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“Although during the past 50 years pure mathematicians have become more and
more rigorous, the restraints on applied mathematicians have been, in practice,
altogether removed. For instance, P. A. M. Dirac of Cambridge introduced a
‘delta function’ that has the property of being infinite at one point and zero
everywhere else but has a finite integral, and the applied men now make the
most reckless use of it without incurring any censure...”

—Sir Edmund Whittaker, Scientific American, September 1950

Abstract  This paper describes a formally second-order accurate version of the
immersed boundary method and its application to the computer simu-
lation of blood flow in a three-dimensional model of the human heart.

1. INTRODUCTION

The immersed boundary method [1]-[3] was developed to study flow
patterns around heart valves, and is a generally useful method for prob-
lems in which elastic material interacts with a viscous incompressible
fluid. (The elastic material may have time-dependent elastic param-
eters, in which case it can contract and relax, like a muscle.) Most
problems of biofluid dynamics are of this kind, and the method has been
applied to several such problems [2], [4]-[18]. Until recently, however,
the immersed boundary method was only first-order accurate.

An immersed boundary method with formal second-order accuracy
was introduced in the Ph.D. thesis of Ming-Chih Lai [19]—see also [20].
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(The concept of “formal” second-order accuracy will be explained be-
low.) Lai applied this new methodology to the well-known two-
dimensional benchmark problem of flow past a cylinder, for which the
first-order accurate immersed boundary method typically generates a
drag that is too high and a Strouhal number (for vortex shedding) that
is too low, each by about 20%, on a typical grid. On the same grid, Lai
found that the formally second-order accurate method is in excellent
agreement with physical experiments and with other high-precision nu-
merical methods. The improved accuracy was accompanied by a visible
improvement in the resolution of vortices shed from the cylinder, which
look tighter (less diffuse) than those generated in the corresponding first-
order accurate simulation. Taken together, these changes strongly sug-
gest that the main benefit of the formally second-order method is a
reduction in numerical viscosity.

Our purpose here is to apply this improved, benchmarked methodol-
ogy to the heart. This application requires a three-dimensional imple-
mentation, which is the main advance reported here, but we have also
made a few minor methodological changes along the way, so the method
reported in this paper will be slightly different from the one in the Lai
references cited above.

Formal second-order accuracy means that the method in question
would be second-order accurate if it were applied to a problem with a
smooth solution. In practice, however, the immersed boundary method
is often applied to problems involving an immersed elastic interface, such
as a heart valve leaflet. Across such a material interface in a viscous fluid,
the velocity is continuous but its normal derivatives are not. This dif-
ficulty has been overcome by a more complicated methodology known
as the immersed interface method, pioneered by Zhilin Li and Randall
LeVeque [21], but it has not yet been overcome within the framework of
the immersed boundary method.

What then is the benefit of formal second-order accuracy? The answer
has already been suggested above. This class of methods has reduced
numerical viscosity and is therefore capable of improved resolution of
vortex phenomena that are so important in fluid dynamics in general
and in cardiac fluid dynamics in particular.

2. EQUATIONS OF MOTION

We begin by stating the equations of motion of an idealized composite
material known as a fiber-reinforced fluid. This is a viscous incompress-
ible fluid containing an immersed system of elastic fibers. The fibers are
pure force generators: they contribute neither mass nor volume to the
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Heart simulation with reduced numerical viscosity 3

composite, only a fiber stress, which by definition points always in the
fiber direction. The fiber stress depends on the fiber strain in a possibly
nonlinear, time-dependent, and spatially inhomogeneous manner. The
fibers move at the local fluid velocity. Mass, volume, incompressibility,
and rheological properties are all supplied by the fluid component of the
composite.

For two different derivations of the equations of motion of a fiber-
reinforced fluid, see [22, 23]. The notation used here will be defined
after the equations have been stated. The equations are as follows:

,,(g_yu.vu)wp:w?wf, 1)
V-u=0, (2)
f(z,t) = /F(q,r,s,t)5(a:—X(q,r,s,t)) dgdrds, (3)
%—f(q,r,s,t) = u(X(q,rs,1),t)
= /’u,(a:,t)é(;l:—X(q,T,S,t)) de, (4)
F:%(Tt), (5)
T:U(‘%—f ;q,r,s,t) , (6)
_ 0X/0s
t_m. (7)

In this system, Eqns. (1,2) are fluid equations, Eqns. (5-7) are fiber
equations, and Eqns. (3,4) are interaction equations. We describe the
notation and meaning of each of these subsystems of equations in turn.

The fluid equations (1,2) are the familiar Navier—Stokes equations of
a viscous incompressible fluid. The constant parameters p and p are the
fluid density and viscosity, respectively. The unknown functions in the
the fluid equations are the fluid velocity u(x, t), the fluid pressure p(z, t),
and the force per unit volume applied by the fibers to the fluid f(x,t),
where @ = (x1, %9, x3) is the spatial position (in Cartesian coordinates),
and t is the time. Note that f(x,t) is conceptually the divergence of the
fiber stress tensor, but we do not make make explicit use of that stress
tensor in this formulation of the equations of motion.

The fiber equations (5-7) are written in material curvilinear coor-
dinates that are aligned with the fibers. We denote these coordinates
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(q,7,8). They are chosen in such a way that fixed values of (g, r) define
a particular fiber (for all time) and fixed values of (g, 7, s) define a par-
ticular material point (for all time). The unknown function X (q,r, s, t)
completely describes the motion of the fibers, and also their spatial con-
figuration at any given time. For example, if we hold (¢, r, s) fixed, then
the equation @ = X (¢, r, s,t) defines the trajectory of the material point
whose coordinates are (g, 7, s). On the other hand, if we hold (¢, ) and ¢
fixed but let s vary, then the same equation & = X (q,r, s,t) defines the
space curve that happens to be occupied by the fiber whose coordinates
are (q,r) at the time ¢.

Other unknown functions of (g,r, s,t) that appear in the fiber equa-
tions are the unit tangent vector to the fibers ¢(q,r,s,t) (not to be
confused, of course, with the scalar ¢, which denotes the time), the fiber
tension T'(q,r,s,t), and the fiber force density F(q,r,s,t). More pre-
cisely, T' and F are defined by the statements that the force transmitted
by the bundle of fibers dgdr is £Ttdqdr, and the force applied to the
fluid by the fibers lying within the chunk of material defined by dq dr ds
is Fdgdrds.

Taken together, the fiber equations describe how to calculate the fiber
force density F' from the fiber configuration X at any given time. Equa-
tion (5) relates the fiber force density F' to the fiber tension 7" and the
unit tangent . This relationship can be derived by considering the force
balance on a bundle of fiber segments defined by s; < s < s9, with s; and
s9 arbitrary, and (g, ) in some arbitrary but specified set. Recalling that
the fibers are massless, and making use of the fundamental theorem of
calculus, we can derive Eqn. (5). (For more detail about this derivation,
see [22].) Equation (6) is the constitutive law of the fibers. It defines
the fiber tension, or stress, T', as a given function o of |0X /0s|, which
determines the fiber strain. Note the explicit dependence of this stress—
strain relation on the material coordinates (g,r,s) and on the time ¢.
The explicit time dependence is particularly important in the heart; it
is what allows the heart muscle to contract and relax. Finally, Eqn. (7)
simply defines the unit tangent t to the fibers. Since (¢,r) are constant
along any given fiber, the vector 90X /0s is tangent to the fibers, so we
need only normalize this vector to obtain the unit tangent ¢.

Finally, we come to the interaction equations (3,4). These both in-
volve the three-dimensional Dirac delta function

0(x) = 0(z1)d(22)d(x3), (8)

which expresses the local character of the interaction. Equation (3) is
a slightly nonstandard way of expressing the relationship between the
two corresponding force densities f(x,t) de and F(q,r,s,t)dgdrds. To
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see that this is the content of Eqn. (3), integrate both sides over an
arbitrary region € of space. On the right-hand side, interchange the
order of integrations (justified by the formal character of all equations
involving the delta function), and recall that [, d(x — X)dx yields the
value 1 if X is within Q and 0 otherwise.

Equation (4) is the no-slip condition of a viscous fluid, which says,
in our case, that the fibers move at the local fluid velocity. In the sec-
ond form of Eqn. (4), we just make use of the defining property of the
delta function to rewrite the no-slip condition in a form that resembles
Eqn. (3). Then each of the interaction equations involves an integral
transformation with d(x — X (g, s,t)) as kernel. In Eqn. (3), the inte-
gration is with respect to (g, 7, s), so we are left with a function of (z, t),
but in Eqn. (4), the integration is with respect to @, so we are left with
a function of (gq,r,s,t). A more subtle difference between these equa-
tions, though, is that the integration variable & appears directly in the
argument of the delta function, whereas the integration variables (q,r, s)
appear only indirectly, via the nonlinear function X(q,r,s,t). That is
why the corresponding densities F'(q,,s,t) and f(x,t) do not have the
same numerical values at corresponding points.

The distinction between F' and f becomes even more significant when
the fibers in question are localized on a surface, as in the case of a heart
valve leaflet. One of the main strengths of the above formulation is that
it can handle this case with only minor modification. If the fibers are
localized on a surface, we must drop one of the curvilinear coordinates,
say q. Then Eqn. (3) becomes

fl(z,t) = /F(r,s,t) d(x— X(r,s,t)) drds. 9)

Here, §(x) is still the three-dimensional Dirac delta function, but the
integration is only over the two-dimensional surface obtained by varying
(r,s). It follows that f(x,t) is singular like a one-dimensional delta
function. In other words, the force per unit volume applied by a leaflet
to the fluid in which it is immersed is infinite, but has the property that
its integral over any finite volume is finite.

In summary, the state of our system at some fixed time ¢ is given
by the velocity field u(xz,t) and by the fiber configuration X (q,r, s,t).
Given the fiber configuration X (q,r,s,t), Eqns. (5-7) determine the
fiber force density F'(q,r,s,t) in curvilinear coordinates. Then Eqn. (3)
converts this density to the fiber force density f(a,t) in Cartesian co-
ordinates. With f known, the incompressible Navier—Stokes equations
(1,2) determine du/dt (and p as a byproduct). Finally, Eqn. (4) deter-
mines 0X /0t. Thus we have, in effect, a first-order system, in which
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the state of the system (in our case (u, X)) determines its own rate of
change (Ou/0t,0X /0t).

In applying these equations to the heart, we regard the thick mus-
cular walls as a fiber-reinforced fluid with time-dependent elastic pa-
rameters. Here the fibers correspond to the thick (myosin) and thin
(actin) filaments of cardiac muscle, and the fluid is the intracellular
water. Vessel walls are modeled similarly, except that the fibers that re-
inforce them represent the elastin and collagen of those vessels and have
time-independent elastic properties. Heart valve leaflets are modeled
as fiber(collagen)-reinforced surfaces—see Eqn. (9) and the surrounding
discussion. Blood in the cardiac chambers is simply governed by the
Navier—Stokes equations, i.e. it is the special case of a fiber-reinforced
fluid in which there are no fibers. For the tissue exterior to the heart
we again use simply the Navier—Stokes equations, though one could go
to the trouble to put some fibers there to model the elasticity of the
external medium. Instead of this, we hold the heart loosely in place by
tethering the aorta and pulmonary artery of the model to fixed locations
in space by soft springs that allow recoil of the heart without letting it jet
away completely. Finally we enclose the whole system in a cube with pe-
riodic boundary conditions. Since it is not practical to model the whole
circulation within this cube, sources and sinks are provided to connect
the veins and arteries of the model heart through hydraulic resistances
to constant-pressure reservoirs. An external source/sink is also provided
to allow for changes in volume of the heart during the cardiac cycle.
The methodology used to handle sources and sinks is omitted from this
paper to simplify the presentation.

3. NUMERICAL METHOD

We now describe a variant of the immersed boundary method with
formal second-order accuracy. (See the Introduction for references and
explanation of what is meant by “formal” second-order accuracy.) This
is essentially a second-order Runge-Kutta method—see for example [24].
Each time step proceeds in two substeps, which we shall call the “pre-
liminary” substep and the “final” substep. The preliminary substep
proceeds from time level n to time level n + % by a first-order accurate
method, which in our case will be a hybrid of the forward and backward
Euler method. Then the final substep starts again at time level n and
proceeds directly to time level n+ 1 by a second-order accurate method,
which in our case will be a hybrid of the midpoint rule and the trape-
zoidal rule. The data at time level n—l—% that are needed to implement the
midpoint rule are obtained from the results of the preliminary substep.
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Heart simulation with reduced numerical viscosity 7

Since those data were computed by a first-order accurate method, the
reader may well ask how the overall scheme can be second-order accu-
rate. This is the magic of the Runge-Kutta methodology, which extracts
higher-order results from lower-order ingredients. The basic reason why
it works is that a single time step of a first-order accurate numerical
scheme introduces errors that are only O((At#)?). (The first-order ac-
curacy of the scheme manifests itself only when the scheme is used to
compute over a time interval of O(1), which requires a large number,
O((At)~1Y), of steps.) Thus our preliminary substep in fact produces
results that are within O((At)?) of the exact solution at the midpoint
of the time step, and this fact allows the second-order accuracy of the
final substep to be the overall accuracy of the scheme.

We use a superscript to denote the time level. Thus X"(q,r,s) is
shorthand for X (q,r, s,n At), where At is the duration of the time step,
and similarly for all other variables. The given data at the beginning of
the time step are X" and u™; the goal is to compute X! and "t

Before describing how this is done, we have to say a few words about
the spatial discretization. There are, in fact, two such discretizations:
one for the fluid and one for the fibers.

The grid on which the fluid variables are defined is a fixed, uniform
cubic lattice of meshwidth h = Az = Azy = Azz. We shall make
extensive use of the central difference operator D;, defined for 1 = 1,2,3
as follows: . .
(Dig) () = P dz—hel),
where e’ is the unit vector in the ith coordinate direction. As the no-
tation suggests, D; can be regarded as the ¢th component of a vector
difference operator D, in exactly the same way as d/0z; is the ith com-
ponent of the vector differential operator V. Thus Dp will be the discrete
gradient of p, and D - u will be the discrete divergence of u.

We shall also make use, in the viscous terms only, of a centered discrete
Laplacian L, which is not the same as D - D, the distinction being that
the stencil of L is half as wide as the stencil of D - D. This “tight”
discrete Laplacian is defined as follows:

(10)

i x + he' x — he') — 2¢(x
i=1
The fiber variables are defined on a fixed rectangular lattice in (g, 7, s)
space with meshwidths Ag, Ar, and As, respectively. Note, however,
that this fixed rectangular lattice in (g, 7, s) space defines a moving curvi-
linear lattice in the physical space. Along each fiber, i.e. in the s direc-
tion, it is natural to stagger the variables in the following way: We define
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the position variable X and the force density F' only at values of s that
are integer multiples of As, but we define the fiber tension 7" and the
unit tangent to the fibers ¢ only at “half-integer” multiples of As, i.e. at
s=(k+ %)As, where £ is an integer. These staggered data are connected
by a central difference operator D, defined as follows:

¢ (q,r,s + %As) — ¢ (q,r,s — %As)
As '

(D) (g7, 8) = (12)

The fluid mesh and the fiber mesh defined above are connected by a
smoothed approximation to the Dirac delta function. It is denoted dj,
and is of the following form:

we- (20505,

where ¢ = (21, %9, x3), and where the function ¢ is determined by the
following conditions:

1 ¢ is a continuous function.

2 ¢(r) =0 for |r| > 2.

3 For all r, Zj even P(T — J) = Zj odd B(r —J) = %
4 For all v, 3 :(r — j)¢(r — j) = 0.

5 For all r, >, (é(r — 7))? = C, where C is a numerical constant,

independent of .

The motivation for these postulates is discussed in [2]. It follows (exercise
for the reader!) that C' = % and that ¢ is given by

_ )
3 2|7‘|+\/;+4|7’| 4 , <1,
o(r) = 5—2|r| — \/—7—1- 12|r| — 4r? (14)

] )
Oa 2<|’f’|

This is an even, bell-shaped function, which not only is continuous but
has a continuous first derivative. The construction of ¢, is now complete.

We are now ready to describe a typical timestep of the numerical
scheme. The preliminary substep, which goes from time level n to n+ %,
proceeds as follows:
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Heart simulation with reduced numerical viscosity 9

First, we update the position of the fiber points Xnts 2(q,r,8):

XTL+2 _Xn
At/2 Zu 6h m _Xn(Qa’ra 3))h3’ (15)

which is a discretization of Eqn. (4). Here and throughout the paper
> denotes the sum over the cubic lattice in physical space on which
the fluid variables are defined. Similarly, > s will denote the sum over
the rectangular lattice in (g, 7, s) space on which the fiber positions X
and force densities F' are defined.

Next, we calculate the fiber force density F"*3 associated with the

fiber configuration X "3 as follows. First we evaluate the fiber ten-
sions and unit tangents (at the half-integer multiples of As where these
quantities are defined):

1 1 1
T s = o" s (‘DSX”J“E

1q, T, s) , (16)

1
s = & (17)

‘DSX"J’%

M

These are discretizations of Eqns. (6) and (7). Next, we use these re-
sults to evaluate the fiber force density F"*3 from the discretization of
Eqn. (5):
F"t =D, (T”+%t”+%) . (18)
The next step is to convert the fiber force density from curvilinear to
Cartesian coordinates. This is done by a discretization of Eqn. (3):

f"+ ZF""' q,7,8) 0p, (:13 ~ X" 2(q,r, s)) AgArAs. (19)

q,r,s

With f”+% in hand, we are now ready to tackle the Navier—Stokes
equations. The method we use to reach the time level n + % in the
preliminary substep is essentially the backward Euler method, except
that the nonlinear terms are treated explicitly (forward Euler). The
system of equations that we have to solve is as follows:

1 )
i 4~ (u-Du+ D - (uw;))"| + D"tz
| " A 5 ( (wws)) P (20)

:uLu? 2 +fZL 2
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for ¢ =1,2,3, and
D-u"tz =0. (21)

Note that we use skew-symmetric differencing of the nonlinear terms.
That is, instead of discretizing u - Vu; directly, we discretize instead the
equivalent (because V - u = 0) expression 5 (u - Vu; + V - (uu;)). This
form is used both here in the preliminary substep and later in the final
substep, but it is here evaluated at time level n, and in the final substep
it will be evaluated at time level n + % . X

The unknowns in Eqns. (20, 21) are u?+5(m) and p""2 (z), and they
enter into these equations linearly and with constant coefficients. The
system of equations (20,21) can therefore be solved by fast Fourier
transform—see [2] for details. This completes the preliminary substep.

The final substep is simpler than the preliminary substep because we
already have the fiber forces at the time level n + % and do not need

to recompute them. First we use the fluid velocity u™3 that we have
just computed to find the fiber configuration X"*! at the end of the
timestep:

n+l n
% = 3w (@) (m — X3 (g, s)) K. (22)
xr

Note that this is an implementation of the midpoint rule.
The last thing that we have to do is to find the fluid velocity w"*! at
the end of the time step. This is done by solving the following system

in the unknowns ™! (z) and p”+% (x):

u?“ —u? 1 1 1
Z -Du, +D - )t g D.p™tz
p At + 9 (w uj + (uu;)) + Dip 1 (23)
= gul (uf +uf™) + 1
for+=1,2,3, and
D-u""! =0. (24)

(Note the distinction between p”"'% and 13""'%, which appeared above.
They are two different approximations to the pressure at time level n—l—%)
Here we have a mixture of the midpoint rule (for the nonlinear pressure
gradient and fiber force terms) and the trapezoidal rule (for the viscous
terms). Although Eqn. (24) does not appear to be centered in time, it
actually holds for all n and therefore implies that D-u"™ = 0, also. Thus,
the condition that the discrete divergence of the velocity should vanish
does indeed hold in a symmetrical way at both the beginning and end
of the timestep (and in the middle, too—see Eqn. (21)). The system of
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Eqns. (23,24) is very similar to Eqns. (20,21), and it is straightforward
to write a single subroutine based on the fast Fourier transform that can
be used to solve either of them. Since we have now computed X"+ and
u™t!, the timestep is complete.

4. RESULTS

The equations and numerical method described above have been used
in computer simulations of the heart. For details concerning the con-
struction of the heart model, see [2, 25]. The parameters are those of
the human heart. In particular, the viscosity is that of blood, and the
Reynolds number is physiological. (This is in contrast to earlier work
where the viscosity was artificially elevated for numerical reasons.) The
benchmark studies cited in the Introduction give reason to believe that
the physical viscosity is not dominated by numerical viscosity in the
computational results shown here.

We show two types of figure in the following. One type is intended
to show flow in terms of streamlines. The streamlines are obtained
by choosing a time of interest, fixing the velocity field at that given
time, and then computing and plotting what the trajectories of selected
fluid particles would be if the particles were to move in that (time-
independent) velocity field. In this way we construct curves that are
everywhere tangent to the fluid velocity field at the chosen time, and thus
indicate the spatial direction of flow at each point (except for sign, which
is usually clear from context). The density of the computed streamlines
has no particular significance and depends on the arbitrary placement
of the selected fluid particles. Note that streamlines cross boundaries
because the boundaries are in motion. This is a fundamental feature
of flow with moving boundaries, and it makes the flow geometry quite
different from what it would be if the boundaries were fixed in place.
Finally, we take a thin (but not infinitely thin) section through the heart
model at the chosen time, and plot whatever parts of the heart model
and of the streamlines that happen to lie within that section. This is
most effective if the plane of the section is approximately parallel to the
flow.

The other type of figure is intended to show structure only, and we
use it here to convey the structure of the heart valves of the model. For
this purpose we use a perspective view showing the fibers that comprise
the model valves.

Figure 1 shows a section through the model left ventricle during ven-
tricular diastole (relaxation). Flow through the open mitral valve fills
the left ventricle, and the closed aortic valve prevents backflow from the
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Figure 1 Section through the model left ventricle showing streamlines of ventricular
filling. The closed aortic valve is at the top, left side of the figure, and the open mitral
valve is at the top right. A pair of vortices (cross-section of a vortex ring) has been
shed from the mitral leaflets and has migrated downwards towards the apex of the
left ventricle.

aorta. Note the vortex pair (actually, the cross section of a ring vortex)
that was shed from the mitral valve and has since migrated most of the
way down towards the apex of the left ventricle. For a perspective view
of the open mitral valve, see Figure 2.

Figure 3 shows a cross section through the axis of the aorta, bisect-
ing one leaflet of the three-leaflet aortic valve. Behind that leaflet, a
prominent vortex is seen in the aortic sinus. This is the first time we
have been able to resolve an aortic sinus vortex; presumably we can do
so now because of the improved accuracy associated with the numerical
scheme described earlier. For a more detailed view of the structure of
the aortic and pulmonic valves of the model, see Fig. 4.
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Heart simulation with reduced numerical viscosity 13

Figure 2 Perspective view of the open mitral valve, seen from the left atrium looking
downwards into the left ventricle.

5. SUMMARY AND CONCLUSIONS

We have stated the equations of motion of a fiber-reinforced fluid and
have indicated how those equations may be used to obtain a unified
mathematical model of cardiac mechanics, including both the fluid dy-
namics of blood in the cardiac chambers and also the contractility of the
cardiac muscle and the elasticity of the heart valve leaflets. We have
also described an immersed boundary method with formal second-order
accuracy that can be used to solve the equations of this heart model.
Although this method is actually second-order accurate only when it is
applied to problems with smooth solutions, it nevertheless is useful for
problems with non-smooth solutions because of its reduced numerical
viscosity, which allows better resolution of the vortices that are shed
from the heart valve leaflets.
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Figure 3 Section containing the axis of the ascending aorta and approximately bi-
secting one leaflet of the aortic valve (the one on the left in the figure). A prominent
vortex appears in the sinus behind this leaflet.
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