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1. INTRODUCTION

Many molecular motors share three characteristics in their operation. First, they move
unidirectionally along a polymer ligand (Walker et al., 1990; Schafer et al., 1991 Sheetz et al.,
1991). Second, they employ a nucleotide hydrolysis cycle as their energy source. Third, they are
multimeric ATPases; that is, they are composed of several subunits, each of which contains one or
more nucleotide hydrolysis sites. We shall demonstrate that these propertics suffice to drive a
unidirectional molecular motor providing that the ATPase activities of the various sites are
correlated. This is a novel mechanism for ransducing phosphate bond energy into directed motion,
and it is likely to play a role in a wide variety of “processive” enzymes, such as polymerases
(Schafer. Gelles et al., 1991). chaperonins (Ellis, 1993), as well as the conventional motors,
myosin, dynein and kinesin. We shall use as an example the transduction of free energy by the
motor molecule kinesin, since the mechanical behavior of single kinesin molecules has recently
been measured (Svoboda et al., 1993).

2. MOTORS DRIVEN BY REACTION ASYMMETRY

The essential mechanical feature of a motor's nucleotide hydrolysis cycle is that it alternates
binding affinity of the motor for its track between strong and weak binding configurations
(Eisenberg et al., 1985: Ellis, 1993). In this section we desecribe two motor models whose
functioning depends on the fact that their overall reaction rates reflect the activities of different
ATPase sites. For simplicity, we will restrict ourselves to motors with 2 enzymatic sites which are
elastically coupled. We begin with a model in which the hydrolysis reactions strictly alternate,
implying a complete coordination between the reaction sites. Then we progress to a model in
which the reactions are not alternating, but where there is a net difference in reaction rates between
the two sites.



2.1 A simple stochastic madel with alternating reaction rates

Consider a macromolecular enzyme consisting of two parts that are rigidly connected (i.¢. a 2-
legged motor) that moves on a double potential track, as shown in Figure 1a. We suppose that the
enzyme can bind alternately to one or the other track by altcrnating its ATPase activity. Figure 1b
illustrates how the motor operates. The motor has two binding sites, each equipped with a nearby
ATPase site. In state 1, the motor is bound on one track. The ATPase cycle dissociates the motor
from this binding site, bringing the other site within binding range of the other track. (As with
other molecular motors (e.g. kinesin, myosin). the binding is predominantly electrostatic. so that
the complementary sites must approach to within a Debye length to 'see’ one another.) In effect,
this 'lifts’ the state from 1-» 2, so the motor's other active site finds itself on the potential slope of
the other DNA strand. Now it ‘slides' down the potential gradient until it reaches the minimum at
state 3, whereupon its ATPase dissociates it and reseats the opposing component of the motor on
the first track at state 4. In this fashion, the motor is always sliding down one or the other potential
surface to a local minimum; work is performed by the ATPase reactions which dissociate the
motor from one minimum and transfer it to the other. Note that the motor moves in the opposite
direction as would a macroscopic ratchet.
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Figure 1. (a) A progressive ATPase with two reaction sites rigidly coupled 'walks'’ to the left along a
double track of binding sites. The sites are staggered as shown in (b). (b) The path of the system through
the sequence of states 1 = 4, where the transitions 1 = 2 and 3 — 4 are the ATPase-driven dissociation
from one track and binding to the other track. Transition 2 — 3 is diffusion down the potential gradient.
(c) Notation used in the text.

We can write the equations governing the motor as follows. We label the potential locations as
shown in Figure Ic, and consider an ensemble of points diffusing on the potential surface. Let
c1(x), c2(x) be the concentration of points in potential 1 and 2, respectively. The steady state
diffusion equations are:
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Since, in the steady state c(x) = c(x + L), we expect solutions in which ca(x + L/2) = ¢j(x), and
c1(x + L/2) = co(x). Thus we can restrict our attention to the interval (0,1/2) and impose the
following boundary conditions:

caL2)=c1(0), ciL2) =c2(0) (3a,b)
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As a specific example of this type of motor, consider an RNA polymerase motor translocating
along its DNA track. Figure 2a shows the strands 'unraveled' to expose the two tracks. The model

equations can be solved numerically to produce the force-velocity relationship shown in Figure 2b.

The velocity is in the range of that observed for polymerases. and the work it is capable of
performing is comparable to thermal energies.

T T T T TTTY > "

(b)

Figure 2: (a) Schematic diagram of an RNA polymerase progressing along DNA. We suppose that the
polymerase encircles the DNA so as to obviate dissociation, and that it translates and rotates with respect
to the track. (b) Computed load-velocity curve using parameters typical of RNA polymerase: Viay =3
kgT, L = 3.4 nm, AL = 0.6 nm, hydrolysis rate = 100/s, diffusion cocfficient = 5x103 nm?2/s. (Note that

since the motor moves to the left, we have plotted velocity is positive to the left and load force as
positive to the right.)

2.2 A model with asynchronous reaction rates

In this model we investigate the consequences of a simple interaction between the motor heads
which allows them to operate asynchronously. We assume that only one head can bind to each site
at a time and that the heads are hinged but their motion restricted so that the distance between the
heads is at most L = 8 nm, the distance between binding sites. We also assume that each head has
a "watchspring” at its "ankle" hinge that provides a passive elastic restoring force (o an equilibrium
position with respect to the track (c.f. Figure 3).

The asymmetry is introduced as follows. Each head has an independent ATPasc site, but they
are located such that the back head is more likely to bind and hydrolyze an ATP. We shall simplify
each hydrolysis cycle to a 2-state Markov chain. In the unbound state a head can diffuse rapidly
within the interval (-L, L) with respect to the other (bound) head. Upon completion of the
hydrolysis cycle (e.g. release of ADP in kinesin) the head re-acquires a strong-binding affinity.
Since the diffusion is so rapid compared with the chemical cycle, the head immediately binds to
one of the sites at L with respect to the other head. With no loading, the binding sites at £1. are
equally likely. However, in the presence of a load, f, binding is more likely on the left. Thus the
load influcnces the mean velocity of the motor.

Let P be the rate constant for the transition (release of P;) to the weakly bound state (0), and o
the transition rate (release of ADP) for rebinding to the fiber, (state 1). The key assumption in this
model is that B is different for the two heads:

B1 = rate constant for the back head 1 = 0
B2 = rate constant for the front head 1 — 0,
0. = rate constant for both heads 0 — 1

The asymmetry contained in the inequality B2 < B is what drives the motor forward. We
analyze the situation as follows.
The mean waiting time in state (1, 1) (i.e. both heads bound) is

1
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The random variable Thound is independent of which head lifts. Then the mean time in the
weakly bound state is
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Thus the mean cycle time is

2 (10)



Denote the load by f and define

p(f) = probability that the free head eventually binds at the site which is ahead of the bound

1 - p(f) = probability that the free head eventually binds behind the bound head.

The form of p(f) will be determined below: clearly, it is monotonically decreasing. The
probabilities for different cycle outcomes can be read from the following diagram:
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From the diagram we can express the mean distance traveled forward per cycle as
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Note that ,since the waiting time is each state is a Markov process, independent of the path
taken to leave that state, Xcycle and Tcycle are independent random variables. Moreover, each
cycle is independent of the others. Now consider N successive cycles resulting in displacement X
over time T:
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Since X and T are independent
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Thus we can express the mean velocity as
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In order to compute the force velocity curve we write the dependence of the B's on ATP as
B = B?g[[ATP]), B, = ng([ATP]), BY > BY. Then the expression for the velocity as a function
of load, f, and ATP concentration is:
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In order to compute p(f) we solve the following problem. For t < (), a particle diffuses in a
potential ¢(x) on the interval (-L, L) with reflecting boundaries. Then, at t = 0, the ends of the
interval switch to become absorbing boundarics. We calculate the probability that the particle is
absorbed at the right end of the interval. The result is (Weiss, 1967: Lindenberg ct al., 1979)
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Here po(x) is the equilibrium distribution py{x) = e kT j_Le'q’(x %Tdy' and the potential
d(x) is given by

x,f)= Lx + M
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where the first term is the potential due to the load. The factor 1/2 arises because the hinge at which
the load is applied moves only half as far as the free foot. The second term is the potential due to
the (effective) spring connecting the two heads. (Note that when xo > ) the heads have unequal
binding probability even at no load. This offset was necessary 1o fit the data.) The general shape of
p(f ) is sigmoidal.

From equation (14), we see that the stall force is given by
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which is independent of the ATP concentration (c.f. Svoboda & Block, 1994). As [ATP] changes,
the force-velocity relation scales on the velocity axis. Figure 3b.c shows fits of the model to the
load velocity data at high (2 mM) and low (104M) ATP concentrations.

A possibly better model for RNA polymerase is shown below. This is based on the same principle
of correlated hydrolysis as kinesin, but this is a ‘shuffle-walker', rather than a hand-over-hand
walker. That is, the front subunit hydrolyzes faster than the back subunit (e.g. by site occlusion), so
the motor moves forward like in ‘inchworm'.
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Shuffle walker:
rear ATPase site occluded by front subunit
Figure 3. An altemative model for an RNA polymerase. Left panel: the front subunit occludes the
rear subunit, and so binds ATP and detaches from the track first. Thermal fluctuations carry it to
the next sitc where it binds, and the rear subunit binds ATP, relcases and diffuscs forward. The
force-velocity curve is similar to that computed for kinesin; however, in this model, with no
conformational change, a maximum of [-2 pN of thrust is possible.
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Figure 3: (a) Schematic of a kinesin motor. The rear head hydrolyzes ATP faster than the front head: B; > By.
Comparison of the model (solid line) with the data of Svoboda & Block (1994) at high ATP concentration (b)
and low ATP concentraion (¢).



3. DISCUSSION

The principle enunciated here is simple: a pair of elastically coupled ATPases can function as a
powerful Brownian motor providing the hydrolysis rates of the two sites are different. The motors
'walk' on a track with periodically spaced binding sites. The rearmost ATPase of a 'hand-over-hand
walker' runs faster, while the foremost ATPase in a 'shuffle walker' runs faster. Thus the motor
alternates between a ‘contracted’ and an 'expanded' state to stochastically walk along its polymer
track.

We suggest two mechanisms for this differential reaction rate. The two components of the
motor may fit together in such a manner that one ATPasc site occludes the other in the contracted
state. Alternatively. the strain state of the components may be such that in the contracted state one
of the ATPasc sites is deformed so as to reduce its affinity for nucleotide, or its capacity to
hydrolyze bound nucleotide.

Several authors have proposed models for molecular motors based on biasing Brownian
motion (Astumian et al., 1993; Peskin et al., 1993; Prost et al.. 1994; Peskin etal., 1994; Doering et
al., 1994). The difficulty has been not in matching the observed velocities, but in generating the
piconewton forces measured in optical trap assays (Svoboda et al., 1994; Finer et al., 1994). The
mechanism we propose here fits the measured force-velocity curves for kinesin quite well, over a
wide range of ATP concentrations. In view of the fact that all known molecular motors are
multimeric, multi-ATPases, we suggest that the principle outlined here may apply to other
progressive enzymes, such as DNA and RNA polymerases (Schafer, Gelles et al., 1991),
chaperonins (Ellis, 1993), as well as the more familiar 'walking' enzymes, myosin, kinesin, and
dynein.
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