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\Although during the past 50 years pure mathematicians have become more and

more rigorous, the restraints on applied mathematicians have been, in practice,

altogether removed. For instance, P. A. M. Dirac of Cambridge introduced a

`delta function' that has the property of being in�nite at one point and zero

everywhere else but has a �nite integral, and the applied men now make the

most reckless use of it without incurring any censure . . . "

|Sir Edmund Whittaker, Scienti�c American, September 1950

Abstract This paper describes a formally second-order accurate version of the

immersed boundary method and its application to the computer simu-

lation of blood 
ow in a three-dimensional model of the human heart.

1. INTRODUCTION

The immersed boundary method [1]{[3] was developed to study 
ow

patterns around heart valves, and is a generally useful method for prob-

lems in which elastic material interacts with a viscous incompressible


uid. (The elastic material may have time-dependent elastic param-

eters, in which case it can contract and relax, like a muscle.) Most

problems of bio
uid dynamics are of this kind, and the method has been

applied to several such problems [2], [4]{[18]. Until recently, however,

the immersed boundary method was only �rst-order accurate.

An immersed boundary method with formal second-order accuracy

was introduced in the Ph.D. thesis of Ming-Chih Lai [19]|see also [20].
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(The concept of \formal" second-order accuracy will be explained be-

low.) Lai applied this new methodology to the well-known two-

dimensional benchmark problem of 
ow past a cylinder, for which the

�rst-order accurate immersed boundary method typically generates a

drag that is too high and a Strouhal number (for vortex shedding) that

is too low, each by about 20%, on a typical grid. On the same grid, Lai

found that the formally second-order accurate method is in excellent

agreement with physical experiments and with other high-precision nu-

merical methods. The improved accuracy was accompanied by a visible

improvement in the resolution of vortices shed from the cylinder, which

look tighter (less di�use) than those generated in the corresponding �rst-

order accurate simulation. Taken together, these changes strongly sug-

gest that the main bene�t of the formally second-order method is a

reduction in numerical viscosity.

Our purpose here is to apply this improved, benchmarked methodol-

ogy to the heart. This application requires a three-dimensional imple-

mentation, which is the main advance reported here, but we have also

made a few minor methodological changes along the way, so the method

reported in this paper will be slightly di�erent from the one in the Lai

references cited above.

Formal second-order accuracy means that the method in question

would be second-order accurate if it were applied to a problem with a

smooth solution. In practice, however, the immersed boundary method

is often applied to problems involving an immersed elastic interface, such

as a heart valve lea
et. Across such a material interface in a viscous 
uid,

the velocity is continuous but its normal derivatives are not. This dif-

�culty has been overcome by a more complicated methodology known

as the immersed interface method, pioneered by Zhilin Li and Randall

LeVeque [21], but it has not yet been overcome within the framework of

the immersed boundary method.

What then is the bene�t of formal second-order accuracy? The answer

has already been suggested above. This class of methods has reduced

numerical viscosity and is therefore capable of improved resolution of

vortex phenomena that are so important in 
uid dynamics in general

and in cardiac 
uid dynamics in particular.

2. EQUATIONS OF MOTION

We begin by stating the equations of motion of an idealized composite

material known as a �ber-reinforced 
uid. This is a viscous incompress-

ible 
uid containing an immersed system of elastic �bers. The �bers are

pure force generators: they contribute neither mass nor volume to the
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composite, only a �ber stress, which by de�nition points always in the

�ber direction. The �ber stress depends on the �ber strain in a possibly

nonlinear, time-dependent, and spatially inhomogeneous manner. The

�bers move at the local 
uid velocity. Mass, volume, incompressibility,

and rheological properties are all supplied by the 
uid component of the

composite.

For two di�erent derivations of the equations of motion of a �ber-

reinforced 
uid, see [22, 23]. The notation used here will be de�ned

after the equations have been stated. The equations are as follows:

�

�
@u

@t
+ u � ru

�
+rp = �r

2
u+ f ; (1)

r � u = 0 ; (2)

f(x; t) =

Z
F (q; r; s; t) Æ (x�X(q; r; s; t)) dq dr ds ; (3)

@X

@t
(q; r; s; t) = u (X(q; r; s; t); t)

=

Z
u(x; t) Æ (x�X(q; r; s; t)) dx ; (4)

F =
@

@s
(T t) ; (5)

T = �

�����@X@s
���� ; q; r; s; t

�
; (6)

t =
@X=@s

j@X=@sj
: (7)

In this system, Eqns. (1, 2) are 
uid equations, Eqns. (5{7) are �ber

equations, and Eqns. (3, 4) are interaction equations. We describe the

notation and meaning of each of these subsystems of equations in turn.

The 
uid equations (1, 2) are the familiar Navier{Stokes equations of

a viscous incompressible 
uid. The constant parameters � and � are the


uid density and viscosity, respectively. The unknown functions in the

the 
uid equations are the 
uid velocity u(x; t), the 
uid pressure p(x; t),

and the force per unit volume applied by the �bers to the 
uid f(x; t),

where x = (x1; x2; x3) is the spatial position (in Cartesian coordinates),

and t is the time. Note that f(x; t) is conceptually the divergence of the

�ber stress tensor, but we do not make make explicit use of that stress

tensor in this formulation of the equations of motion.

The �ber equations (5{7) are written in material curvilinear coor-

dinates that are aligned with the �bers. We denote these coordinates
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(q; r; s). They are chosen in such a way that �xed values of (q; r) de�ne

a particular �ber (for all time) and �xed values of (q; r; s) de�ne a par-

ticular material point (for all time). The unknown function X(q; r; s; t)

completely describes the motion of the �bers, and also their spatial con-

�guration at any given time. For example, if we hold (q; r; s) �xed, then

the equation x =X(q; r; s; t) de�nes the trajectory of the material point

whose coordinates are (q; r; s). On the other hand, if we hold (q; r) and t

�xed but let s vary, then the same equation x =X(q; r; s; t) de�nes the

space curve that happens to be occupied by the �ber whose coordinates

are (q; r) at the time t.

Other unknown functions of (q; r; s; t) that appear in the �ber equa-

tions are the unit tangent vector to the �bers t(q; r; s; t) (not to be

confused, of course, with the scalar t, which denotes the time), the �ber

tension T (q; r; s; t), and the �ber force density F (q; r; s; t). More pre-

cisely, T and F are de�ned by the statements that the force transmitted

by the bundle of �bers dq dr is �T tdq dr, and the force applied to the


uid by the �bers lying within the chunk of material de�ned by dq dr ds

is F dq dr ds.

Taken together, the �ber equations describe how to calculate the �ber

force density F from the �ber con�gurationX at any given time. Equa-

tion (5) relates the �ber force density F to the �ber tension T and the

unit tangent t. This relationship can be derived by considering the force

balance on a bundle of �ber segments de�ned by s1 � s � s2, with s1 and

s2 arbitrary, and (q; r) in some arbitrary but speci�ed set. Recalling that

the �bers are massless, and making use of the fundamental theorem of

calculus, we can derive Eqn. (5). (For more detail about this derivation,

see [22].) Equation (6) is the constitutive law of the �bers. It de�nes

the �ber tension, or stress, T , as a given function � of j@X=@sj, which

determines the �ber strain. Note the explicit dependence of this stress{

strain relation on the material coordinates (q; r; s) and on the time t.

The explicit time dependence is particularly important in the heart; it

is what allows the heart muscle to contract and relax. Finally, Eqn. (7)

simply de�nes the unit tangent t to the �bers. Since (q; r) are constant

along any given �ber, the vector @X=@s is tangent to the �bers, so we

need only normalize this vector to obtain the unit tangent t.

Finally, we come to the interaction equations (3, 4). These both in-

volve the three-dimensional Dirac delta function

Æ(x) = Æ(x1)Æ(x2)Æ(x3) ; (8)

which expresses the local character of the interaction. Equation (3) is

a slightly nonstandard way of expressing the relationship between the

two corresponding force densities f(x; t) dx and F (q; r; s; t) dq dr ds. To

D R A F T December 20, 2000, 5:46am D R A F T



Heart simulation with reduced numerical viscosity 5

see that this is the content of Eqn. (3), integrate both sides over an

arbitrary region 
 of space. On the right-hand side, interchange the

order of integrations (justi�ed by the formal character of all equations

involving the delta function), and recall that
R


Æ(x �X) dx yields the

value 1 if X is within 
 and 0 otherwise.

Equation (4) is the no-slip condition of a viscous 
uid, which says,

in our case, that the �bers move at the local 
uid velocity. In the sec-

ond form of Eqn. (4), we just make use of the de�ning property of the

delta function to rewrite the no-slip condition in a form that resembles

Eqn. (3). Then each of the interaction equations involves an integral

transformation with Æ(x�X(q; r; s; t)) as kernel. In Eqn. (3), the inte-

gration is with respect to (q; r; s), so we are left with a function of (x; t),

but in Eqn. (4), the integration is with respect to x, so we are left with

a function of (q; r; s; t). A more subtle di�erence between these equa-

tions, though, is that the integration variable x appears directly in the

argument of the delta function, whereas the integration variables (q; r; s)

appear only indirectly, via the nonlinear function X(q; r; s; t). That is

why the corresponding densities F (q; r; s; t) and f(x; t) do not have the

same numerical values at corresponding points.

The distinction between F and f becomes even more signi�cant when

the �bers in question are localized on a surface, as in the case of a heart

valve lea
et. One of the main strengths of the above formulation is that

it can handle this case with only minor modi�cation. If the �bers are

localized on a surface, we must drop one of the curvilinear coordinates,

say q. Then Eqn. (3) becomes

f(x; t) =

Z
F (r; s; t) Æ (x�X(r; s; t)) dr ds : (9)

Here, Æ(x) is still the three-dimensional Dirac delta function, but the

integration is only over the two-dimensional surface obtained by varying

(r; s). It follows that f(x; t) is singular like a one-dimensional delta

function. In other words, the force per unit volume applied by a lea
et

to the 
uid in which it is immersed is in�nite, but has the property that

its integral over any �nite volume is �nite.

In summary, the state of our system at some �xed time t is given

by the velocity �eld u(x; t) and by the �ber con�guration X(q; r; s; t).

Given the �ber con�guration X(q; r; s; t), Eqns. (5{7) determine the

�ber force density F (q; r; s; t) in curvilinear coordinates. Then Eqn. (3)

converts this density to the �ber force density f(x; t) in Cartesian co-

ordinates. With f known, the incompressible Navier{Stokes equations

(1, 2) determine @u=@t (and p as a byproduct). Finally, Eqn. (4) deter-

mines @X=@t. Thus we have, in e�ect, a �rst-order system, in which
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the state of the system (in our case (u;X)) determines its own rate of

change (@u=@t; @X=@t).

In applying these equations to the heart, we regard the thick mus-

cular walls as a �ber-reinforced 
uid with time-dependent elastic pa-

rameters. Here the �bers correspond to the thick (myosin) and thin

(actin) �laments of cardiac muscle, and the 
uid is the intracellular

water. Vessel walls are modeled similarly, except that the �bers that re-

inforce them represent the elastin and collagen of those vessels and have

time-independent elastic properties. Heart valve lea
ets are modeled

as �ber(collagen)-reinforced surfaces|see Eqn. (9) and the surrounding

discussion. Blood in the cardiac chambers is simply governed by the

Navier{Stokes equations, i.e. it is the special case of a �ber-reinforced


uid in which there are no �bers. For the tissue exterior to the heart

we again use simply the Navier{Stokes equations, though one could go

to the trouble to put some �bers there to model the elasticity of the

external medium. Instead of this, we hold the heart loosely in place by

tethering the aorta and pulmonary artery of the model to �xed locations

in space by soft springs that allow recoil of the heart without letting it jet

away completely. Finally we enclose the whole system in a cube with pe-

riodic boundary conditions. Since it is not practical to model the whole

circulation within this cube, sources and sinks are provided to connect

the veins and arteries of the model heart through hydraulic resistances

to constant-pressure reservoirs. An external source/sink is also provided

to allow for changes in volume of the heart during the cardiac cycle.

The methodology used to handle sources and sinks is omitted from this

paper to simplify the presentation.

3. NUMERICAL METHOD

We now describe a variant of the immersed boundary method with

formal second-order accuracy. (See the Introduction for references and

explanation of what is meant by \formal" second-order accuracy.) This

is essentially a second-order Runge{Kutta method|see for example [24].

Each time step proceeds in two substeps, which we shall call the \pre-

liminary" substep and the \�nal" substep. The preliminary substep

proceeds from time level n to time level n+ 1

2
by a �rst-order accurate

method, which in our case will be a hybrid of the forward and backward

Euler method. Then the �nal substep starts again at time level n and

proceeds directly to time level n+1 by a second-order accurate method,

which in our case will be a hybrid of the midpoint rule and the trape-

zoidal rule. The data at time level n+ 1

2
that are needed to implement the

midpoint rule are obtained from the results of the preliminary substep.
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Since those data were computed by a �rst-order accurate method, the

reader may well ask how the overall scheme can be second-order accu-

rate. This is the magic of the Runge{Kutta methodology, which extracts

higher-order results from lower-order ingredients. The basic reason why

it works is that a single time step of a �rst-order accurate numerical

scheme introduces errors that are only O((�t)2). (The �rst-order ac-

curacy of the scheme manifests itself only when the scheme is used to

compute over a time interval of O(1), which requires a large number,

O((�t)�1), of steps.) Thus our preliminary substep in fact produces

results that are within O((�t)2) of the exact solution at the midpoint

of the time step, and this fact allows the second-order accuracy of the

�nal substep to be the overall accuracy of the scheme.

We use a superscript to denote the time level. Thus Xn(q; r; s) is

shorthand for X(q; r; s; n�t), where �t is the duration of the time step,

and similarly for all other variables. The given data at the beginning of

the time step are Xn and un; the goal is to compute Xn+1 and un+1.

Before describing how this is done, we have to say a few words about

the spatial discretization. There are, in fact, two such discretizations:

one for the 
uid and one for the �bers.

The grid on which the 
uid variables are de�ned is a �xed, uniform

cubic lattice of meshwidth h = �x1 = �x2 = �x3. We shall make

extensive use of the central di�erence operator Di, de�ned for i = 1; 2; 3

as follows:

(Di�)(x) =
�(x+ he

i)� �(x� he
i)

2h
; (10)

where ei is the unit vector in the ith coordinate direction. As the no-

tation suggests, Di can be regarded as the ith component of a vector

di�erence operator D, in exactly the same way as @=@xi is the ith com-

ponent of the vector di�erential operatorr. ThusDp will be the discrete

gradient of p, and D � u will be the discrete divergence of u.

We shall also make use, in the viscous terms only, of a centered discrete

Laplacian L, which is not the same as D �D, the distinction being that

the stencil of L is half as wide as the stencil of D � D. This \tight"

discrete Laplacian is de�ned as follows:

(L�)(x) =

3X
i=1

�(x+ he
i) + �(x� he

i)� 2�(x)

h2
: (11)

The �ber variables are de�ned on a �xed rectangular lattice in (q; r; s)

space with meshwidths �q, �r, and �s, respectively. Note, however,

that this �xed rectangular lattice in (q; r; s) space de�nes a moving curvi-

linear lattice in the physical space. Along each �ber, i.e. in the s direc-

tion, it is natural to stagger the variables in the following way: We de�ne
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the position variable X and the force density F only at values of s that

are integer multiples of �s, but we de�ne the �ber tension T and the

unit tangent to the �bers t only at \half-integer" multiples of �s, i.e. at

s = (k+ 1

2
)�s, where k is an integer. These staggered data are connected

by a central di�erence operator Ds de�ned as follows:

(Ds�)(q; r; s) =
�
�
q; r; s+ 1

2
�s
�
� �

�
q; r; s�

1

2
�s
�

�s
: (12)

The 
uid mesh and the �ber mesh de�ned above are connected by a

smoothed approximation to the Dirac delta function. It is denoted Æh

and is of the following form:

Æh(x) =
1

h3
�

�
x1

h

�
�

�
x2

h

�
�

�
x3

h

�
; (13)

where x = (x1; x2; x3), and where the function � is determined by the

following conditions:

1 � is a continuous function.

2 �(r) = 0 for jrj � 2.

3 For all r,
P

j even
�(r � j) =

P
j odd

�(r � j) = 1

2
.

4 For all r,
P

j
(r � j)�(r � j) = 0.

5 For all r,
P

j
(�(r � j))2 = C, where C is a numerical constant,

independent of r.

The motivation for these postulates is discussed in [2]. It follows (exercise

for the reader!) that C = 3

8
and that � is given by

�(r) =

8>>>>><
>>>>>:

3� 2jrj+
p
1 + 4jrj � 4r2

8
; jrj � 1 ;

5� 2jrj �
p
�7 + 12jrj � 4r2

8
; 1 � jrj � 2 ;

0 ; 2 � jrj :

(14)

This is an even, bell-shaped function, which not only is continuous but

has a continuous �rst derivative. The construction of Æh is now complete.

We are now ready to describe a typical timestep of the numerical

scheme. The preliminary substep, which goes from time level n to n+ 1

2
,

proceeds as follows:
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First, we update the position of the �ber points Xn+
1

2 (q; r; s):

X
n+

1

2 �X
n

�t=2
=
X
x

u
n(x)Æh (x�X

n(q; r; s)) h3 ; (15)

which is a discretization of Eqn. (4). Here and throughout the paperP
x
denotes the sum over the cubic lattice in physical space on which

the 
uid variables are de�ned. Similarly,
P

q;r;s
will denote the sum over

the rectangular lattice in (q; r; s) space on which the �ber positions X

and force densities F are de�ned.

Next, we calculate the �ber force density F n+
1

2 associated with the

�ber con�guration X
n+

1

2 as follows. First we evaluate the �ber ten-

sions and unit tangents (at the half-integer multiples of �s where these

quantities are de�ned):

T
n+

1

2 = �
n+

1

2

����DsX
n+

1

2

��� ; q; r; s� ; (16)

t
n+

1

2 =
DsX

n+
1

2���DsX
n+

1

2

��� : (17)

These are discretizations of Eqns. (6) and (7). Next, we use these re-

sults to evaluate the �ber force density F n+
1

2 from the discretization of

Eqn. (5):

F
n+

1

2 = Ds

�
T

n+
1

2 t
n+

1

2

�
: (18)

The next step is to convert the �ber force density from curvilinear to

Cartesian coordinates. This is done by a discretization of Eqn. (3):

f
n+

1

2 (x) =
X
q;r;s

F
n+

1

2 (q; r; s) Æh

�
x�X

n+
1

2 (q; r; s)
�
�q�r�s : (19)

With f
n+

1

2 in hand, we are now ready to tackle the Navier{Stokes

equations. The method we use to reach the time level n + 1

2
in the

preliminary substep is essentially the backward Euler method, except

that the nonlinear terms are treated explicitly (forward Euler). The

system of equations that we have to solve is as follows:

�

2
4un+

1

2

i
� u

n

i

�t=2
+
1

2
(u �Dui +D � (uui))

n

3
5+Di~p

n+
1

2

= �Lu
n+

1

2

i
+ f

n+
1

2

i

(20)
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for i = 1; 2; 3, and

D � u
n+

1

2 = 0 : (21)

Note that we use skew-symmetric di�erencing of the nonlinear terms.

That is, instead of discretizing u �rui directly, we discretize instead the

equivalent (because r � u = 0) expression 1

2
(u � rui +r � (uui)). This

form is used both here in the preliminary substep and later in the �nal

substep, but it is here evaluated at time level n, and in the �nal substep

it will be evaluated at time level n+ 1

2
.

The unknowns in Eqns. (20, 21) are u
n+

1

2

i
(x) and ~pn+

1

2 (x), and they

enter into these equations linearly and with constant coeÆcients. The

system of equations (20, 21) can therefore be solved by fast Fourier

transform|see [2] for details. This completes the preliminary substep.

The �nal substep is simpler than the preliminary substep because we

already have the �ber forces at the time level n + 1

2
and do not need

to recompute them. First we use the 
uid velocity un+
1

2 that we have

just computed to �nd the �ber con�guration X
n+1 at the end of the

timestep:

X
n+1

�X
n

�t
=
X
x

u
n+

1

2 (x)Æh

�
x�X

n+
1

2 (q; r; s)
�
h
3
: (22)

Note that this is an implementation of the midpoint rule.

The last thing that we have to do is to �nd the 
uid velocity un+1 at

the end of the time step. This is done by solving the following system

in the unknowns un+1

i
(x) and p

n+
1

2 (x):

�

�
u
n+1

i
� u

n

i

�t
+
1

2
(u �Dui +D � (uui))

n+
1

2

�
+Dip

n+
1

2

= 1

2
�L
�
u
n

i
+ u

n+1

i

�
+ f

n+
1

2

i

(23)

for i = 1; 2; 3, and

D � u
n+1 = 0 : (24)

(Note the distinction between p
n+

1

2 and ~pn+
1

2 , which appeared above.

They are two di�erent approximations to the pressure at time level n+1

2
.)

Here we have a mixture of the midpoint rule (for the nonlinear pressure

gradient and �ber force terms) and the trapezoidal rule (for the viscous

terms). Although Eqn. (24) does not appear to be centered in time, it

actually holds for all n and therefore implies that D �u
n = 0, also. Thus,

the condition that the discrete divergence of the velocity should vanish

does indeed hold in a symmetrical way at both the beginning and end

of the timestep (and in the middle, too|see Eqn. (21)). The system of
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Eqns. (23, 24) is very similar to Eqns. (20, 21), and it is straightforward

to write a single subroutine based on the fast Fourier transform that can

be used to solve either of them. Since we have now computed Xn+1 and

u
n+1, the timestep is complete.

4. RESULTS

The equations and numerical method described above have been used

in computer simulations of the heart. For details concerning the con-

struction of the heart model, see [2, 25]. The parameters are those of

the human heart. In particular, the viscosity is that of blood, and the

Reynolds number is physiological. (This is in contrast to earlier work

where the viscosity was arti�cially elevated for numerical reasons.) The

benchmark studies cited in the Introduction give reason to believe that

the physical viscosity is not dominated by numerical viscosity in the

computational results shown here.

We show two types of �gure in the following. One type is intended

to show 
ow in terms of streamlines. The streamlines are obtained

by choosing a time of interest, �xing the velocity �eld at that given

time, and then computing and plotting what the trajectories of selected


uid particles would be if the particles were to move in that (time-

independent) velocity �eld. In this way we construct curves that are

everywhere tangent to the 
uid velocity �eld at the chosen time, and thus

indicate the spatial direction of 
ow at each point (except for sign, which

is usually clear from context). The density of the computed streamlines

has no particular signi�cance and depends on the arbitrary placement

of the selected 
uid particles. Note that streamlines cross boundaries

because the boundaries are in motion. This is a fundamental feature

of 
ow with moving boundaries, and it makes the 
ow geometry quite

di�erent from what it would be if the boundaries were �xed in place.

Finally, we take a thin (but not in�nitely thin) section through the heart

model at the chosen time, and plot whatever parts of the heart model

and of the streamlines that happen to lie within that section. This is

most e�ective if the plane of the section is approximately parallel to the


ow.

The other type of �gure is intended to show structure only, and we

use it here to convey the structure of the heart valves of the model. For

this purpose we use a perspective view showing the �bers that comprise

the model valves.

Figure 1 shows a section through the model left ventricle during ven-

tricular diastole (relaxation). Flow through the open mitral valve �lls

the left ventricle, and the closed aortic valve prevents back
ow from the
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Figure 1 Section through the model left ventricle showing streamlines of ventricular

�lling. The closed aortic valve is at the top, left side of the �gure, and the open mitral

valve is at the top right. A pair of vortices (cross-section of a vortex ring) has been

shed from the mitral lea
ets and has migrated downwards towards the apex of the

left ventricle.

aorta. Note the vortex pair (actually, the cross section of a ring vortex)

that was shed from the mitral valve and has since migrated most of the

way down towards the apex of the left ventricle. For a perspective view

of the open mitral valve, see Figure 2.

Figure 3 shows a cross section through the axis of the aorta, bisect-

ing one lea
et of the three-lea
et aortic valve. Behind that lea
et, a

prominent vortex is seen in the aortic sinus. This is the �rst time we

have been able to resolve an aortic sinus vortex; presumably we can do

so now because of the improved accuracy associated with the numerical

scheme described earlier. For a more detailed view of the structure of

the aortic and pulmonic valves of the model, see Fig. 4.
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Figure 2 Perspective view of the open mitral valve, seen from the left atrium looking

downwards into the left ventricle.

5. SUMMARY AND CONCLUSIONS

We have stated the equations of motion of a �ber-reinforced 
uid and

have indicated how those equations may be used to obtain a uni�ed

mathematical model of cardiac mechanics, including both the 
uid dy-

namics of blood in the cardiac chambers and also the contractility of the

cardiac muscle and the elasticity of the heart valve lea
ets. We have

also described an immersed boundary method with formal second-order

accuracy that can be used to solve the equations of this heart model.

Although this method is actually second-order accurate only when it is

applied to problems with smooth solutions, it nevertheless is useful for

problems with non-smooth solutions because of its reduced numerical

viscosity, which allows better resolution of the vortices that are shed

from the heart valve lea
ets.
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Figure 3 Section containing the axis of the ascending aorta and approximately bi-

secting one lea
et of the aortic valve (the one on the left in the �gure). A prominent

vortex appears in the sinus behind this lea
et.
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