
Contemporary Mathematics 
Volume 141, 1993 

An Implicit Numerical Method for 
Fluid Dynamics Problems with 
Immersed Elastic Boundaries 

ANITA A. MAYO* AND CHARLES S. PESKINt 

ABSTRACT. Problems of biofluid-dynarnics often involve the interaction of 
a viscous incompressible fluid with an immersed elastic boundary. One 
method of computing solutions of such problems is by using a regular 
Eulerian mesh for the fluid-dynamics calculation, and a Lagrangian rep­
resentation of the immersed boundary as a sequence of particles or discrete 
delta functions. These two representations are coupled in a particle-mesh­
type calculation. In this paper we introduce a new implicit method which 
is significantly less expensive than the fully implicit method, and which is 
more stable than the approximate implicit method. 

1. Introduction 

Problems of biological fluid dynamics often involve the interaction of a viscous 
incompressible fluid with an elastic immersed boundary. One approach to the 
solution of such problems is to use a regular Eulerian computational lattice for 
the fluid-dynamics computation together with a Lagrangian representation of the 
immersed boundary, the Eulerian and Lagrangian representations being coupled 
by a carefully chosen approximation to the Dirac delta function (Ref. 1). This 
approach has been applied to problems of blood flow in the heart (Ref. 1), wave 
propagation in the cochlea (Ref. 2), aquatic animal locomotion (Ref. 3), platelet 
aggregation during blood clotting (Ref. 4), and the flow of suspensions (Refs. 5, 
6). 

In all such computations, there is a serious issue of numerical stability. In­
stability may arise in the following way. Suppose that the force-field applied by 
the immersed boundary to the fluid at a given time-step is computed from the 

1991 Mathematics Subject Classification. Primary 65; Secondary 35. 
The final version of this paper will be submitted for publication elsewhere. The second au­

thor was supported in part by the National Institutes of Health under research grant HL17859. 

261 

© 1993 American Mathematical Society 
0271-4132/93 $1.00 + $.25 per page 



262 A. A. MAYO AND C. S. PESKIN 

boundary configuration at the beginning of the time-step (an explicit scheme). 
Then, if the boundary is too stiff or the time-step is too large, the boundary may 
overshoot equilibrium and arrive, at the end of the time-step, at a configuration 
for which the force-field is roughly in the opposite direction and of consider­
ably greater magnitude than the force-field computed at the beginning of the 
time-step. Repetition of this process over several time-steps leads to a complete 
failure of the computation; the boundary appears to explode. 

The difficulty that we have just described may be overcome in principle by 
using an implicit scheme, in which the boundary force is computed from the 
boundary configuration at the end of the time-step. Note, however, that this 
configuration is unknown (hence the name "implicit") and depends in a compli­
cated way on the very force which one is trying to compute. Because of the diffi­
culty in actually solving for the boundary force at the end of the time-step, most 
immersed-boundary computations have used an approximately implicit scheme 
in which, for purposes of the force computation only, an approximation has been 
introduced to simplify the influence of the boundary force on the boundary con­
figuration at the end of the time-step. 

The thesis of Tu (Ref. 7) compares the behavior of an explicit, an approxi­
mately implicit, and an implicit scheme (for Stokes flow) in a region containing 
an immersed elastic boundary. In her work, the approximately-implicit scheme 
has a greater range of stability than the explicit scheme, but it is not uncondi­
tionally stable. The implicit scheme does appear to be unconditionally stable, 
but it is very expensive to use. Thus, Tu's thesis leads to the challenge of imple­
menting an implicit scheme for the immersed-boundary problem at a reasonable 
cost. The goal of this paper is to meet that challenge. 

2. Equations of motion 

For simplicity we consider the model problem of a two-dimensional viscous 
incompressible fluid containing an immersed massless elastic boundary in the 
form of a simple closed curve. The fluid is contained in a periodic square domain 
n of side L and is characterized by its mass density p and its viscosity p.. The 
fluid velocity and pressure are to be described in Eulerian form by the functions 
u(x, t) and p(x, t). 

The immersed boundary is to be described in Lagrangian form by the function 
X(s,t), 0 ~ s ~ 211', with X(s+21r,t) = X(s,t). This function gives the position 
at the t of the material point whose Lagrangian label is s. We assume that the 
force applied by an arc ds of the boundary to the fluid with which it is in contact 
is given by the expression f(s,t)ds where f(s,t) = KfPXjfJs2 , and where I< is 
a given stiffness constant. 

Remark. This particular elasticity law may be derived from the assumption 
that the elastic energy stored in the immersed boundary at time t is given by 

E= -I< - ds. 1 1
2 

.. 

1
fJxl 2 

2 0 OS 
(1) 



IMPLICIT METHOD FOR ELASTIC BOUNDARIES 263 

Note that this is minimized when the boundary curve has shrunk to a point. 
Thus we are assuming that the unstressed length of the boundary is zero, a 
condition which is necessary in order to achieve a linear mapping from X(, t) to 
f(, t). (As the reader may verify, a linear stress-strain relation with nonzero rest 
length leads to a nonlinear mapping from X to f.) This linearity is convenient 
but not essential for what follows. 

With the above notation and assumptions we have the following equations of 
motion: 

p (a; + u · V'u) = - V'p + JJV'2u + F(x, t), 

V'. u = 0, 

r" iPX F(x, t) = K Jo 882 (s, t)82 (x- X(s, t)] ds, 

~~ (s, t) = u (X(s, t), t] = l u(x, t)82 (x- X(s, t)] dx. 

(2) 

(3) 

(4) 

(5) 

Note that equations (2) and (3) are the Navier-Stokes equations of a viscous 
incompressible fluid acted upon by a force density F(x, t). In our case, this force 
density arises from the immersed boundary and is given by equation ( 4). The 
delta function in equation (4) is two-dimensional, P(x) = 8(x!)8(x2), where 
x = (x1 , x 2 ), and it expresses the local character of the interaction between the 
immersed boundary and the fluid. It is also worth mentioning that equation ( 4) 
is equivalent to the statement that 

J {2"' 82X 
F(x, t) · w(x, t) dx = K Jo 882 (s, t) · w (X(s, t), t] ds (6) 

for all smooth test functions w. If we interpret w as a velocity, this is equivalent 
to conservation of energy, since the left-hand side is the work done on the fluid 
and the right-hand side is the work done by the immersed boundary. Equa­
tion (5) is the no-slip condition which here appears as an equation of motion 
for the immersed boundary. The second form of equation (5) is written down 
to emphasize the symmetry with equation ( 4) and to motivate our numerical 
scheme. 

3. The implicit scheme 

The fluid equations are discretized according to the projection method of 
Chorin (Ref. 8) with the boundary force added in the projection step. The 
boundary force is determined, however, from the unknown boundary configura­
tion at the end of the time-step. The resulting implicit scheme may be stated as 
follows: 

(7) 



264 A. A. MAYO AND C. S. PESKIN 

• 

X 

(8) 

(9) 

(10) 

(11) 

(12) 

In these equations, the first superscript on a variable is the time-step index. 
Thus, un = u(, n~t), where ~tis the duration of the time-step. When a second 
superscript appears, it denotes an intermediate quantity computed on the way to 
determining the main quantity of interest. Thus, un+l,l and un+1, 2 are stepping 
stones in the computation of un+l. The independent variable x takes values in 
the lattice of points x = (hh,h,h), where hand hare integers. The sum in 
equation (12) is a sum over this lattice. Similarly, the independent variable s 

takes values of the forms= khB, hB = 27r/nB, where k and nB are integers. 
The sum in equation ( 11) is a sum over one period of s, that is, over those values 
of s given by k = 0, ... , nB- 1. The subscripts in equations (7) and (8) refer to 
the two space directions. Thus, u1 and u2 are the two components of the vector 
un. 

The spatial difference operators which appear in equations (7) to (10) are 
defined as follows. For r = 1, 2, 

(D~ ¢) (x) = ¢(x +her)- ¢(x), 
h 

(D; ¢) (x) = ¢(x)- ¢(x- her), 
h 

(D~¢) (x) = ¢(x +her); ¢(x- her), 

2 

D = (D~,Dg) = LerD~, 
r=l 

(13) 

(14) 

(15) 

(16) 

where er is the unit vector in the space direction r. Note that Dis the difference 
analog of the vector differential operator 'V, and that Dp corresponds to 'V p, 

the gradient of p, while D · u corresponds to 'V · u, the divergence of u. The 
difference operators D"f" and D; which appear in equation (11) are applied to 
functions of the boundary variables. Their definitions are similar to equations 
(13) and (14): 

(D"f"V;) (s) = 1/J(s + h:1- 1/;(s), 

(D;V;) (s) = V;(s)- 1/;(s- hB). 
hB 

(17) 

(18) 



IMPLICIT METHOD FOR ELASTIC BOUNDARIES 265 

The function 6~ which appears in equations (11) and (12) is defined as follows: 

(19) 

where x = (x1, x2), and where 

oh(x) = { ~~ (1 +cos;~) (20) 

This is a smoothed approximation to the Dirac delta function. The motivation 
for this particular choice of oh is discussed in (Ref. 1 ). 

Clearly, equations (10) to (12) are discretizations of equations (3) to (5), 
respectively. To see the connection between equations (7) to (9) and equation 
(2), just add equations (7) to (9) and note the cancellation of u"+1•1 and u"+1•2 

in the time-difference terms. The result is 

P (
un+1 - u" + u" DOun+l,l + u" Doun+l,2) 

!:::..t 1 1 2 2 

= -Dpn+1 + /J (D{ D}un+l,l + Dt Dzun+1,2) + Fn+l. (21) 

This is a discretization of equation (2), since un+I,l and un+1 •2 are within O(!:::..t) 
ofun (or u"+1). 

The structure of the implicit scheme, equations (7) to (12), may now be sum­
marized as follows. In equation (7), the unknowns are un+1•1(x). The difference 
operators in equation (7) involve coupling in the x1-direction only, and points 
are only coupled to their nearest neighbors. Thus, equation (7) amounts to col­
lection of separate tridiagonal systems, one for each row of the computational 
lattice. Similarly, equation (8) is a collection of separate tridiagonal systems 
for the unknowns un+1 •2 (x), and there is one such tridiagonal system for each 
column of the computational lattice. Note that equations (7) and (8) do not 
involve the immersed boundary at all. 

Once equations (7) and (8) have been solved, it is necessary to solve equations 
(9) to (12) simultaneously for the unknowns un+I, pn+t, xn+t, F"+l. How to 
do so is described in the next section. 

4. Implicit equations for boundary configuration at end of time-step 

This section is concerned with the solution of equations (9) to (12). We 
begin by introducing a more succinct notation. First, note that the subsystem 
of equations (9) and (10) defines un+l as the orthogonal projection of un+1,2 + 
( !:::..t/ p )F"+l onto the space of (discretely) divergence-free vector fields. Thus, 
we may write 

(22) 



266 A. A. MAYO AND C. S. PESKIN 

where the operator P has the characteristic properties of an orthogonal projec­
tion: 

p2 = p = P*. (23) 

(Here and in the sequel we use the superscript * to denote the adjoint of an 
operator.) 

Next we introduce notation for the operations which appear in equations (11) 
and (12). First, let sn be the interpolation operator defined as follows: 

(24) 
X 

Its adjoint, (Sn )*, is given by 

(25) 

The statement that (Sn )* is the adjoint of sn is justified by the following identity: 

X 

In terms of sn and (Sn)*, equations (11) and (12) become 

Fn+l- (sn)* KD+ n-xn+l 
- 8 " ' 

xn+l = xn + (6.t)Snun+l. 

(26) 

(27) 

(28) 

Combining equations (22), (27), and (28), we get the following linear system for 
xn+l: 

This system is of the form 

X= Z+ SPS* AX, (30) 

where we have dropped the time-step indices, and where we have introduced the 
notation Z for the known vector xn + (6.t)Sn Pun+1•2 , and the notation A for 
the operator [(6.t)2 K/ p] D'f' D;. It is easy to show that A is symmetric and 
negative semidefinite: 

A*=A::;O. (31) 

(We use the shorthand A ::; 0 to mean X* AX ::; 0 for all X.) Moreover, the 
matrix A has the following useful property: 

X* AX = 0 ::} AX = 0. (32) 

To see this, recall that D'f' = (D;)*. Hence, if X* AX= 0, then X*(D; )* D; X= 
0, which implies that D;X = 0 and, hence, that AX= 0. 



IMPLICIT METHOD FOR ELASTIC BOUNDARIES 267 

We can use this property of A to show that (I - S P S* A) is invertible (and 
hence that equation (30) has a unique solution). Suppose 

(I- SPS* A)X = 0. (33) 

We want to show that X = 0. To do this, multiply both sides by -X* A. The 
result is 

-X* AX+ X* ASPS* AX= 0. (34) 

Since both terms on the left are nonnegative, they must be separately zero. Thus, 
X* AX = 0, and this implies that AX = 0 (as shown above). Once we know 
that AX = 0 equation (33) shows that X = 0. This completes the proof that 
I- SPS* A is invertible. It follows that equation (30) [and hence equations (9) 
to (12)] have a unique solution. The implicit scheme is well-defined. 

We have solved the linear system described by equation (30) by several dif­
ferent methods. 

The simplest method we used was by the iteration of the form 

(35) 

where the superscripts here denote iteration number (within a given time-step), 
not the time-step index. The operator .X which appears in equation (35) is 
a multiplication operator (diagonal matrix) consisting of multiplication by the 
function .X( s) defined as follows: 

.X= SS*1, (36) 

where 1(s) is the function that takes the value 1 for every s. More concretely, 

.X(s) = L 6~ [x- X(s)]6~ [x- X(s')] h2 hB. (37) 
X,&' 

Note that .X(s) ~ 0 for all s. [Recall the definition of 6~, equations (19) and 
(20)] Thus, the same form of proof that was used to establish the invertibility of 
(I- SP S* A) can be used again to show that (I- .XA) is invertible (we skip the 
details). It follows that the iteration described by equation (35) is well-defined. 

Let X be the solution of equation (30). Then X (trivially) satisfies 

(I- .XA)(X- X)= Z- (I- SPS* A)X. 

Subtracting this from equation (35) we find 

where 
Em =Xm -X 

is the error at the mth iteration. 

(38) 

(39) 

(40) 



268 A. A. MAYO AND C. S. PESKIN 

To study the behavior of the error, we consider the eigenvectors of this process. 
That is, we seek nonzero vectors E such that Em = J.lmE (for some number J.t) 
is a solution of equation (39). The equations for E and J.l are as follows: 

(J.t- 1)(1- AA)E =-(I- SPS* A)E, ( 41) 

or 

J.t(l- AA)E = -(AA- SPS* A)E. (42) 

If AE = 0, then J.l = 0. Otherwise, we multiply both sides by -E* A and solve 
for J.l as follows: 

E* AAAE- E* ASPS* AE 
J.l = ( -E• AE) + E* AAAE 

1 
__ (-E*AE)+E*ASPS*AE 

J.l- ( -E• AE) + E* AAAE . 

(43) 

(44) 

These formulas show that J.l is real. We shall prove that 0 ~ J.l < 1 (and hence 
that the iteration converges). 

For the various terms appearing in the formulae for J.l and 1 - J.l, we have the 
following inequalities: 

E* AAAE 2:0, 

E* ASPS* AE 2: 0, 

-E*AE > 0. 

(45) 

(46) 

(47) 

In the last case, we have equality only if AE = 0 [recall this useful property of the 
operator A, equation (32)], and we have already shown that AE = 0 ::::} J.l = 0. 
Otherwise, we may assume that 

-E*AE > 0. (48) 

From these inequalities it follows at once that 1 - J.l > 0 and hence that J.l < 1. 
To show that J.l 2: 0, we need one further result, namely, 

E* AAAE > E* ASPS* AE. (49) 

This will be proved by showing that 

A2:SPS*, (50) 

for which it is sufficient to show that 

A> ss·, (51) 

since the projection operator P satisfies I 2: P. 
To establish the inequality A 2: SS*, we note that the operation described by 

s s· is of the form 

(SS*tjJ)(s) = L m(s, s')t/J(s')hB, (52) 

•' 



IMPLICIT METHOD FOR ELASTIC BOUNDARIES 269 

where 

m(s, s') = m(s', s) ~ 0. (53) 

In this notation 

.A(s) = L m(s, s') · lhB. (54) 

Therefore, for arbitrary tf; we have 

tf;*SS*tf; = Lm(s,s')tf;(s')tf;(s)h1 

(55) 

• 
This shows that .A ~ SS* and hence that 11 ~ 0. 

In summary, we have reduced the equations for the boundary configuration 
at the end of the time-step to a system of the form 

(I- SPS* A)X = Z, (56) 

and we have shown that this system can be solved by an iterative scheme of the 
form 

(57) 

Note that the matrix I- .AA, which is inverted at each step of the ieration, is 
tridiagonal, whereas the matrix (I -SPS* A) is dense. When we use the iterative 
scheme defined by equation (57), there is, of course, no need to compute the 
elements of the dense matrix (I- SPS* A). Instead, the operators that appear 
in it are applied one at a time. The cost of each step of the ieration is therefore 

quite small, O(nb)· 
We implemented this method on several different problems with different time­

steps, stiffness, and initial configuration. In practice, we found that although 
iteration (57) was always convergent, and often much more stable than the ap­
proximately implicit and explicit methods, it was not always stable. 

Part of the reason for this lack of stability is that the method is not com­
pletely implicit. The reason it is not completely is that the arguments of the 
interpolating operator S and its adjoint S* involve the position of the bound­
ary at the beginning of the time-step. Thus, one way of possibly increasing 
the stability is to replace the operators sn and SM by sm and sm•' where 
(Sm¢)(s) = Lx ¢(x)8~(x- xm(s))h 2

. 

That is, instead of using equation (35), we can use the iteration 

(58) 



270 A. A. MAYO AND C. S. PESKIN 

Essentially the same argument as given above for equation (35) shows that this 
iteration is also convergent. [The argument uses the fact that 

xm+I =(I- (I- AA)- 1(I- sm PSm* A))Xm +(I- AA)- 1 Z, 

and the fact that (I- (I- AA)- 1(!- sm PSm* A)) is a contraction.] 
The solution of this iteration gives a solution of the nonlinear equation 

X = Z + S(X)P S* (X)AX, 

where now Z = xn + (Llt)sn+l Pun+1,2 . 

(59) 

The solution of equation (59) is also, of course, an approximation to the posi­
tion of the boundary at the end of the time-step. However, instead of equations 
(27) and (28) we have 

yn+t = (sn+t)* KD+ v-xn+I . . ) 

xn+I = xn + (Llt)sn+Iun+l. 

(60) 

{61) 

Thus, the force and final velocity values used are more nearly equal to their 
values at the end of the time-step. 

We also implemented this method and, as expected, found that the iteration 
defined by equation (58) was always convergent. Furthermore, this method was 
stable more often than the previous one. 

Although both of the above iterations (57) and (58) were always convergent, 
they often converged rather slowly. One can, of course, try to accelerate the 
convergence of the iterations. We tried to do this by using Aitken extrapolation. 
Aitken extrapolation is a standard method that can be used to accelerate the 
convergence of a linearly convergent sequence. It uses the fact that if the sequence 
Zn converges linearly, successive error vectors satisfy equations of the form 

ek = z* _ zk ~ A(:r* _ zk-1), 

and 
ek+l = z*- zk+l ~ A(z* - xk). 

Dividing the first equation by the second gtves the following extrapolated 
results for the ith component: 

Although this technique worked well for small values of m, its behavior was 
sometimes erratic for large values. (This type of behavior is typical and well 
known). We found, in general, that both mothods converged most rapidly when 
we only used one step of Aitken extrapolation per time-step. 

We also solved equation (30) by the preconditioned conjugate-gradient-squar­
ed method (Ref. 9) with preconditioning matrix I- AA. The conjugate-gradient­
squared method is a bi-orthogonalization iterative method for solving nonsym­
metric linear systems of equations adapted from the conjugate-gradient iteration. 



IMPLICIT METHOD FOR ELASTIC BOUNDARIES 271 

It makes use of a three-term recurrence, and each iteration requires two matrix 
vector multiplies. Each iteration is, therefore, about twice as expensive as the 
above iterations (57) and (58). Although, in order to get the method to converge 
we had to use the position of the boundary at the beginning of the time-step 
in the arguments of S and S*, we found that on the problems we tested this 
method was no less stable than when we used the iteration (58). (However, 
this may not always be the case, and the method is not guaranteed to converge.) 
Furthermore, we found that this method converged so quickly that it was usually 
less expensive than the others. Note that the preconditioning matrix we used is 
symmetric and the matrix equation we solved is normal. It is known that when 
this is the case the rate of convergence depends on the spectrum of the matrix 
(Ref. 10). 

Results 

This section presents the results of our experiments. In all cases we started 
out with an initial boundary configuration with 192 points on it, and embed­
ded it in a periodic unit square with a uniform 64 x 64 mesh. We always chose 
p = 1.1, J-L = 1.3, and time-step dt = 0.7(dx) 2J-Lfp where dx = 0.9/64. Since the 
unstressed length of the boundary was zero, the final position of each boundary 
should have always been a circle. In each set of experiments we used the approx­
imately implicit method, the method derived from iteration (57) (method 1), 
the method derived from iteration (58) (method 2), and the conjugate-gradient­
squared method. Our convergence tolerance for ending the iterations was always 
IQ-4. 

In the approximately implicit method that we used, the force was placed at 
the right-hand side of equation (7), instead of at the right-hand side of equation 
(9), and was computed in the following way. The position of the boundary at 
the n + lth time-step was approximated by the solution of the equation 

and the force was computed in the usual way at this position. Thus, each step of 
the approximately implicit method was much less expensive than a step of the 
iterations (57) and (58). 

In the first set of experiments the initial boundary was the ellipse with semi­
axes 0.4 and 0.2. We initially choose the stiffness constant K + 10,000, and took 
12 time-steps. The boundary converged to a circle with all the methods. 

In the next set of experiments (problem 2) we used the same initial configu­
ration, but increased the stiffness to K = 250, 000, multiplied the time-step by 
5, and took four time-steps. In Figures 1-3, the final positions of the bound­
ary computed by the conjugate-gradient-squared method, by method 1, and by 
method 2 are plotted. In Figure 4 the final position of the boundary computed 
by the approximately implicit method after 20 steps with the original time-step 
is plotted. The approximately implicit method is clearly unstable, and method 1 



272 A. A. MAYO AND C. S. PESKIN 

also appears to be unstable. To verify that this was indeed the case, we plotted 
the boundary configuration after five time-steps. (Fig. 5) Both method 2 and 
the conjugate-gradient method were stable and converged to the correct solution. 

In the next set of experiments (problem 3), the initial configuration was the 
(nonconvex) crescent given parametrically by x(t) = (cost+0.15sin2 t+ 1/3)/2.4, 
y(t) = (sint+0.7cos2t+l.3)/2.4. (Fig. 6) The stiffness constant was set equal to 
200,000, the time-step was multiplied by 4, and we took four time-steps. In Fig­
ures 7-9 the final positions of the boundary computed by the conjugate-gradient 
squared method, by method 1, and by the method 2 are plotted, and in Figure 
10 the position computed by the approximately implicit method after 16 steps 
with the original time-step is plotted. Again, the approximately implicit method 
is clearly unstable, but this time method 1 appears to be stable. Also, neither 
the calculation with method 1 nor the one with method 2 had yet converged. 
(Further calculation showed them to be converging.) 

In our last set of experiments (problem 4) the initial configuration was the 
crescent given parametrically by x(t) = (cost+ 0.15sin2 t + 1/3)/2.4, y(t) = 
(sint + 0.9cos2t + 1.3)/2.4. (Fig. 11) This crescent has much larger curvature 
than the crescent of problem 3, and when we used the same stiffness and time­
step as in problem 3, none of the methods worked. Instead, we set the stiffness 
constant equal to 150,000, used the original time-step, and took 24 time-steps. 
In Figures 12-15 the final positions of the boundary computed by the conjugate­
gradient-squared method, by method 1, by method 2, and by the approximately 
implicit method are plotted. Here too, the approximately implicit method is 
unstable, and the others appear to be stable. This time, however, the conjugate­
gradient-squared method was the only one that had not yet converged. Further 
calculations showed that the boundary was oscillating around the equilibrium 
position before converging. (In Fig. 16 the boundary is plotted after 36 time­
steps.) 

These results show that all of the three new methods we have proposed for 
solving the implicit equation are much more stable than the approximately im­
plicit method. That is, we could perform calculations where the boundary was 
stiffer and the time-step was larger than with the approximately implicit method. 
Method 1, however, was occasionally less stable than the other two. Of course, 
when it converged the approximately implicit method was much less expensive 
than the others. 

It is also necessary to compare the number of iterations necessary to achieve 
convergence. In general, we found that the conjugate-gradient-squared method 
required fewer than half the number of iterations required by the other two. For 
example, on problem 4, four time-steps took a total of 30 iterations with method 
1, 31 with method 2 and only 10 with the conjugate-gradient-squared method. 
When methods 1 and 2 were accelerated using Aitken extrapolation the iteration 
counts went down to 23 and 24 respectively. 

However, it is also important to note that methods 1 and 2 are guaranteed 



IMPLICIT METHOD FOR ELASTIC BOUNDARIES 273 

to converge, whereas the conjugate-gradient-squared method is not. And again,­
methods 1 and 2 converge monotonically, but this is not always true of the 
conjugate-gradient-squared method. 

REFERENCES 

1. Peskin, C. S.: Numerical Analysis of Blood Flow in the Heart. J. Comput. Phys., vol. 25, 
1977, pp. 220-252. 

2. Beyer, R.: A Computational Model of the Cochlea Using the Immersed Boundary Method. 
Technical Report No. 89-8, Applied Mathematics, University of Washington, Seattle, 
Wash., Dec. 1989. 

3. Fauci, L.; and Peskin, C.: A Computational Model of Aquatic Animal Locomotion. J. 
Comput. Phys., vol. 77, 1988, pp. 85-108. 

4. Fogelson, A.: A Mathematical Model and Numerical Method for Studying Platelet Adhe­
sion and Aggregation during Blood Clotting. J. Com put. Phys., vol. 56, 1984, pp. 111-134. 

5. Fogelson, A.; and Peskin, C.: A Fast Numerical Method for Solving the Three-Dimensional 
Stokes Equations in the Presence of Suspended Particles. J. Comput. Phys., vol. 79, 1988, 
pp. 50-69. 

6. Sulsky, D.; and Brackbill, J.: A Numerical Method for Suspension Flow. J. Comput. Phys., 
vol.96, 1991,pp. 339-368. 

7. Tu, C.; and Peskin, C. S.: Stability and Instability in the Computation of Flows with 
Moving Immersed Boundaries. To appear in J. Comput. Phys .. 

8. Chorin, A.: On the Convergence of Discrete Approximations to the Navier-Stokes Equa­
tions. Math. Comp., vol.23, 1959, pp. 341-353. 

9. Sonneveld, P.: CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear Systems. SIAM 
J. Sci. Stat. Comp., vol. 10, 1989, pp. 36-52. 

10. Nachtigal, N.; Reddy, S.; and Tregethan, L.: How Fast Are Nonsymmetric Matrix Itera­
tions? Manuscript. 

• WATSON RESEARCH CENTER, IBM, YORKTOWN HEIGHTS, NEW YORK 10598. 

I COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, 251 MER­
CER ST, NEW YORK, NEW YoRK 10021. 



274 A. A. MAYO AND C. S. PESKIN 

Figure 1 Figure 2 

3.00 6.00 7.00 
)(, 10 I I( IO-t 

Figure 3 Figure 4 



IMPLICIT METHOD FOR ELASTIC BOUNDARIES 275 

g 
~~-~1.~10--~~-~1.00~~~--0~.~~~~~~~~-~6~.7~0~ 

)( IO-I X }Q-I 

Figure 5 Figure 6 

~ 
~ 

=: 
X >< 

g 
,; 

>( 10·' >(10·' 

Figure 7 Figure 8 



276 

Figure 9 

A. A. MAYO AND C. S. PESKIN 

7.00 
XlO' )( I0-1 

Figure 10 

c gr---~~--~,-~~~~--~~------~~, 
¢ • _,_ 
X 

)( lO-l X 10- 1 

Figure 11 Figure 12 



IMPLICIT METHOD FOR ELASTIC BOUNDARIES 277 

)C' 10 l )(10 -l 

Figure 13 Figure 14 

X tO-t xi0-1 

Figure 15 Figure 16 


