · Tk · · ·

P2 · · · N k · · ·

h k N k h(t − Tk )

| | e(t)S (t)P1

Generate
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FIGURE 4.2. The optimal filtering problem for stochastic vesicle dock-
ing, undocking, and release. The input to the synapse is the sequence of
action potential arrival times . . .Tk . . . which encodes some continuous
signal Q(t). The stationary stochastic process P1 generates the presy-
naptic spike density S(t), which in turn generates . . .Tk . . . and Q(t).
The process P2 of stochastic vesicle docking, undocking, and release
generates the output of the presynaptic terminal, which is the sequence
. . .(Nk,Tk) . . ., in which Nk is the number of vesicles released at the time
Tk. The rate of vesicle release is ∑k Nk δ (t − Tk). This is filtered by
convolving it with the function h(t) to produce the reconstructed signal
∑k Nk h(t − Tk) that is supposed to approximate Q(t). The error in the
reconstruction at time t is e(t). Our definition of error ignores mean val-
ues; this is indicated by the capacitor symbol in the path to e(t). The
optimal filtering problem is to choose the impulse response function h(·)
of the filter to minimize E

[
e2(t)

]
.

4.2 The optimal filtering problem for stochastic vesicle docking, un-
docking, and release

Let P1 be a stationary stochastic process that generates the presynaptic spike
density S(t) ≥ 0, which is then used to generate a sequence . . .Tk < Tk+1 . . . of
ordered action potential arrival times (see the Appendix for an example of such
a process). A desired signal Q(t) with mean zero is also generated from S(t);
depending on the function of the synapse, Q(t) can be S(t) itself or some other
signal derived from S(t). Let P2 be another stochastic process that takes . . .Tk <
Tk+1 . . . as input and generates the output of the presynaptic terminal, which is the
sequence . . .(Nk,Tk) . . ., in which the nonzero integer Nk is the number of vesicles
released at the time Tk. We assume that the random variables . . .Nk . . . conditioned
on . . .Tk . . . have the following properties: First, the Nk are independent of each
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other and also of Q(t). Next, each of the Nk is Poisson-distributed with mean Nk.
Thus, we are considering here the case of an unlimited number of docking sites,
as in Theorem 4.1. Finally, each of the Nk depends in a deterministic manner on
the Tl for l ≤ k. We emphasize that these properties hold only when we condition
on the Tk. Without this conditioning the Nk are certainly not independent of each
other and also not independent of Q(t). In fact, we shall discuss now a procedure
for estimating Q(t) from the Nk.

We use the notation E[ ] to denote the expectation over both stochastic pro-
cesses, but when E is applied to any function of Q or the Tk, only the first process
P1 is involved, so in such a case E denotes the expectation over P1. We use the
notation ( ) to denote conditional expectation of ( ) over the process P2, with
the sequence . . .Tk . . . regarded as known.

The optimal filtering problem for stochastic vesicle docking, undocking, and
release may now be stated as follows (see Fig. 4.2). Let

R(t) = ∑
k

h(t−Tk)Nk.(4.20)

Note that this reconstruction makes use not only of the number Nk of vesicles re-
leased by the k-th action potential but also of the time Tk at which that release
occurred. We seek h(t) to minimize

E[e2(t)],(4.21)

where

e(t) = (R(t)−E[R(t)])−Q(t).(4.22)

Recall that

E[Q(t)] = 0(4.23)

by hypothesis. Thus, we are trying to find an impulse response h(t) of the filter
such that R(t) approximates Q(t) the best, but our definition of error ignores mean
values.

We might, for example, seek to reconstruct the rate S(t), defined later, at which
the stochastic process P1 generates action potentials. In that case, we would let
Q(t) = S(t)−E[S(t)]. Alternatively, we might be more interested in detecting
changes in this rate, in which case we would set Q(t) = dS(t)/dt−E[dS(t)/dt].

In general, Q(·) can be any stochastic function of time generated by the process
P1 with the only restrictions being that E[Q(t)] = 0 for all t, and that the joint
probability statistics of Q(·) and . . .Tk . . . are stationary, i.e., that they are the same
for all τ as the joint statistics of Qτ(·) and . . .Tk + τ . . ., where Qτ(t) = Q(t− τ).

It is important to emphasize that, although we speak of reconstructing the sig-
nal Q(t), we are not claiming that a reconstruction of the form (4.20) is actually
done by the postsynaptic neuron, or indeed anywhere in the brain. The purpose of
considering the reconstruction problem is to make quantifiable the notion of how
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much information (not in the sense of information theory, but speaking more gen-
erally) about the relevant signal Q(t) is transmitted by the synapse. One way to
measure this is to attempt a reconstruction (4.20), make it optimal by choosing h
to minimize the mean square error, and then use the optimal mean square error as
a measure of infidelity of the synapse. Since we are not actually building a device
to do the reconstruction, nor are we claiming that such a device exists in the brain,
there is no reason to restrict the impulse response h of the filter to be causal [49],
that is, we allow h(t) to be nonzero for all t including t < 0.

Optimal linear filter theory [28, 73] states that the optimal acausal filter h(·) can
be computed by

ĥ =
ϕ̂RQ

ϕ̂RR
,(4.24)

in which

ϕRR(t ′′− t ′) = E
[
R̃(t ′)R̃(t ′′)

]
,(4.25)

ϕRQ(t ′′− t ′) = E
[
R̃(t ′)Q(t ′′)

]
,(4.26)

R̃(t) = R(t)−E[R(t)],(4.27)

and ĥ, ϕ̂RR, ϕ̂RQ are the Fourier transforms of their respective functions. ϕ̂RR is
known as the auto power spectral density of R, and ϕ̂RQ is known as the cross
power spectral density of R and Q.

Therefore, to find the optimal filter h(·), we need to evaluate the expressions on
the right-hand sides of Eqs. 4.25 and 4.26. An important tool in evaluating expec-
tations over both processes P1 and P2 is the identity that

E[ · ] = E[ · ].(4.28)

That is, we can evaluate the expectation over both processes by first evaluating the
expectation over P2 with the output of P1 regarded as known, and then evaluating
the expectation of the result over P1.

Under the regime of small, band-limited signals, a closed-form expression for
the impulse response h(·) of the optimal filter can be found in terms of the cross-
spectral density function of the desired signal and the presynaptic spike times.

We have

e2(t) =
(
R(t)−E[R(t)]

)2−2Q(t)
(
R(t)−E[R(t)]

)
+Q2(t),(4.29)

and therefore

E[e2(t)] = E
[(

R(t)−E[R(t)]
)2
]
−2E

[
Q(t)

(
R(t)−E[R(t)]

)]
+E[Q2(t)].

(4.30)

The last term on the right-hand side of (4.30) is unaffected by h and therefore
plays no role in the optimization process. Application of (4.28) to the middle term
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gives

E
[
Q(t)

(
R(t)−E[R(t)]

)]
= E

[
Q(t)

(
R(t)−E[R(t)]

)]
.(4.31)

To evaluate the first term in (4.30) according to (4.28) we add and subtract R(t) and
proceed as follows

E
[(

R(t)−E[R(t)]
)2
]
= E

[((
R(t)−R(t)

)
+
(
R(t)−E[R(t)]

))2
]

= E

[((
R(t)−R(t)

)
+
(
R(t)−E[R(t)]

))2
]

= E
[(

R(t)−R(t)
)2
]

+2 E
[(

R(t)−R(t)
)(

R(t)−E[R(t)]
)]

+E
[(

R(t)−E[R(t)]
)2
]
.(4.32)

In the last term of the foregoing, all quantities have already been averaged over the
stochastic process P2, so the expectation is only over the stochastic process P1. In
the middle term, the factor

(
R(t)−E[R(t)]

)
has this same property, so that when

we average over P2 the first factor gives R(t)−R(t) = 0. Thus the middle term
vanishes. Hence, the application of (4.28) to (4.32) gives

E
[(

R(t)−E[R(t)]
)2
]
= E

[
(
R(t)−R(t)

)2

]
+E

[(
R(t)−E[R(t)]

)2
]
.(4.33)

The first term on the right-hand side of (4.33) is the variance of the stochastic
process P2 conditioned on the outcome of P1, averaged over P1. The second term
is the variance of the mean of the outcome of P2 resulting from the fluctuations
produced by P1. Substituting (4.31) and (4.33) into (4.30), we get

E[e2(t)] = E

[
(
R(t)−R(t)

)2

]
+E

[(
R(t)−E[R(t)]

)2
]

−2E
[
Q(t)

(
R(t)−E[R(t)]

)]
+E[Q2(t)].(4.34)

From (4.20), we have

R(t) = ∑
k

h(t−Tk)Nk,(4.35)

and therefore

R(t)−R(t) = ∑
k

h(t−Tk)
(
Nk−Nk

)
,(4.36)

(
R(t)−R(t)

)2
= ∑

k,l
h(t−Tk)h(t−Tl)

(
Nk−Nk

)(
Nl−Nl

)
.(4.37)
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Now recall the assumption that the Nk, conditioned on . . .Tk . . . are indepen-
dent and Poisson-distributed. (This assumption holds for docking, undocking, and
release models with an unlimited number of docking sites with or without undock-
ing.) This gives

(
Nk−Nk

)(
Nl−Nl

)
= δklNk,(4.38)

and therefore
(
R(t)−R(t)

)2
= ∑

k
h2(t−Tk)Nk.(4.39)

Thus (4.34) becomes

E[e2(t)] = E
[
∑
k

h2(t−Tk)Nk

]
+E

[(
R(t)−E[R(t)]

)2
]

−2E
[
Q(t)

(
R(t)−E[R(t)]

)]
+E[Q2(t)],(4.40)

in which R(t) is given by (4.35).
Assume that the sequence of action potential arrival times . . .Tk . . . is a pertur-

bation of a sequence of equally spaced times

Tk = kτ + εT (1)
k + · · ·(4.41)

where τ is a given constant (the unperturbed period of the spike train), and ε is a
small parameter. Then Nk can be written as

Nk = N(τ)+ εNk
(1)

+ · · ·(4.42)

in which N(τ) is the mean number of vesicles released by each spike when the
spike train is perfectly regular with constant interspike interval τ .

Note that the leading terms in (4.41) and (4.42) are non-random; the random
variables are T (1)

k and Nk
(1). We assume that these have mean zero:

E
[
T (1)

k

]
= 0,(4.43)

E
[
Nk

(1)
]
= 0.(4.44)

Eq. (4.43) can always be made true by a shift in the origin of time, and it will be
shown later than (4.44) follows from (4.43).

Now we make use of the expansions (4.41) and (4.42) to evaluate some of the
expressions that appear in (4.40). Substituting (4.41) and (4.42) into (4.35), we get

R(t) = ∑
k

h(t− kτ− εT (1)
k −·· ·)

(
N(τ)+ εNk

(1)
+ · · ·

)

= ∑
k

h(t− kτ)N(τ)+ ε ∑
k

h(t− kτ)Nk
(1)− ε ∑

k
h′(t− kτ)T (1)

k N(τ)+ · · ·(4.45)
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It follows immediately from (4.43)–(4.45) that

E
[
R(t)

]
= ∑

k
h(t− kτ)N(τ),(4.46)

in which N(τ) is nonrandom; a formula for it will be derived later.
From (4.45) and (4.46), we get

E
[(

R(t)−E[R(t)]
)2
]
= ε

2
∑
k,l

h(t− kτ)h(t− lτ)E
[
Nk

(1)Nl
(1)
]

−2ε
2
∑
k,l

h(t− kτ)h′(t− lτ)E
[
Nk

(1)T (1)
k

]
N(τ)

+ ε
2
∑
k,l

h′(t− kτ)h′(t− lτ)E
[
T (1)

k T (1)
l

]
N2

(τ)+ · · ·(4.47)

In contrast to (4.47), which has the leading factor ε2 in every term, we have

E
[
∑
k

h2(t−Tk)Nk

]
= E

[
∑
k

h2(t− kτ− εT (1)
k −·· ·)

(
N(τ)+ εNk

(1)
+ · · ·

)]

= E
[
∑
k

h2(t− kτ)N(τ)+ · · ·
]

= ∑
k

h2(t− kτ)N(τ)+ · · ·(4.48)

since the leading order term here is actually non-random; its expected value is
simply its value.

Although we do not yet know how h will depend on ε , we can see already
that the expression given by (4.47) is O(ε2) in relation to the expression given by
(4.48). Therefore, we shall neglect (4.47) in the following.

Another term in (4.40) that we need to evaluate is

E
[
Q(t)

(
R(t)−E[R(t)]

)]
= ε ∑

k
h(t− kτ)E

[
Q(t)Nk

(1)
]

− εN(τ)∑
k

h′(t− kτ)E
[
Q(t)T (1)

k

]
.(4.49)

Since (4.49) is linear in h whereas (4.48) is quadratic in h, these two terms could be
the same order of magnitude in ε . In particular, this will be the case if h = O(ε).

The evaluation of E
[
Q(t)Nk

(1)
]

and E
[
Q(t)T (1)

k

]
will be done later. In the

following, we shall use the notation

∆T (1)
k = T (1)

k −T (1)
k−1.(4.50)

At this point, we need to use the relationship between . . .Nk . . . and . . .∆Tk . . .
that comes from our model of synaptic vesicle docking, undocking, and release
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from Theorem 4.1. Making use of the expansions (4.41) and (4.42), (4.17) becomes

N(τ)+ εNk
(1)

= (1− p0)e−βτ
(
1− εβ∆T (1)

k + · · ·
)(

N(τ)+ εN(1)
k−1 + · · ·

)
+

p0α0

β

(
1− e−βτ

(
1− εβ∆T (1)

k + · · ·
))

,(4.51)

in which we used the expansion

e−β (Tk−Tk−1) = e−β (τ+ε∆T (1)
k +···) = e−βτ

(
1− εβ∆T (1)

k + · · ·
)
.(4.52)

The terms of (4.51) that do not involve ε give

N(τ) = (1− p0)e−βτN(τ)+
p0α0

β

(
1− e−βτ

)
,(4.53)

from which we get

N(τ) = p0α0

(
1− e−βτ

)
/β

1− (1− p0)e−βτ
.(4.54)

This defines the function N(τ), which up to now has been used without giving it a
specific definition. Note that N(τ) can also be obtained from (3.44) and (3.7)–(3.8)
by letting ns→ ∞,α → 0 while keeping αns ≡ α0.

The first-order terms of (4.51) give

N(1)
k = (1− p0)e−βτNk−1

(1)
+ e−βτ

(
p0α0− (1− p0)βN(τ)

)
∆T (1)

k .(4.55)

According to (4.54),

p0α0− (1− p0)βN(τ) = p0α0

(
1−

(
1− p0

)(
1− e−βτ

)

1− (1− p0)e−βτ

)

=
α0 p2

0

1− (1− p0)e−βτ
.(4.56)

Substituting (4.56) into (4.55) gives

Nk
(1)

= (1− p0)e−βτNk−1
(1)

+ e−βτ
α0 p2

0

1− (1− p0)e−βτ
∆T (1)

k .(4.57)

Let

ξ = (1− p0)e−βτ ,(4.58)

ν = e−βτ
α0 p2

0

1− (1− p0)e−βτ
.(4.59)

Then

Nk
(1)

= ξ Nk−1
(1)

+ν∆T (1)
k .(4.60)



28 C. ZHANG AND C. S. PESKIN

Solving the above recurrence for Nk
(1) we get

Nk
(1)

= ν

∞

∑
l=0

ξ
l
∆T (1)

k−l.(4.61)

It follows that (4.43)⇒ (4.44) as claimed above.
Another consequence of (4.61) is that

E
[
Q(t)Nk

(1)
]
= ν

∞

∑
l=0

ξ
l E
[
Q(t)∆T (1)

k−l

]
.(4.62)

Because P1 is a stationary stochastic process, E
[
Q(t)∆T (1)

k

]
depends only on (t−

kτ) (see the Appendix). Thus, we introduce the function ϕQ,∆T defined by

E
[
Q(t)∆T (1)

k

]
= ϕQ,∆T (t− kτ).(4.63)

Similarly, let ϕQT be defined by

E
[
Q(t)T (1)

k

]
= ϕQT (t− kτ).(4.64)

The functions ϕQT (t− kτ) and ϕQ,∆T (t− kτ) are related by

ϕQ,∆T (t− kτ) = E
[
Q(t)∆T (1)

k

]

= E
[
Q(t)T (1)

k

]
−E

[
Q(t)T (1)

k−1

]

= ϕQT (t− kτ)−ϕQT (t− (k−1)τ),(4.65)

and since this holds for all t, we have

ϕQ,∆T (t− kτ) = ϕQT (t)−ϕQT (t + τ).(4.66)

Putting everything together, we may now write the following formula for the
mean-square error

E[e2(t)] = N(τ)∑
k

h2(t− kτ)−2εν ∑
k

h(t− kτ)
∞

∑
l=0

ξ
l
ϕQ,∆T (t− (k− l)τ)

+2εN(τ)∑
k

h′(t− kτ)ϕQT (t− kτ)+ϕQQ(0),(4.67)

where we have introduced ϕQQ(t) defined by

ϕQQ(t ′− t ′′) = E
[
Q(t ′)Q(t ′′)

]
,(4.68)

so that

ϕQQ(0) = E
[
Q2(t)

]
.(4.69)

Recall that P1, which generates Q(t), is a stationary stochastic process.
It is easy to check that the right-hand side of (4.67) is a periodic function of t

with period τ . A priori, it is not clear that we can minimize E[e2(t)] separately for
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each t (although we shall see later this can be done for band-limited signals), so we
seek, at first, to minimize the average mean square error:

1
τ

∫
τ

0
E[e2(t)]dt =

N(τ)

τ

∫
∞

−∞

h2(t)dt− 2εν

τ

∫
∞

−∞

h(t)
∞

∑
l=0

ξ
l
ϕQ,∆T (t + lτ)dt

+
2εN(τ)

τ

∫
∞

−∞

h′(t)ϕQT (t)dt +ϕQQ(0).(4.70)

After integration by parts in the term involving h′, this becomes

1
τ

∫
τ

0
E[e2(t)]dt =

N(τ)

τ

(∫
∞

−∞

h2(t)dt−2ε

∫
∞

−∞

h(t) f (t)dt
)
+ϕQQ(0),(4.71)

where

f (t) =
ν

N(t)

∞

∑
l=0

ξ
l
ϕQ,∆T (t + lτ)+ϕ

′
QT (t).(4.72)

Now adding and subtracting ε
(
N(τ)/τ

)∫
∞

−∞
f 2(t)dt, we see that (4.71) can be

rewritten as

1
τ

∫
τ

0
E[e2(t)]dt =

N(τ)

τ

∫
∞

−∞

(
h(t)− ε f (t)

)2dt +ϕQQ(0)− ε
2 N(τ)

τ

∫
∞

−∞

f 2(t)dt.

(4.73)

From this it is obvious that the optimal choice of h is

h(t) = ε f (t),(4.74)

and with this choice we find that the optimal average mean square error is given by

1
τ

∫
τ

0
E[e2(t)]dt = ϕQQ(0)− ε

2 N(τ)

τ

∫
∞

−∞

f 2(t)dt

= ϕQQ(0)− ε
2 N(τ)

2πτ

∫
∞

−∞

∣∣ f̂ (ω)
∣∣2dω,(4.75)

where f̂ (ω) is the Fourier transform of f (t).
Our next task is to express this optimal average mean square error as a function

of the parameters of stochastic vesicle docking, undocking, and release. To do so,
we first evaluate f̂ (ω) and then

∣∣ f̂ (ω)
∣∣2. From (4.72), we have

f̂ (ω) =
∫

∞

−∞

e−iωt f (t)dt

=
ν

N(τ)

∞

∑
l=0

ξ
l
∫

∞

−∞

e−iωt
ϕQ,∆T (t + lτ)dt +

∫
∞

−∞

e−iωt
ϕ
′
QT (t)dt

=
ν

N(τ)

∞

∑
l=0

ξ
l eiωlτ

∫
∞

−∞

e−iω(t+lτ)
ϕQ,∆T (t + lτ)dt + iω

∫
∞

−∞

eiωt
ϕQT (t)dt

=
ν

N(τ)

(
1

1−ξ eiωτ

)
ϕ̂Q,∆T (ω)+ iωϕ̂QT (ω).(4.76)
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Also, taking the Fourier transform of both sides of Eq. (4.66), we get

ϕ̂Q,∆T (ω) = ϕ̂QT (ω)−
∫

∞

−∞

e−iωt
ϕQT (t + τ)dt

= ϕ̂QT (ω)− eiωτ

∫
∞

−∞

e−iω(t+τ)
ϕQT (t + τ)dt

=
(
1− eiωτ)ϕ̂QT (ω).(4.77)

Thus (4.76) becomes

f̂ (ω) =
1
τ

(
ντ

N(τ)

1− eiωτ

1−ξ eiωτ
+ iωτ

)
ϕ̂QT (ω).(4.78)

Under the assumption that ϕ̂QT (ω) is supported on some interval (−ω0,ω0)
with ω0 satisfying

ω0τ < π,(4.79)

it follows from Eqs. (4.74), (4.77) and (4.78) that ϕ̂Q,∆T , f̂ (ω), and therefore ĥ(ω)

(for the optimal choice ĥ = ε f̂ ) are all supported on this same interval.
For any two real functions a(t) and b(t) with â(ω) and b̂(ω) supported on

(−ω0,ω0) with ω0 satisfying (4.79),we have

∑
k

a(t− kτ)b(t− kτ) =

(
1

2π

)2 ω0∫∫

−ω0

â(ω)b̂(ω ′)ei(ω+ω ′)t
∑
k

ei(ω+ω ′)τkdωdω
′

=

(
1

2π

)2 ω0∫∫

−ω0

â(ω)b̂(ω ′)ei(ω+ω ′)t2π •

∞

∑
n=−∞

δ
(
(ω +ω

′)τ +2πn
)
dωdω

′.(4.80)

With ω and ω ′ both in (−ω0,ω0) where ω0 satisfying (4.79), the only value of n
in the sum that gives a nonzero result is n = 0, so the whole sum over n becomes
δ
(
(ω +ω ′)τ

)
≈ δ (ω +ω ′)/τ . Thus (4.80) becomes

∑
k

a(t− kτ)b(t− kτ) =
1

2πτ

∫
ω0

−ω0

â(ω)b̂(−ω)dω

=
1

2πτ

∫
∞

−∞

â(ω)b̂(−ω)dω

=
1

2πτ

∫
∞

−∞

a(t ′)b(t ′)dt ′.(4.81)

Note that this result is independent of t. It follows, see (4.67), that the optimal
choice of h in this band-limited case actually makes the mean square error be in-
dependent of t. Since this choice also minimizes the average over t of the mean
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square error, it must also minimize

max
t

E[e2(t)].(4.82)

To see this, let e0(t) be the error when h is chosen optimally as described above.
Then E[e2

0(t)] is independent of t, so its maximum is equal to its mean, which, in
turn, is optimal, so we have

max
t

E[e2
0(t)] =

1
τ

∫
τ

0
E[e2

0(t)]dt

≤ 1
τ

∫
τ

0
E[e2(t)]dt

≤max
t

E[e2(t)].(4.83)

Now we return to the task of evaluating
∣∣ f̂ (ω)

∣∣2. We have, from Eq. (4.78),

∣∣ f̂ (ω)
∣∣2 = ϕ̂QT (ω)

τ2

[(
ντ

N(τ)

)2 (
1− eiωτ

)(
1− e−iωτ

)
(
1−ξ eiωτ

)(
1−ξ e−iωτ

)

+

(
ντ

N(τ)

)
iωτ

(
1− e−iωτ

1−ξ e−iωτ
− 1− eiωτ

1−ξ eiωτ

)
+(ωτ)2

]
.(4.84)

Note that
(
1−ξ eiωτ

)(
1−ξ e−iωτ

)
= (1−ξ )2 cos2

(
ωτ

2

)
+(1+ξ )2 sin2

(
ωτ

2

)
.(4.85)

Also, setting ξ = 1 in (4.85) gives
(
1− eiωτ

)(
1− e−iωτ

)
= 4sin2

(
ωτ

2

)
,(4.86)

and
(
1− e−iωτ

)(
1−ξ eiωτ

)
= 1+ξ −ξ eiωτ − e−iωτ ,(4.87)

(
1− eiωτ

)(
1−ξ e−iωτ

)
= 1+ξ − eiωτ −ξ e−iωτ ,(4.88)

(
1− e−iωτ

)(
1−ξ eiωτ

)
−
(
1− eiωτ

)(
1−ξ e−iωτ

)
=

(1−ξ )4isin
(

ωτ

2

)
cos
(

ωτ

2

)
.(4.89)

From now on, let

θ =
ωτ

2
.(4.90)

Thus, (4.84) becomes

∣∣ f̂ (ω)
∣∣2 = 4θ 2 |ϕ̂QT (ω)|2

τ2

(
ντ

N(τ)
sinθ

θ
− (1−ξ )cosθ

)2
+(1+ξ )2 sin2

θ

(1−ξ )2 cos2 θ +(1+ξ )2 sin2
θ

.(4.91)

Thus, we have proven the following result:
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Theorem 4.3. Consider a model synapse with an unlimited number of docking
sites (possibly with undocking allowed) obtained by letting ns→ ∞ while keeping
αns ≡ α0 constant. Suppose the sequence of action potential arrival times . . .Tk . . .
is a perturbation of a sequence of equally spaced times

Tk = kτ + εT (1)
k + · · ·(4.92)

where τ is a given constant (the unperturbed period of the spike train), and ε is a
small parameter. Suppose the stochastic process P1 that generates both Q(t) and
the sequence . . .Tk . . . is band-limited in the sense that ϕ̂QT (ω) is supported on
some interval (−ω0,ω0) with

ω0τ < π,(4.93)

in which ϕ̂QT (ω) is the Fourier transform of the cross-covariance of Q(t) and
{T (1)

k } defined by

ϕQT (t− kτ) = E[Q(t)T (1)
k ].(4.94)

Then the impulse response h(t) of the filter that minimizes the mean square error
(4.21), to lowest order in ε , has Fourier transform ĥ(ω) given by

ĥ(ω) =
ε

τ

(
ντ

N(τ)

1− eiωτ

1−ξ eiωτ
+ iωτ

)
ϕ̂QT (ω),(4.95)

in which N(τ) is the mean number of vesicles released by each spike when the spike
train is perfectly regular with constant interspike interval τ , and

ξ = (1− p0)e−βτ ,(4.96)

ν = e−βτ
α0 p2

0

1− (1− p0)e−βτ
.(4.97)

The corresponding minimal mean square error, to lowest order in ε , is

E[e2(t)] = ϕQQ(0)−
ε2

2π

(
2
τ

)3 N(τ)

τ
•

∫
θ0

−θ0

(
ντ

N(τ)
sinθ

θ
− (1−ξ )cosθ

)2
+(1+ξ )2 sin2

θ

(1−ξ )2 cos2 θ +(1+ξ )2 sin2
θ

θ
2
∣∣∣∣ϕ̂QT

(
2θ

τ

)∣∣∣∣
2

dθ ,(4.98)

in which ϕQQ(t) is the autocovariance of the desired signal Q(t) defined by

ϕQQ(t ′− t ′′) = E[Q(t ′)Q(t ′′)],(4.99)

and

θ0 =
ω0τ

2
.(4.100)
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Note that the band-limited assumption (4.93) needs to be made on ϕ̂QT . If we
just assume that the auto-power spectral density ϕ̂QQ is band-limited, this tells us
nothing about the relationship between Q and the . . .Tk . . ., which is of the concern
here (see the Appendix for an example).

In Fig. 4.3 we plot the analytical estimate of the mean square error (4.98) as a
function of p0 (blue curve) for a small-signal example with ε = 0.05, in which the
desired signal Q(t) is the presynaptic spike density S(t) generated by a smoothed
dichotomous jump process. We also plot a numerically evaluated mean square
error (red curve) for comparison. See Section 5 for descriptions of the signal S(t)
and numerical procedures.
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FIGURE 4.3. Comparing the analytical estimate of the mean square er-
ror given by Eq. (4.98) to the numerically evaluated mean square error,
as a function of p0, in the regime of small signals (ε = 0.05) in a model
synapse with an unlimited number of docking sites and with undocking.
Here, the desired signal Q(t) is the presynaptic spike density S(t), which
is generated by a smoothed dichotomous jump process described in Sec-
tion 5. The unit of S(t) is sec−1, so the unit of the mean square error
(E[e2(t)]) is sec−2. E[e2(t)] is obtained numerically by simulating the
stochastic vesicle release process for 16000 independent sample paths,
each of which lasts 100 sec (see Section 5 for the numerical method;
model parameters are s1 = 10sec−1,s2 = s1(1+ ε)sec−1,ν12 = ν21 =
10sec−1,α0 = 1000sec−1,β = 3sec−1).

4.3 The optimal p0 for synaptic transmission
To make sense of the above result in the context of how p0 affects the fidelity of

synaptic transmission, we first consider the special case of no undocking (β = 0).
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We have

N(τ) = α0τ,(4.101)

ξ = 1− p0,(4.102)
ν = p0α0.(4.103)

Then (4.98) becomes, to lowest order in ε ,

E[e2(t)] = ϕQQ(0)−
ε2

2π

(
2
τ

)3

α0 •

∫
θ0

−θ0

p2
0
( sinθ

θ
− cosθ

)2
+(2− p0)

2 sin2
θ

p2
0 cos2 θ +(2− p0)2 sin2

θ
θ

2
∣∣∣∣ϕ̂QT

(
2θ

τ

)∣∣∣∣
2

dθ .(4.104)

Recall that θ0 < π/2. We now choose θ0 more specifically as the largest value
with the property that

(
sinθ

θ
− cosθ

)2

< cos2
θ(4.105)

for all θ ∈ (−θ0,θ0). This is clearly satisfied for θ = 0. For all other θ ∈ (−π/2,π/2)
it is equivalent to

(
tanθ −θ

)2
< θ

2.(4.106)

Since both sides are even functions of θ , it is enough to consider θ > 0, in which
case, for θ ∈ (0,π/2), tanθ > θ . Therefore (4.106) is equivalent to

tanθ < 2θ .(4.107)

It follows that θ0 is the solution of the transcendental equation

tanθ0 = 2θ0(4.108)

that lies on (0,π/2). Note that θ0 is not far from π/2. In particular, θ0 > π/3,
since tan(π/3) =

√
3 < 2 and 2(π/3)> 2.

With θ0 chosen in this way, it is clear that the factor

p2
0
( sinθ

θ
− cosθ

)2
+(2− p0)

2 sin2
θ

p2
0 cos2 θ +(2− p0)2 sin2

θ
(4.109)

decreases monotonically as a function of p0 for every θ ∈ (−θ0,θ0) from the value
1 when p0 = 0 to the (smaller) value

(sinθ − cosθ)2 + sin2
θ(4.110)

when p0 = 1.
Thus, we have shown that in a model synapse with no undocking (β = 0) and

with an unlimited number of docking sites obtained by letting ns→ ∞ while keep-
ing αns ≡ α0 constant, the best choice of p0 for minimizing the mean square error
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(4.21) is p0 = 0, and with this choice the minimal mean square error, to lowest
order in ε , is

E[e2(t)] = ϕQQ(0)−
ε2

2π

(
2
τ

)3

α0

∫
θ0

−θ0

θ
2
∣∣∣∣ϕ̂QT

(
2θ

τ

)∣∣∣∣
2

dθ ,(4.111)

provided that the assumptions made in Theorem 4.3 hold, and that the desired sig-
nal Q(t) is band-limited with

tan(ω0τ/2)< ω0τ.(4.112)

As p0→ 0, the buildup of docked vesicles compensates for the low probability
of release of each docked vesicle. The above result shows that in a model synapse
with an unlimited number of vesicle docking sites, a smaller probability of release
per docked vesicle when an action potential arrives leads to a smaller mean square
error in the reconstruction of various desired signals. As p0→ 0 the mean square
error approaches the value given by (4.111).

For the more general case of an unlimited number of docking sites with a
nonzero undocking rate, we consider the limit of small βτ . When the undocking
rate β > 0, the quantities that we need are

N(τ)

τ
= p0α0

(
eβτ −1

)
/(βτ)(

eβτ −1
)
+ p0

,(4.113)

ντ

N(τ)
=

p0(
eβτ −1

)
/(βτ)

,(4.114)

1−ξ =
(
eβτ −1+ p0

)
e−βτ ,(4.115)

1+ξ =
(
eβτ +1− p0

)
e−βτ .(4.116)

We are interested in small (but nonzero) βτ , so we use the following asymptotic
versions of these formulae

N(τ)

τ
=

p0α0

βτ + p0
,(4.117)

ντ

N(τ)
= p0,(4.118)

1−ξ = βτ + p0,(4.119)

1+ξ = 2− p0.(4.120)

Substituting these results into (4.98), we get

E[e2(t)] = ϕQQ(0)−
ε2

2π

(
2
τ

)3

α0
p0

βτ + p0
•

∫
θ0

−θ0

(
p0

sinθ

θ
− (βτ + p0)cosθ

)2
+(2− p0)

2 sin2
θ

(βτ + p0)2 cos2 θ +(2− p0)2 sin2
θ

θ
2
∣∣∣∣ϕ̂QT

(
2θ

τ

)∣∣∣∣
2

dθ .

(4.121)
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Note the singular nature of the factor p0/
(
βτ + p0

)
with regard to the limits

βτ → 0 and p0→ 0. We have

lim
βτ→0

lim
p0→0

p0

βτ + p0
= 0,(4.122)

lim
p0→0

lim
βτ→0

p0

βτ + p0
= 1.(4.123)

(4.124)

On the other hand,

lim
βτ→0

lim
p0→0

(
p0

sinθ

θ
− (βτ + p0)cosθ

)2
+(2− p0)

2 sin2
θ

(βτ + p0)2 cos2 θ +(2− p0)2 sin2
θ

= lim
βτ→0

(
1
)
= 1,

(4.125)

and

lim
p0→0

lim
βτ→0

(
p0

sinθ

θ
− (βτ + p0)cosθ

)2
+(2− p0)

2 sin2
θ

(βτ + p0)2 cos2 θ +(2− p0)2 sin2
θ

= lim
p0→0

p2
0
( sinθ

θ
− cosθ

)2
+(2− p0)

2 sin2
θ

p2
0 cos2 θ +(2− p0)2 sin2

θ

= 1.(4.126)

Thus, we can safely neglect βτ within the integral, but not in the factor p0/
(
βτ+

p0
)
. This gives the simpler formula

E[e2(t)] = ϕQQ(0)−
ε2

2π

(
2
τ

)3

α0
p0

βτ + p0
•

∫
θ0

−θ0

p2
0
( sinθ

θ
− cosθ

)2
+(2− p0)

2 sin2
θ

p2
0 cos2 θ +(2− p0)2 sin2

θ
θ

2
∣∣∣∣ϕ̂QT

(
2θ

τ

)∣∣∣∣
2

dθ .(4.127)

We would like to maximize the term in (4.127) that is subtracted from ϕQQ(0).
When βτ = 0, we know from the earlier analysis in this section that its maximum
occurs at p0 = 0, but this cannot continue to be true for βτ > 0, since then the term
in question is zero when p0 = 0. Nevertheless, we expect that the optimal p0 will
approach 0 as βτ → 0.

Accordingly, we do a Taylor series approximation of the integral with respect
to p0. We already know its value when p0 = 0 is

∫
θ0

−θ0

θ
2
∣∣∣∣ϕ̂QT

(
2θ

τ

)∣∣∣∣
2

dθ = I0,(4.128)

and we also have

p2
0
( sinθ

θ
− cosθ

)2
+(2− p0)

2 sin2
θ

p2
0 cos2 θ +(2− p0)2 sin2

θ
−1 =

p2
0
( sinθ

θ
−2cosθ

)( sinθ

θ

)

p2
0 cos2 θ +(2− p0)sin2

θ
.(4.129)
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From this we see that the next term in the Taylor series expansion of the integral is

−p2
0I2,(4.130)

where

I2 =
∫

θ0

−θ0

(
2cosθ − sinθ

θ

)( sinθ

θ

)

sin2
θ

θ
2
∣∣∣∣ϕ̂QT

(
2θ

τ

)∣∣∣∣
2

dθ

=
∫

θ0

−θ0

(
2θ

tanθ
−1
)∣∣∣∣ϕ̂QT

(
2θ

τ

)∣∣∣∣
2

dθ .(4.131)

Putting everything together, we now have, to lowest order in ε and βτ (but with
τ fixed),

E[e2(t)] = ϕQQ(0)−
ε2

2π

(
2
τ

)3

α0
p0

βτ + p0

(
I0− p2

0I2
)
.(4.132)

Our task is to choose p0 to maximize

p0

βτ + p0

(
I0− p2

0I2

)
,(4.133)

and we are especially interested in the behavior of the optimal p0 as βτ → 0. The
equation that determines the optimal p0 is

(
βτ + p0

)(
I0−3p2

0I2
)
− p0

(
I0− p2

0I2) = 0,(4.134)

or

(βτ)I0−3(βτ)I2 p2
0−2I2 p3

0 = 0,(4.135)

in which the second term is negligible compared to the first term.
Therefore, we have shown that, in a model synapse with undocking (β > 0)

and with an unlimited number of docking sites obtained by letting ns→ ∞ while
keeping αns ≡ α0 constant, the optimal p0 is given asymptotically by

p0 ∼
((

I0

I2

)
βτ

)1/3

as βτ → 0,(4.136)

provided that the assumptions made in Theorem 4.3 hold.
A nonzero undocking rate prevents the unlimited accumulation of docked vesi-

cles, so the above result suggests that, in a synapse with a finite number of docking
sites, the best choice of p0 should be some nonzero number. The exact optimal
value of p0 would depend on the parameters of vesicle docking and the statistics of
the signal ensemble. Section 5 provides several numerical examples of the optimal
filtering of stochastic vesicle release where the optimal p0 is a nonzero number
under various biologically relevant scenarios.



38 C. ZHANG AND C. S. PESKIN

5 Simulation of stochastic vesicle dynamics and its optimal filtering

This section illustrates the effect of the probabilistic release of synaptic vesicles
on the fidelity of synaptic transmission by means of numerical simulations under
various biologically relevant parameter regimes. In this section, we no longer re-
quire the signal to be of small amplitude, and also we do not assume an unlimited
number of docking sites. The numerical methods we use here for the optimal filter-
ing problem are also not restricted to band-limited signals, but we do use the band-
limited assumption in constructing our examples. The rationale for this is that the
band-limited assumption relates the rate at which action potentials are generated to
the frequency content of the underlying signal in a manner that is reminiscent of
the Shannon sampling theorem, so we expect that the spike-train will represent the
signal well only if such a restriction is imposed.

In all of the following examples, we assume that the desired signal Q(t) is either
the presynaptic spike density S(t) or its derivative dS(t)/dt. S(t) is a continuous
random function generated by a dichotomous jump process S̃(t) (i.e., a telegraph
process with two discrete levels), with smoothing, as follows: Let 0 < s1 < s2,
and suppose S̃(t0) = s1. We define ν12 to be the probability per unit time that S(t)
jumps up from s1 to s2, and ν21 to be the probability per unit time that S(t) jumps
down from s2 to s1. Finally, we remove those frequency components of S(t) that
are higher than the mean frequency of jump events (see Algorithm 1 in Online
Supplement). Note that this smoothed signal S(t) now satisfies the band-limited
condition in (4.112), and the condition in (4.93) assumed in Theorem 4.3.

We assume that the presynaptic spike trains . . .Tk . . . are generated by the fol-
lowing deterministic integrate-and-fire model with no leakage current over the time
interval [t0, tend] (see Algorithm 2 in Online Supplement):

∫ Tk

0
S(t)dt = k, k = 1,2, . . .(5.1)

Note that in our recent paper [76] we used the “faithful copy neuron” approach
[27, 66], which allows the user to generate a spike train with a user-prescribed in-
terspike interval distribution such that the expected spike rate is equal to S(t) at any
given time t. Here, however, we use a simple integrate-and-fire model for our nu-
merical examples to remove unnecessary distraction from the stochastic processes
of greatest interest: the stochastic docking, undocking, and release of vesicles. A
spike train generated by this deterministic integrate-and-fire model is, of course,
still stochastic because its spike density S(t) is a random process.

For the special case of an integrate-and-fire neuron, we should remark that the
process P1 is not quite stationary, even if S(t) is generated by a stationary process,
since the phase of the spikes is initially fixed by the fact that we start the integration
at a particular time. Nevertheless, for most reasonable choices of the process that
generates S(t) the whole process P1 becomes stationary as t → ∞, and this is true
even if S(t) also has some specified initial condition at t = 0 as in our examples.
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Once we obtain the action potential arrival times . . .Tk . . . from the presynap-
tic spike density function S(t), we simulate numerically the stochastic docking,
undocking, and release of vesicles in our model synapse with a finite number of
docking sites at different values of p0 (see Algorithm 3 in Online Supplement).

In the limiting case of an unlimited number of docking sites (possibly with
undocking allowed), Theorem 4.1 provides an efficient method for generating in-
dependent, Poisson-distributed vesicle release events (see Algorithm 4 in Online
Supplement).

We then compute the impulse response h(t) of the optimal filter and the mean
square error E[e2(t)] by averaging over the ensemble of the presynaptic spike den-
sity S(t) using a sufficiently large number of samples of S(t) together with the spike
train generated by each of them (see Algorithms 5 and 6 in Online Supplement).
Note that once we know h, the impulse response of the optimal filter for the esti-
mation of S, then the impulse response of the optimal filter for the estimation of
the time derivative of S is dh/dt.
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FIGURE 5.1. Effect of probability of vesicle release per docked vesi-
cle (p0) on the mean square error (E[e2(t)]) in the estimation of the
presynaptic spike density S(t) and its derivative. The unit of S(t) is
sec−1, so the units of E[e2(t)] are sec−2 in the estimation of S(t) and
sec−4 in the estimation of dS(t)/dt. E[e2(t)] is obtained numerically
by simulating the stochastic vesicle release process for 1000 indepen-
dent sample paths, each of which lasts 100 sec. Model parameters are
s1 = 10sec−1,s2 = 20sec−1,ν12 = ν21 = 10sec−1,α0 = 1000sec−1.

The two panels in Fig. 5.1 plot the mean square error E[e2(t)] as a function
of p0 in the estimation of the presynaptic spike density S(t) and its derivative for
various numbers of docking sites. A smaller value of E[e2(t)] indicates a more
accurate estimation of the desired signal. Fig. 5.1 shows that the optimal p0 for a
synapse with 1000 docking sites (without undocking) is p0 = 0.06 and 0.10 in the
estimation of S(t) and dS(t)/dt, respectively. The mean-square error curve for the
1000 docking site case (blue curve) shows that an increase in p0 from its optimal
value results in a significantly larger mean-square error in the estimation of the two
desired signals. In a synapse with 100 docking sites, the optimal p0 is 0.42 for
both estimation tasks. However, the mean-square error curve in the case of 100
docking sites (red curve) is less steep compared with the case of 1000 docking
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FIGURE 5.2. Effect of the number of docking sites (ns) on the optimal
probability of vesicle release per docked vesicle (p0) in the estimation
of the presynaptic spike density S(t) and its derivative. See Fig. 5.1 for
model and simulation parameters.

sites; any value of p0 in the range of 0.3− 0.5 produces satisfactory estimations
for both tasks. As we decrease the number of docking sites further to 10 docking
sites or a single docking site, the optimal p0 for estimating both desired signals
becomes 1. Despite the fact that both cases (i.e., 10 sites and a single site) have
the same optimal p0 = 1, their mean-square error curves exhibit different shapes
and different slopes. A model synapse with 10 docking sites is robust to deviations
in p0 when p0 is close to its optimal value 1 since the mean-square error curve
(yellow curve) is relatively flat and concave up. This is in contrast to the case of
a single docking site which has a steeper and concave down mean-square error
curve (purple curve): a reduction of p0 from 1 to 0.9 leads to a 55 times increase
in the mean-square error in the estimation of S(t) and a 159 times increase in the
estimation of dS(t)/dt.

The two panels in Fig. 5.2 plot the optimal p0 as a function of the number of
docking sites (ns) in the estimation of the presynaptic spike density S(t) and its
derivative. In both estimation tasks, an initial increase in the number of docking
sites (from 1 to about 200) leads to a sharp decrease in the optimal p0 (from 1
to about 0.2). As the number of docking sites increases further, the optimal p0
continues its approach to 0. However, the rate of approach is faster in the task of
estimating S(t) compared with the task of estimating dS(t)/dt.

Recall that p0 = 0 is optimal in a model synapse with an unlimited number of
docking sites, as predicted by our analysis in Section 4.3. To see this, Fig. 5.3 plots
the mean-square error E[e2(t)] as a function of p0 in the estimation of S(t) and its
derivative for three cases: an unlimited number of docking sites without undock-
ing, an unlimited number of docking sites with undocking, and 500 docking sites
without undocking. In a model synapse with an unlimited number of docking sites
(blue curve), the mean-square error in the estimation of both S(t) and its derivative
increases monotonically as p0 increases, with p0 = 0 being the optimal. In contrast,
any model synapse with a finite number of docking sites has a nonzero optimal p0
as shown earlier in Fig. 5.1. However, it is important to note that a model synapse
with an unlimited number of docking sites and with a nonzero undocking rate (red
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curve) also has a nonzero optimal p0, as predicted by our analysis in Section 4.3.
This is not surprising because undocking prevents the unlimited accumulation of
docked vesicles, and thus it makes a synapse with an unlimited number of docking
sites (red curve) behave like a synapse with a finite number of docking sites (yellow
curve).
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FIGURE 5.3. Effect of probability of vesicle release per docked vesi-
cle (p0) on the mean square error (E[e2(t)]) in the estimation of the
presynaptic spike density S(t) and its derivative. In the case of a
model synapse with undocking, vesicle undocking rate per docked site
is β = 3sec−1. See Fig. 5.1 for other model and simulation parameters.

Fig. 5.4 illustrates the performance of the optimal filter in a model synapse with
100 docking sites for different values of p0 = 1, 0.3, and 0.01. The left column
shows the filtered output R(t) from Eq. (4.20) in the estimation of S(t), obtained
by applying the optimal filter to the vesicle release events Nk. The middle column
shows the instantaneous rate of vesicle release (unfiltered output), defined [27]
by Nk/(Tk−Tk−1), where Nk is the number of vesicles released at the k-th action
potential and Tk is the time of the occurrence of that action potential. The right
column shows the filtered output R(t) from Eq. (4.20) in the estimation of dS(t)/dt.
Overall, p0 = 0.3 leads to significantly better performance than p0 = 0.01 and
slightly better performance than p0 = 1 in the estimation of S(t) and dS(t)/dt from
the rate of vesicle release.

6 Determination of model parameters

Consider the inverse problem of estimating model parameters. We first note
that if we measure γ and n∗s , then ns can be any integer such that

ns ≥ n∗s .(6.1)

Once ns has been chosen, α and β are then determined by

α =
γn∗s
ns

,(6.2)

β = γ

(
1− n∗s

ns

)
.(6.3)
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FIGURE 5.4. A synapse with 100 docking sites and no undocking: Ef-
fect of probability of release per docked vesicle (p0) on the synapse’s
ability to estimate two desired signals. In the first case (left column),
the desired signal Q(t) is the presynaptic spike density S(t) itself. In
the second case (right column), Q(t) is the derivative of S(t). We repeat
this experiment for three values of p0 = 1,0.3 and 0.01; p0 = 0.3 gives
the lowest mean square error among these three parameter values in the
estimations of both S(t) and dS(t)/dt. The filtered output is plotted in
green, and the desired signal is plotted as a thin blue curve for reference.
The mean square error (MSE) in each case is printed in the lower-right
corner of each panel. (Cf. the red curve in Fig. 5.1, which plots the mean
square error as a function of p0 for this case.) Note that the shape of
the impulse response h(t) of the optimal filter depends on the desired
signal and is different for each p0. The design of the optimal filter is
based upon the statistical properties of the ensemble of the presynaptic
spike density, the spike generation, the vesicle docking, undocking, and
release processes, but not upon the particular presynaptic spike density
S(t) used in the experiment. See Fig. 5.1 for model and simulation pa-
rameters. Data shown are for a time duration of 20 sec. All panels in
this figure cover the time interval from 65 sec to 85 sec. The inset boxes
showing the impulse responses of the optimal filters each cover a time
interval from −10 sec to +10 sec.
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It is interesting to note that by considering the mean behavior, it is impossible
to distinguish models with the same (γ,n∗s ) but different (α,β ). Such models,
however, produce different statistics.

We first consider the determination of ns by analyzing the observed time series
Nk in a regular spike train with equal interspike intervals (see Section 3.3). We
have

ϕkk = N− 1
ns
(N)2,(6.4)

so

ns =
N

1− ϕkk
N

.(6.5)

It may appear that the above formula for ns is impractical to use when ns � N
since in that case ϕkk / N may be close to 1 and the difference 1−ϕkk / N may not
be measured accurately. In practice, however, this formula works sufficiently well
in the parameter regime of our interest; it gives accurate, and many times exact,
results for a wide range of parameters, e.g., p0 from 0.01 to 1, ns from 1 to 1000,
and α0 = 1000 with or without undocking, especially in the regime of ns/N̄ < 100.

An alternative method for estimating ns is based on fitting the negative tail of
the autocovariance ϕ . Recall that ϕkk in (3.54) gives the height of the central peak
of ϕ , and that (N)2/ns, the coefficient that multiplies the geometric sequence in
ϕik, measures the magnitude of the negative tail in ϕ . The ratio r of the height of
the central peak divided by the magnitude of the negative tail is given by Eq. (3.55).
Thus, if we measure N and also the ratio r, we can find ns very simply as

ns = N(r+1).(6.6)

Unfortunately, this method based on “tail-fitting” turns out to be more sensitive to
noise compared with the first method based on formula (6.5). In practice, we can
use (6.5) for the estimation of ns, but then compare the experimental autocovariance
to the theoretical one as a check that this theory is applicable (see Fig. 3.2).

We have now discussed how to determine the parameter ns from the autoco-
variance, or if ns is so large that its value is of no importance we can determine
that fact from the absence of a negative tail in the autocovariance. Note that the
determination of ns can be done with spike trains of different periods ∆t to check
that the result is independent of ∆t. We shall next discuss how to determine the
other parameters of the model.

The parameters n∗s and γ are best determined from depletion experiments [15,
13]: Give a rapid train of action potentials of sufficient number to release all docked
vesicles, wait a time of duration T , and repeat. See Fig. 6.1 for an illustration.

During each of the bursts, count the number of vesicles released. Since the
mean number docked at the end of each burst is (approximately) zero, the mean
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FIGURE 6.1. An illustration of a depletion experiment. Each collection
of vertical bars stands for a burst of action potentials of sufficient number
to deplete all the docked vesicles. T is time of the duration between
adjacient bursts.

number docked at the beginning of the next burst is

n∗s (1− e−γT ),(6.7)

and this is the average of the number that will be released in each burst. By mea-
suring this for at least two values of T , we can identify n∗s and γ . If more than two
values of T are used, then we also get a check on the theory.

For example, if we have

n1 = n∗s (1− e−γT1),(6.8)

n2 = n∗s (1− e−γT2),(6.9)

where (n1,T1) and (n2,T2) are the measured data, then γ must satisfy

n1

n2
=

1− e−γT1

1− e−γT2
= f (γ).(6.10)

Note that

f (0) =
T1

T2
, f (∞) = 1.(6.11)

Also

γ
d
dγ

log f (γ) =
γT1

e−γT1−1
− γT2

e−γT2−1
.(6.12)

Since θ/(eθ −1) is a decreasing function, we have the following for γ > 0:

f ′(γ)> 0 if T1 < T2,(6.13)

f ′(γ)< 0 if T1 > T2.(6.14)

Without loss of generality, suppose T1 < T2. Then there exists a unique solution
γ to (6.10) provided that

n1

n2
∈ (

T1

T2
,1).(6.15)

If this is not the case, the data are not consistent with our model.
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Once γ has been found, e.g., with the MATLAB function fzero, we can solve
(6.8) or (6.9) for n∗s (and of course we should get the same answer either way).

We would like to offer two remarks here. First, the above method for deter-
mining γ and n∗s is insensitive to the value of p0. This is good because p0 may be
different under different conditions as a result of facilitation [9, 65, 67, 81]. Even if
p0 varies during the depletion burst, this is perfectly all right, since the burst is de-
signed to deplete and count all of the vesicles that were docked prior to the burst,
and as long as enough action potentials are applied for this to occur, it does not
matter how many vesicles are released by each action potential during the burst. In
fact, facilitation improves the accuracy of the result, since it makes it more likely
that the depletion burst will be 100% effective. Second, the proposed method uses
only the mean number of vesicles released by a depletion burst, not the statistics of
that number. We could try to extract more information from the statistics, but we
do not need to do so. Note, however, that we did need to use the statistics of the
process to determine the actual number of sites ns as opposed to the effective num-
ber of sites n∗s . Recall that ns was determined above from the correlation function
ϕik

Once γ and n∗s have been determined by the depletion experiment, we can use
the average number of vesicles released per spike in a regular (i.e., periodic) spike
train with period ∆t to determine p0. The relevant equation is (3.44), which defines
N(∆t). Solving this equation for p0 we obtain

p0 =

(
n∗s

N(∆t)
− 1

eγ∆t −1

)−1

.(6.16)

Note that p0 may depend on ∆t because of facilitation. The above procedure and
formula still work for each ∆t and can also be used to determine p0(∆t), i.e., p0 as
a function of ∆t.

We have now discussed the determination of all of the parameters of the model.
In particular, we can determine

ns,n∗s ,γ, p0(6.17)

from mean data only. Finally, α and β are given by (6.2) and (6.3).
Fig. 6.2 shows the result of a numerical experiment of parameter identification

using the above proposed method in a model synapse with 100 docking sites and
undocking. Each panel plots the expected value of the estimated parameter and
the standard deviation in the estimation as a function of the number of repeated
experiments. Each individual experiment consists of two steps: (1) stimulate the
synapse with a finite-length regular spike train with equal interspike intervals and
record Nk at each spike time Tk; and (2) perform two depletion experiments with
different lengths, T1 and T2.
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FIGURE 6.2. Parameter identification using our proposed method for
a model synapse with 100 docking sites and undocking. In this model
synapse, ns = 100,α = 10sec−1,β = 3sec−1, p0 = 0.5. Each panel cor-
responds to one of the four key parameters: ns,n∗s ,γ , and p0. In each
panel, the expected value of the estimated parameter is plotted as a func-
tion of the number of repeated experiments. The error bar associated
with each data point is the standard deviation in the estimation of the
corresponding parameter. The parameter ns is estimated using (6.5) by
analyzing the time series Nk in a regular spike train with equal inter-
spike intervals with ∆t = 0.1sec−1 and length 100 sec. The parameters γ

and n∗s are estimated using (6.8)–(6.10) by performing depletion experi-
ments with lengths T1 = 1/α and T2 = 10T1, in which each burst consists
of 10/p0 spikes, and the interspike interval in each burst is p0/(1000γ).
Finally, the parameter p0 is estimated using (6.16).

Note that the depletion experiment provides yet another test of our theory: we
can compare the experimentally observed distribution of the number of vesicles
released in depletion experiments for any interval T to our theoretical prediction
discussed below. The depletion experiment measures how many vesicles are dock-
ing at time T , starting at time 0 with no vesicles docked. According to our model,
if there are ns docking sites, each of which undergoes docking and undocking in-
dependently, the probability that there is a vesicle docked to any particular one of
the sites, P(t), is the solution of the ordinary differential equation

dP
dt

= α(1−P)−βP, P(0) = 0,(6.18)
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and this is

P(t) =
α

α +β

(
1− e−(α+β )t

)
.(6.19)

Since the sites are independent, the number of vesicles docked at time T , D(T ),
will have a binomial distribution with parameters ns and P(T ). Note that we have
a prediction for every T . Note also that this new test has the advantage, as we have
discussed already, of not requiring p0 to be constant, and not depending at all on
the value of p0.

If β = 0, P(T )→ 1 as T →∞, so the result is simply that ns vesicles are released
every time T is sufficiently large. In several experimental studies, however, this is
not what has been observed [15, 42].

If ns is large, and recall that α = α0/ns, then P(T ) behaves like

P(T )∼ 1
ns

α0

β

(
1− e−βT

)
,(6.20)

so in this case we expect a Poisson distribution with mean α0
β

(
1− e−βT

)
.

Together with comparing the experimental autocovariance of Nk to the theoret-
ical one as discussed earlier in this section, we have now provided two separate
checks on our theory of vesicle docking, undocking, and release.

Note also that our method of parameter estimation is related to “quantal anal-
ysis,” also known as “mean-variance analysis” or “multiple probability fluctua-
tion analysis,” which is a general method that uses mean, variance, and covariance
from vesicle release statistics to recover synaptic parameters (see [58, 62] for re-
views and analyses of quantal analysis). The method presented here is designed
for our model of synaptic vesicle docking, undocking, and release, whereas the
quantal analysis method does not explicitly model vesicle docking and undocking
processes but instead requires the user to prescribe the probability of vesicle occu-
pancy (and its adaptation over time) at each docking site. In particular, our method
of synaptic parameter estimation allows for vesicle undocking, which is a constant
source of noise that leads to fluctuation in the number of docked vesicles even in
the absence of stimuli, a phenomenon observed at single synaptic release sites in
hippocampal slices [15, 43].

7 Discussion

The first topic that we would like to discuss is the role of undocking in our
model. As a starting point for this discussion, consider the case of an unlimited
number of docking sites with no undocking. This model, which was the focus of
our previous paper [76], has some beautiful mathematical properties. In particular,
the mean rate of release of synaptic vesicles is completely insensitive to the mean
rate of arrival of action potentials, so that the model synapse responds only in a
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transient way to changes in the rate of arrival of action potentials. This is an ideal-
ized version of the typical behavior of much of the nervous system – in which there
is a strong response to sudden changes, but mean values are largely ignored. Also,
the numbers of vesicles released by the different action potentials, conditioned on
the action potential arrival times, are independent and Poisson distributed. Finally,
the optimal choice of p0, as measured by the ability of a linear filter to reconstruct
the signal that is being carried by the incident spike train, is zero. This last result
is paradoxical, and points to the singular nature of the model. The reason that a
low value of p0 is helpful is that it allows for a buildup in the number of docked
vesicles. With an unlimited number of docking sites, and with no undocking, there
is no upper limit to this buildup.

The above pathology can be cured in either (or both) of two ways. One way
is to assume that there is a finite number of docking sites, and the other way is to
allow for undocking. Either of these features is sufficient to prevent the unlimited
buildup of docked vesicles, and the two choices have very similar consequences
insofar as the mean behavior of the model is concerned, but they have different
statistical consequences, and this should allow them to be distinguished experi-
mentally, although we emphasize that it is not a question of choosing between
mutually exclusive alternatives, since both may be operating at the same time.

If we retain the assumption of an unlimited number of docking sites and al-
low for undocking, then some of the beautiful mathematical properties mentioned
above are retained. In particular, it is still the case that the numbers of vesicles
released, conditioned on the action potential arrival times, are independent and
Poisson distributed. This facilitates mathematical analysis, and is fundamental to
theory developed in this paper on the optimal choice of p0. With undocking, how-
ever, it is no longer the case that the optimal choice of p0 is equal to zero. Instead,
it is O((βτ)1/3), where β is the undocking rate, and τ is the unperturbed time
between action potentials in the incident spike train.

When the number of docking sites is finite, the numbers of vesicles released are
no longer conditionally independent, but the consequences for the optimal filtering
problem are similar to those of undocking, since either process prevents the un-
limited buildup of docked vesicles and thereby shifts the optimal p0 towards larger
values. Our demonstration of this is numerical, however, since we do not have
a theoretical way to evaluate the optimal p0 when the number of docking sites is
finite.

More generally, we have shown that there is a whole class of models that are
equivalent with regard to their mean behavior but differ with regard to their num-
bers of docking sites and their rates of undocking. These models can only be dis-
tinguished by considering their fluctuations. It would not be surprising, given this
equivalence in the mean, that some phenomena that have been attributed to a lim-
itation in the number of docking sites are actually caused by undocking, or vice
versa.
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The second topic for discussion is the relationship between synaptic failure and
the probability of vesicle release. A quantity that is often measured in experiments
is

pr = Pr(at least one vesicle is released by an action potential),(7.1)

so that 1− pr is the probability of synaptic failure. The parameter we used through-
out this article is p0, the probability of release per docked vesicle upon the arrival
of an action potential. These two probabilities are related by

pr = 1− (1− p0)
D(t),(7.2)

where D(t) is the number of docked vesicles at time t. Hence, pr is not a constant
but a dynamic variable. Our proposed method of parameter identification estimates
p0 directly. Moreover, as discussed in Section 6, even if p0 depends on the period
∆t of the regular spike train that is used in the proposed identification process,
because of facilitation, our estimation formulas still work for each ∆t and can be
used to determine p0 as a function of ∆t.

Finally, we would like to point out some limitations of our model. First, our
model does not take into account facilitation. Facilitation could be modeled by al-
lowing the parameter p0 to depend on the rate of the spike train. We do not consider
this effect in this article except that we have designed a parameter identification
method that is independent of p0, so that if other parameters remain constant all
parameters will be successfully recovered despite the presence of facilitation. Sec-
ond, our model only considers activity-dependent synchronous release, and there
is no partial release, or variation in the content of a vesicle. Third, our model also
assumes that p0 is the same for all sites, and random variables associated with dif-
ferent sites are independent, conditioned on the action potential arrival times. Note
also that, except for docked vesicles, our model does not consider vesicle pool dy-
namics. Last, the optimal filter considered in this article is non-causal in the sense
that a causality constraint is not imposed on h(t), which can take nonzero values
for all t. We did so because we aimed to obtain a theoretical lower bound on the
mean square error in the linear estimation of desired signals using the presynaptic
vesicle release events. From the perspective of this paper, the observer is allowed
to record the vesicle release events and process them at leisure to reconstruct the
desired signal. It may also be of interest to consider the causal case in which the
requirement is imposed that h(t) = 0 for t < 0.

Appendix: The stochastic process P1

We give an example of the stochastic process P1 with small fluctuations. See
Section 5 for another example used in our numerical simulations in which the fluc-
tuations are not necessarily small.

Let the presynaptic spike density S(t) be

S(t) = s0 + εQ(t),
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where s0 is a positive constant (1/s0 is the unperturbed period of the spike train),
Q(t) is generated by a stationary stochastic process with mean zero, and ε is a
small parameter.

We define spike times Tk by an integrate-and-fire process, so that
∫ Tk

Tk−1

(
s0 + εQ(t)

)
dt = 1.

Let τ be such that
s0τ = 1,

and look for a solution Tk of the above recursion relation with the property that

Tk = kτ + εT (1)
k + · · ·

Expanding in powers of ε we find

1 =
∫ kτ+εT (1)

k +···

(k−1)τ+εT (1)
k−1+···

(
s0 + εQ(t)

)
dt

= s0τ + εs0
(
T (1)

k −T (1)
k−1

)
+ ε

∫ kτ

(k−1)τ
Q(t)dt + · · ·

Then, since s0τ = 1, we get

T (1)
k −T (1)

k−1 =−τ

∫ kτ

(k−1)τ
Q(t)dt.

This defines the T (1)
k only up to an arbitrary constant. We fix the constant by

choosing a particular k0 and setting T (1)
k0

= 0. Then

T (1)
k =−τ

∫ kτ

k0τ

Q(t)dt.

Note that

E
[
T (1)

k

]
=−τ

∫ kτ

k0τ

E
[
Q(t)

]
dt = 0.

Now consider

E
[
Q(t)T (1)

k

]
= −τ

∫ kτ

k0τ

E
[
Q(t)Q(t ′)

]
dt ′

= −τ

∫ kτ

k0τ

ϕQQ(t− t ′)dt ′,

where ϕQQ(t− t ′) = E
[
Q(t)Q(t ′)

]
is the autocovariance of Q. Letting k0→−∞,

we have

lim
k0→−∞

E
[
Q(t)T (1)

k

]
= −τ

∫ kτ

−∞

ϕQQ(t− t ′)dt ′

= −τ

∫
∞

t−kτ

ϕQQ(t ′′)dt ′′.
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Accordingly we define

ϕQT (t) =−τ

∫
∞

t
ϕQQ(t ′′)dt ′′,

and then we have the result that

E
[
Q(t)T (1)

k

]
= ϕQT (t− kτ),

with the limit k0→−∞ understood.
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Appendix: Online Supplement

Algorithm 1 Generate a smoothed dichotomous signal S(t) to be used as the presy-
naptic spike density
Input: Scalars s1,s2,ν12,ν21, t0, tend,nt and ∆t, in which nt is the number of time
steps for the discretization of the time interval [t0, tend], ∆t = (tend− t0)/nt , and the
rest of the parameters are defined in the main text.
Output: Array S =

[
S0,S1, . . . ,Snt

]
, the presynaptic spike density function S(t) in

the form of a vector. Each entry in the array S corresponds to a time node in the
vector

[
t0, t0 +∆t, . . . , tend

]
, that is, S j = S(t0 + j∆t).

1: Initialize an array variable S =
[
S0,S1, . . . ,Snt

]
with length nt +1

2: S0 := s1
3: Initialize a scalar variable j := 1
4: Draw a new random number u uniformly distributed on [0,1]
5: while j < nt do
6: Draw a new random number u uniformly distributed on [0,1]
7: if S j = s1 then
8: if u < ν12∆t then
9: S j+1 := s2

10: else
11: S j+1 := s1

12: if S j = s2 then
13: if u < ν21∆t then
14: S j+1 := s1
15: else
16: S j+1 := s2

17: j := j+1
18: Compute the discrete Fourier transform of S and store it in the array

Ŝ =
[
. . . Ŝ(ω) . . .

]
, in which Ŝ(ω) denotes the Fourier coefficient correspond-

ing to the frequency ω

19: Ŝ(ω) := 0 for all frequencies ω that satisfy |ω|> (ν12 +ν21)/2
20: Compute the inverse discrete Fourier transform of Ŝ and store it in the array S
21: Return S
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Algorithm 2 Generate action potential arrival times (i.e., spike times) for an
integrate-and-fire neuron with presynaptic spike density S(t)
Input: Array S generated by Algorithm 1, and scalars t0, tend and ∆t.
Output: Array T =

[
T1,T2, . . .Tk

]
, whose entries are spike times.

1: Initialize a scalar variable k := 0
2: Initialize a scalar constant T0 := t0
3: Initialize an adaptive-length vector variable T =

[
T1,T2, . . .

]

4: while Tk < tend do
5: k := k+1
6: Solve

∫ Tk
Tk−1

S(t)∆t = 1 for Tk, in which S(t) is the linear interpolation of S
over evenly spaced time nodes [t0, t0 +∆t, . . . , tend]

7: Return T
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Algorithm 3 Simulation of stochastic vesicle docking, undocking, and release in a
model neuron with a finite number of docking sites
Input: Array T generated by Algorithm 2, and scalars t0,ns,α and β as defined in
the main text.
Output: Array N =

[
N1,N2, . . . ,Nk

]
, in which each entry is the number of vesicles

released at the spike time given by the corresponding entry in T.
1: Initialize a scalar constant T0 := t0
2: Initialize an array variable N =

[
N1,N2, . . . ,Nk

]
, in which k is the length of T

3: N := [0,0, . . . ,0]
4: for l = 1 to ns do
5: Initialize a binary variable “site occupied” := 0
6: for j = 1 to k do
7: if “site occupied” = 1 then
8: Draw a new random number u uniformly distributed on [0,1]
9: if u < 1− β

α+β

(
1− e−(α+β )(Tj−Tj−1)

)
then

10: Draw a new random number v uniformly distributed on [0,1]
11: if v < p0 then
12: N j := N j +1
13: “site occupied” := 0
14: else
15: “site occupied” := 0
16: else
17: Draw a new random number u uniformly distributed on [0,1]
18: if u < α

α+β

(
1− e−(α+β )(Tj−Tj−1)

)
then

19: Draw a new random number v uniformly distributed on [0,1]
20: if v < p0 then
21: N j := N j +1
22: else
23: “site occupied” := 1
24: Return N
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Algorithm 4 Simulation of stochastic vesicle docking, undocking, and release in a
model neuron with an unlimited number of docking sites (possibly with undocking
allowed)
Input: Array T generated by Algorithm 2, and scalars t0,ns,α0 and β as defined in
the main text.
Output: Array N =

[
N1,N2, . . . ,Nk

]
, in which each entry is the number of vesicles

released at the spike time given by the corresponding entry in T.
1: Initialize a scalar constant T0 := t0
2: Initialize an array variable N =

[
N1,N2, . . . ,Nk

]
, in which k is the length of T

3: if β = 0 then
4: for l = 1 to k do
5: Initialize a scalar variable x := 0
6: for j = 1 to l do
7: x := x+(Tj−Tj−1)(1− p0)

l− j

8: Nl := a Poisson-distributed random number with mean α0 p0x
9: else

10: for l = 1 to k do
11: Initialize a scalar variable x := 0
12: for j = 1 to l−1 do
13: x := x+(1− p0)

j−1e−β (Tl−Tl− j)

14: Nl := a Poisson-distributed random number with mean α0 p0
β

(1− p0x)

15: Return N
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Algorithm 5 Compute the impulse response h(t) of the optimal filter of the rate of
stochastic vesicle release in the estimation of S(t)
Input: Scalars s1,s2,ν12,ν21, t0, tend,ns,α (or α0 in the case of an unlimited number
of docking sites), β , p0,nt ,∆t and nsample, in which nt is the number of time steps
for the discretization of the time interval [t0, tend], ∆t = (tend− t0)/nt , nsample is the
number of simulated sample paths of the stochastic process S(t), and the rest of the
parameters are defined in the main text.
Output: Array h =

[
h0,h1, . . . ,hnt/2

]
, the optimal impulse response h(t) in the

form of a vector (assuming nt is even). Each entry in the array h corresponds to a
time node in the vector

[
t0, t0 +∆t, . . . , tend/2

]
, that is, h j = h(t0 + j∆t).

1: Initialize an array variable h =
[
h0,h1, . . . ,hnt/2

]

2: Initialize a scalar variable e2 := 0
3: for l = 1 to nsample do
4: Generate the array S (presynaptic spike density ) using Algorithm 1
5: Generate the array T (action potential arrival times) using Algorithm 2
6: Generate the array N (vesicle release numbers) using Algorithm 3 (or Al-

gorithm 4 in the case of an unlimited number of docking sites)
7: Construct the function N(t) = ∑

k
j=1 Nk g(t−Tj), the linear interpolation

of N over time nodes T, in which g(t) is a single square pulse centered at t = 0
with width ∆t and height 1/∆t

8: Evaluate N(t) on evenly spaced time nodes on the second half of
the time interval, and store the obtained values in the array N :=[
Nnt/2,Nnt/2+1, . . . ,Nnt

]
, in which N j = N(t0 + j∆t)

9: S :=
[
Snt/2,Snt/2+1, . . . ,Snt

]
, in which S j = S(t0 + j∆t) (i.e., remove the

first half of the entries in S)
10: S := S− 1

nt/2+1 ∑
nt
j=nt/2 S j (i.e., subtract the mean from itself)

11: N := N − 1
nt/2+1 ∑

nt
j=nt/2 N j (i.e., subtract the mean from itself)

12: Compute the array SNS := cross power spectral density between N and S
13: Compute the array SNS := auto power spectral density of N
14: Compute the array ĥ := SNS/SNN (component-wise division)
15: Compute the array hsample := inverse discrete Fourier transform of ĥ
16: h := h+hsample

17: h := h/nsample
18: Return h
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Algorithm 6 Compute the mean-square error in the estimation of S(t) using the
optimal filter applied to the rate of stochastic vesicle release
Input: Scalars s1,s2,ν12,ν21, t0, tend,ns,α (or α0 in the case of an unlimited number
of docking sites), β , p0,nt and ∆t, and array h=

[
h0,h1, . . . ,hnt/2

]
(see Algorithm 5

for parameter descriptions).
Output: Mean-square error e2.

1: Initialize a scalar variable e2 := 0
2: for l = 1 to nsample do
3: Generate the array S (presynaptic spike density ) using Algorithm 1
4: Generate the array T (action potential arrival times) using Algorithm 2
5: Generate the array N (vesicle release numbers) using Algorithm 3 (or Al-

gorithm 4 in the case of an unlimited number of docking sites)
6: Construct the function R(t) = ∑

k
j=1 N j h(t−Tj)

7: Evaluate R(t) on evenly spaced time nodes on the second half of the time
interval, and store the obtained values in an array R :=

[
Rnt/2,Rnt/2+1, . . . ,Rnt

]
,

in which R j = R(t0 + j∆t)
8: S :=

[
Snt/2,Snt/2+1, . . . ,Snt

]
, in which S j = S(t0 + j∆t) (i.e., remove the

first half of the entries in S)
9: S := S− 1

nt/2+1 ∑
nt
j=nt/2 S j (i.e., subtract the mean from itself)

10: R := R − 1
nt/2+1 ∑

nt
j=nt/2 R j (i.e., subtract the mean from itself)

11: Compute the scalar variable e2,sample := 1
nt/2+1 ∑

nt
j=nt/2(R j − S j)

2

12: e2 := e2 + e2,sample

13: e2 := e2/nsample
14: Return e2




