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ABSTRACT, We consider cross—bridge models in which the
spacing of thin filament sites is small and the
cross—bridge has a strongly preferred configuration for
attachment. In this case, we show that it is possible
to work  backwards from  steady-state macroscopic
experiments to uniquely determine microscopic properties
of the cross-bridge. Using these properties, we solve
for the transient response to step changes in load.
Several features of the experimental record are
predicted by the model.

1., INTRODUCTION. It is now generally acceptéd that striated
muscle shortens when interdigitating filameqts. of fixed 1length
increase their overlap by sliding past one another (see Figure
1. In 1957, H.E. 7 Huxley and A.F. Huxley, independently,
proposed a very plausible idea for the mechanism of filament
sliding —— the cross-bridge hypothesis. In this paper we explore

a new method for testing this idea within the context of a class
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122 LACKFER AND PESKIN

of models similar in spirit to A.F. Huxley”s 1957 scheme.
Detailed properties of the cross—bridge, previously guessed at,
will be determined wuniquely by a systematic mathematical
technique that employs data from macroscopic muécle contracting
at a constant velocity. The method is tested and applied using
data of A.V. Hill (1938). The derived cross—bridge properties
are used to predict transients obtained when tetanically

stimulated muscle is subjected to sudden changes im load.
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Figure "1l. This figure illustrates the sliding filament mechanism
of miscle shortening. The length of the fundamental repeating
unit of striated muscle structure -- the sarcomere -- is

represented by L. The figure shows that the sarcomere contains

two types of partially overlapping filaments. During shortening,
the extent of overlap increases as the filaments slide past each
other, thereby decreasing L. The filaments themselves do not

change in length. According to the cross-bridge hypothesis,

projections from the thick filament bind during contraction to

the thin filament. These cross-bridges generate force and

through repeated cycles of attachment and detachment they produce

the relative sliding motion of the filaments.
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2, BACKGROUND. Briefly, the cross-bridge theory states that
mascle force and shortening occur when molecular bridges or links
form across neighboring thick and thin filaments. The links are
formed when molecular projections located at regular intervals
along the thick filament bind to adjacent thin filaments. These
bridges form strained configurations or are placed scon after
attachment in conformations which can generate force and move
filaments past each other. In order for macroscopic shortening
to occur these molecular links must be continually breaking and
re—-forming. Each cross-bridge is assumed to cycle and generate
force independently of the other cross=-bridges. In 1957, A.F.
Huxley showed that these iﬁeas ware consistent with the
quantitative macroscopic behavior of muscle. More precisely, he
proposed a specific cross—-bridge model that could account for the
steady-state force-velocity and energetic relationships
discovered by A.V., Hill (1938).

In order to compare the 1957 model with experiments it is
necessary to specify certain wunknown cross—bridge properties.
These are the probabilities per unit time that a cross-—bridge
forms or breaks in a given ortentation. In addition to these
rate functions, the force a bridge produces in a given orientation
must alsoc be specified. A.LF. Huxley made reasonable guesses
about the nature of these cross—bridge rate and force functiens
and adjusted these guesses by Eriai and error until model
predictions fit the steady-state data within experimental error.

A natural question arises when the method of trial and error
is used. Are the cross-bridge functions proposed by this
method the only ones which can satisfy the data?

This became an important physiological question when_it was
subsequently discgvered that the 1957 model with the specific
cross-bridge functions proposed by A.F, Huxley could not
qualitatively predict the regults of certain transient

experiments performed by Civan and Podolsky (1966) and A,F,
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Huxley and Simmons (1973). Podolsky and Nolan (1973), however,
found a set of cross-bridge curves which could account for the
Civan and Podolsky {(1966) transients. Tnterestingly, the
cross-bridge functions not only differ in shape from those
originally proposed by A.F. Huxley but average wvalues of the
rate functions for bridge formation and breakage differ from
those of A.F. Huxley by an order of magnitude. Like A.F.
Huxley, Podolsky and WNolan employed a trial and error search
until a set of cross-bridge curves were found that could satisfy
their transient data. The cross-bridge curves they propose,
however, cannot accouat qualitatively for steady-state energetics
(Fenn effect) unless additional assumptions are added to the 1957

model.

3. STATEMENT OF THE PROBLEM TO BE SOLVED. Can the cross—bridge
curves, described in the previous section, be obtained without
guessing? We propese a systematic method which works backwards

from steady-state data to determine cross—bridge functions
uniquely. That is, we sclve mathematically the inverse rather
than the direct problem. In the dirtect problem, the cross-bridge
functions must first be specified, then the model behavior is
determined and compared to experimental behavior. In the inverse
problem, experimental behavier is specified and cross-bridge

functions are then derived.

4. DIFFERENCES BETWEEN THE TWO MODELS. We have solved the
inverse problem for a class of models that are similar but not
identical to that proposed by A.F. Huxley (1957)}. While it is
not our aim in this paper to decide which of these two schemes is
more correct, the essential differences between the two models
are discussed.

We consider a class of cross-bridge models in which each

cross—bridge attaches 1in the same configuration. The formalism
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of the original 1957 scheme does not easily accommodate this
idealization because receptor sites on the thin filament are
assumed to be widely spaced. More precisely, the models
encompassed by the 1957 scheme are single-site models——at most
one thin filament site is within the attachment range of any
given unattached bridge. The wvery tight packing of actin
monomers on the thin filament has motivated T.L. Hill (1974} to
consider a multisite formalism. In this paper, we idealize the
multisite scheme of Hill and approximate the thin filament as a
continuum of available sites. Thus, cur model and A.F. Huxley’s
1957 model are opposite 1limiting cases of a more general

multisite scheme.

5. MODEL FORMULATION, As noted, we assume that every attached
cross—bridge initially produces force in the same configuration.
If no slippage occurs during shortening then a continuum of
different configurations will ensue as the attached bridge 1is
carried along by the motion of the thin filament (see Figure 2).
As the ecross-bridge is carried into new configurations it
produces different forces on the sliding filament. By assuming
that there is a certain probability of detachment depending on
configuration one can develop the following mathematical model.
Let x be the displacement (parallel to the axis of the
thin filament) of an attached _ bridge from its starting
configuration (x = 0). We define p(x), g(x) - and f as

follows:

p{x): the force a bridge produces in configuration x.

g(x): the probability per unit time {rate constant)
that an attached bridge in configuration =x
will detach from the actin filament.

£: the rate constant for bridge attachment.

During sarcomere shortening, cross—bridges are continually
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attaching, moving inte¢ new configurations, and detaching. The
state of the cross-bridge population at any moment, t, will be
described by a probability density function u{x,t) where
fg u(x,t)dx denotes the fraction of attached bridges with x

in the interval [a,b.] at time t. Then
Y
N(e) = [ u(x,t)ax < 1. (1)

will define the fraction of attached bridges at t.

We now derive an equation which describes the dynamics of
the cross-bridge population u{x,t).

Let v = dx/dt be the wvelocity of the thin filament
relative to the thick filament. Note that v 1s positive in the
direction of shortening and . that .the cross—bridge moves to
positive values of x when the muscle is shortening.. If L is
the length of 1/2-sarcomere then dL/dt = =dx/dt = -v.

Consider the bridges attached in the interval [0,x].  The

fraction of bridges in the interval is by definition
X - -
jO u{x”,t)dx” .

This fraction can only change as the result of bridges moving .in
or out of the interval (see Figure 3). Bridges can only move
into the interval by attaching in the starting configuration

x = 0. This occurs at a rate proportional to the fraction of

bridges available for attachment, (1 — N},

(1 -N) = rate of formation of attached bridges. (2)

Bridges can leave the interval in one of two ways: (1} They cen

be carried out of the interval by the thin filament or (2) they

can detach from the thin filament before they are carried away.
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Figure 2. This diagram represents. a snapshot from a left-half

SATCOmMEre., It shows the configuration of four separate
cross—bridges at a given instant of time. Movement to the right
(v = dx/dt > 0) represents shortening. Note that this is

opposite to the usual convention in which a right-half sarcomere
moves to the left during shortening. Every cross—bridge which
attaches to the thin filament begins gemerating force in the same
configuration (x = 0). Cross—bridge I is in this configuration.
Cross—bridge 2 attached at an earlier time and has been carried
along continually by the thin filament to the new configuration

X = K9 At any given instant every attached bridge moves along
with the thin filament at the same velocity (no slipping)
v = dxl/dt = dxz/dt = dX3/dt = — dL/dt. (L is the 1length of
t/2-sarcomere.)

Since x4 <{ Xy, cross-bridge 2 must have attached at an
earlier time than cross—-bridge 3. Depending oan its configuration
a cross—bridge transmits a certain Torce, p(x), to the thin
filament. In any configuration there 1s a certain probability
per unit time, g{x), that the bridge will detach from the thin
filament. Cross—bridge 4 1is detached. Note that x has no
meaning for a detached bridge. Re-attachment occurs at the rate

f. The thin filament is idealized as a continuum of available
sites for re—attachment.

let vu(x,t) = rate of tramsport out of [0,x] by

thin filament movement , {€))

X
J g{x"Ju(x”,t)dx” = -rate of detachment from the
0 interval [0,x] . (%)
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Figure 3. The number of cross-bridges with configurations in the
interval [0,x] ecan change by three processes that are indicated
by the arrows in the figure. Cross-bridges can attach at x = 0
with the rate given by (2). Cross-bridges can be carried out of
the interval [0,x] by thin filament motion. This occurs at the
rate giver by (3). Finally, cross—bridges in the interval can
detach from the thin filament. This occurs at the rate given by
(4). Considering these three processes together leads to (9)
which describes the dynamics of the cross—bridge population.

Therefore, the rate at which the fraction of bridges changes in

[0,2x] must satisfy the following equation:

;—t UX u{x”,t)dx") = £(1 - N(t)] - va(x,t) - jx glx ulx”,t)dx” .
0 0
(5)

This integral equation may be used to obtain both a differential
equation and the appropriate boundary condition. By setting

x = 0 we obtain the following boundary condition:

a{0,t) = EL}_:_EEEll . €6)

v

Bringing the time derivative in (53) inside the integral and then

differentiating both sides of (53) with respect to X, Wwe obtain

Qr
=

= -y %E-— g(x)u . (7
x

Q7|

t
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I1f we counsider lengthening (v < 0) instead of shortening, the

boundary term becomes

a0 = LZJW) 58

but (7) remains unchanged. In summary the dynamics of the

cross—-bridge population with v(t) prescribed is:

Ju du _
5"&“ = - v(t) ﬁ- g(x)u )
| w0y = EL - N(0) (9)

vt} ?
oo

N o= udx .

—o

In solving the inverse problem particular attention will be given

to the special case v(t) £ v = counstant.

The average forée produced by a cross-bridge in the
overlap—zone between thick and thin filaments (4 band) is

a0
P(t) =)  p(x) ulx,t)dx . (10}

1f p represents the total number of bridges available for
attachment in the overlap region of 1/2-sarcomere (which is L

units in length and has unit cross—sectional area}, then pN

will represent the total number of attached bridges and pP the
tension produced by that 1/2-savcomere. In general p will
depend on L and possibly sarcoplasmic c¢aicium concentration.
In this paper we compare model behavior to experiments performed
during steady tetanic coantraction and over times in which the
number of bridges in the overlap region is essentially constant.
Thus for our purposes, p can be assumed constant and the
integral din (10) will be proportional to the force produced by

1/2-sarcomere. If we consider a muscle composed of K
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sarcomeres in series then the wvelocity of the muscle will be
2K dL/dt = -2Kv. The force at the ands of this muscle will be
pP. As usual we assume that inertial and frictiomal forces that
arise from filament motion are megligible compared to the elastic
forces generated by the cross-bridges themselves.
Before concluding this section we note that our cross—bridge
equations differ from A.,F. Huxley”s 1957 egquation in the

following ways:

(1) Our cross-bridge population 1is described by a
probability density function u(x,t) with dimensions length"l.
This is different from A.F. Huxley~s n{x,t) which ds
dimensionless.

(2) The attachment term in our model is f(l - N(t)). In
the 1957 scheme it is £(x)(1 - n(x,t)).

Both these differences arise because we consider the actin sites
to be very closely spaced and because we consider cfoss—bridge
attachment to occur in a highly-preferred configuration.

In Huxley”s model x represents distance to the nearest
site from the cross-bridge in question, whether the cross—-bridge
is attached or mnot. In our model, the thin filament is
approximated as a continuum so the distance to the nearest site
has no meauing for an unattached cross—bridge. In our model all
unattached cross~bridges are equivalent.

Both models assume that cross—bridges cycle and generate
force independently and that no slippage occurs while a
cross—bridge is attached., This means that all attached bridges
are constrained to move into new configurations at the same rate

dx/dt = dL/dt = -v,

6. STEADY-STATE BEHAVIOR. We now consider a special case of (9)

and (10) where the cross—bridge population has reached a

steady-state (dufor = 0). Now v  and P are  also time
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independent but related to each other. This relationship, P(v),
corresponds . to the experimentally measured force-velocity curve.
We now derive an expression for this function in the model.

For shortening {v > 0), the steady—state cross—bfidge

density can be easily shown to satisfy

1 X :
- =] gls)ds
fEi:El e v 0 forx» 0,
v
u(x;v) = (11)
0 for x< 0.

(This solution can be checked by direct substitution into (9).]
Substituting (11) into (10} the force-velocity relationship

becomes

J

g(s)ds (12)

X
0 dx .

4]+~

P(v) = p(x) e

o f(iv—N) Jj:
Equationr (11) is not yet an explicit solution for u, since N
itself depends wupon u. An  explicit solution for N is
obtained, however, by integrating (fl) from X = = to X = 4o,
This yields

N(v) = fI(v)

where
o -2 gls)as
HORFIE 0 dx . (14)

Substituting (13) and (l4) into (l1) produces an explicit
solution for the steady-state cross-bridge population
x
- 110 g(s)ds
e 7 s x* 0,
(15}

<1

Ig g(s)ds

ulx;vy = v + f JO e dx

0 ; x <0,




132 LACKER AND PESKIN

Now P(v) is obtained by substituting (15) inte (10):

- l-fﬁ g{s)ds

P(v) = pf Jm p(x) e dx .(16)

1
I w-fg g(s)ds 0
v
v + £ JO e dx

This represents a solution of the direct problem. Tf £, g, and
p are specified (for example, by guessing) then the above
formula yields a definite prediction for the steady—-state
force-velocity curve. This, however, will not be our aim.
Instead, we will use the steady-state data to derive f, g, and

p. ‘Before doing this we will derive some specific physiological

properties of the general model in the steady-state.

A. Maximum Shortening Velocity

Consider the case in which the sarcomere contracts against

zero load. The steady velocity associated with P = 0 will be

denoted as Voaxe By (16), Vmax Satisfies
1 x ,
g1 - N(vp..0) Jm - IS e(s)ds
- plx) e “max dx . 17
Vnax 0 “n
The factor (1 - N)/v can never be zero; therefore Vna is
X
defined as that velocity v which makes
1 .X
@ ";JG g{s)ds
10 p(x) e dx = G . (19)
Since this integral does not depend on £, v will be

max
unchanged by any intervention which affects the rate constant of

attachment only. In general Vmax Will depend on the shape of

g and o] but a simple scale change in the amplitude of P

will not affect v » On the other hand, Vmax Will scale in

max
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proportion to g and this suggests one way in which muscles
could be "designed" to achieve high shortening velocities.

In order for (19) to hold we must have p{x) < 0 for some x

- (1/v) [% g(s)ds !
since e ) oe >0 for all =x» 0. If p(0) >0 and

p{x) is continuous, then this implies that at least one
equilibrium  attached configuration Xy exists such that
P(Xg) = 0.

A physical interpretation of (19) is best illustrated with a
simple example. Suppose g 1is constant and p is exponential
as in Figure 4.

At higher wvelocities of shortening a greater fraction of
cross—bridges cannot detach before they are carried into regions
past X, where they exert negative force (oppose shortening).
Ar Vinax the force produced by cross-bridges which oppose

shortening 1is exactly balanced by the force produced by

cross~bridges that are in configurations which promote shortening

<0
0= 2{vy,) = }dw plxiulxivy . Jdz ,
XE o0
= JO plr)u(x; v, )dx + J plxdulx;vy, Jdx . (20)

*
Scaling up g means that a bridge is less likely to be bound to

the thin filament long enough te reach configurations which

oppose shortening. Therefore Vmax LTUCreases.
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Vmax

P P

5 B
Figure 4. This figure shows the effect of scaling the amplitude

of g R We consider for illustration a specific case

—)L (X_XE )
where g(x) = constant and p(x) = v(e -1). % is the
equilibrium  configuration. In this case, the cross-bridge
population density (Eq. (15)) is exponential

u(x;v)==[fg/{f+g}] .e—gX/V/V ;2 2 0 and the force-velocity curve
(Eq. (16)) is hyperbolic (PH+a)v = (PO—?)b with b =g/,

X

Pq = pp{0) f/ft+tg , and Vmax = Pob/a = g/h (e . 1)

(?/2—sarcomere). Note that the decay rate of the cross-bridge
density is governed by the ratio g/v. Therefore configurations
are less likely to exceed Xy and oppose shortening at higher
velocities 4if g is large. Since Vnax LS the velocity where
enough bridges are carried past ¥y so that their force equals
the force exerted by those bridges with x < Xy , We expect that
Vpax Will increase when g ds larger. Interestingly in this
case 1t turns out that N, the fraction of attached bridges, is

independent of v.
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B, TIsometric Case (v = Q)

Consider the case in which the sarcomere is just prevented
from shortening by a suitable load Py. Im this case all bridges
bound to the thin filament will be at x =0 and ? the
crogs~bridge density u will be a delta function. The fraction

of attached bridges Ny and the force Py produced in this case

are:
f f

Ny = e Po= p(O} o — — . z21

Therefore, although f does not affect Vimax It does influence

isometric tension.

If g(x) were constant,‘then 1arge g would allow a muscle
to achieve a high Vonax @t the expense of reducing the isometric
force. When we solve for g(x) using steady-state energetic data
it will turn out to have a form.ﬁhich allows a muscle to achieve
a large isometric force without compromising maximum shortening
velocity.

7. SOLUTION OF CROSS-BRIDGE DETACHMENT FUNCTION g(x) AND FORCE
FUNCTION p(x) FROM STEADY-DATA. We now consider the praoblem of
determining the detachment function g from the.energy turnover
rate in the steady-state. For this purpose we focus our

attention again on (1l4).
X

1
- =7
© = g(s)ds

I(v) = jo e 0 dx . _ (14)

Note that {f g were known, then (14) would determine I. The
function g for x > 0 ds transformed into the function T

(v > 0) by {(14). We now show that there is an inverse
transformation which determines g from I. The significance of
this is that T can be obtained up to a <constant from

steady—state energetics and therefore that g can be recovered
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using such data. The relation between I and steady-state data
will be discussed after it is illustrated how g can be

recovered from I. Let

b5
¥y = }O g(s)ds and ¢ = % y (22)

then (l4) can be written as

() =17 (4 ooy gy . (23)
[*] 0 dy

The upper limit is = because we assume that g is bounded away
from zero which is physically plausible. Note that I(l/u] is
the Laplace transform of dx/dy. From the fundamental theorem of
integral calculus dy/dx = g(x) and therefore
dx/fdy = 1/g[x(y)]. Define g(y) = g(x(y)]. Here g(y) may be
regarded as the detachment function din a distorted distance
scale, Also dx 1is related to dy by dxrg(x) = dy. Since
I{l/c] is the Laplace transform of 1i/g{y) we can solve for
g(v) by taking the inverse Laplace transform of I{l/u]

c+im 1

g(v) = i (J I(o_] 7Y do) 7L . (24)

c—i=

But I not only determines g(y), it also allows us to recover

g(x) by relating x to y. Since dx/dy = 1/g(v) .,

Y ds 1 ¥ cti 1y os
= = I[ = do)ds . 25
®(y) JO o Tl JO (Jc—i [G] e o) ] (25)

This function has an inverse y(x) since g > 0. Finally g(x)

is recovered by substituting v(x)} into g

g(x) = glyx) . (26)
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It remains to be shown how I is related to the
steady—state energy flux.

If 'a certain amount of chemical energy & is released each
time a cross—bridge cycles, then the energy flux ¢ (v) dauring
steady shortening s proportional to the cross-bridge turnover

rate
p{v) =pef(1 - N{(v)} . (27)
But N(v) is related to I{v) by (13). Substituting (13) into

(27) yields

pe [y = (1-N5)9 ]
T(v) = 0 o (28)
3,

Where ¢O and Ny are the energy turnover rate and fraction of
attached bridges during steady isometric contraction. The

attachment rate f has been replaced by NU using

dg = PEF(1N,) . (29)

The energy flux ¢(v) can be measured by determining the rate of

heat and work produced during steady shortening or more directly
by measuring the cross—bridge rate of ATP utilization in the
steady-state.

We now apply the method used to obtain g in order to solve

for p{x). From (12) the steady-state force velocity curve is

1
o - = I% g(s)ds
P{v) = E_f_Ll__Mj p{x) e v dx . (12)
v 0
Using o and y as defined in (22) and noting that
fi 1-N(V
P ( v( ) . ¢é:) (see (27)) we obtain
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1
er() _
g _ 7 ply) e TY 4y (30)
c¢[§] 0 &m

where p(y) = p(x(y)).

The left hand side of {(30) can be obtained from experiment
and the right-hand side is the Laplace transform of p(y)/g(y).
We now solve for p(y)

o P
B = w5 1 AT (31)

c=1w
°¢(EJ

P

[

Finally, p(x) is recovered by using (25)
p(x) = B(y(x)) . (32)

The inverse problem which determines g, f, and p from the
steady-state data ¢, ND, and P is now solved. The flow chart

in Figure 5 summarizes the method.

Figure 5. This flow—chart summarizes the steps that solve the
inverse problem using steady-state data. The inputs are: (1)
the force—velocity curve P(v), (2) the steady-state energy flux
$(v) (heat production + power), and (3) Npy, the fraction of
bridges attached during steady tetanic isometric contraction.
The outputs are (1) the cross-bridge force function p(x),
(2) the cross-bridge detachment rate functiom g(x), and
{3) the rate constant, f, for bridge attachment. The numbers
in the diagram refer to equation numbers in the text.
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8. AN EXAMPLE USING THE HILL CURVES. We now test the method
outlined din Figure 5 by applying it to the experimental results
of A.V. Hill (1938}, Although the Hill functioas oaly
approximate the behavior of muscle, their simple form make® them
ideal for testing the consistency of the method. The
force—velocity curve is described by a hyperbola
bPy - av

F(v) = - (33)
where a, b, and PO are positive constants that characterize a
particular muscle, Note that PO is the isometriec (v = 0} load
and v .. = bPg/fa is the shortening velocity when P = 0.
Finally, the steady heat flux é was observed to be a linear

function of the shortening velocity
4 =av + ¢ (34)

with a as dn (33)1 (Later experiments (Hill, 1964) reveal a
more complicated relationship.) Since the energy turnover rate,

¢, 1s the sum of the power and heat flux, we obtain

b(a+P0)v

$(v) =q +povE o+ e

v =dg+ (ByP)b . (35)

In order to compute g and p (see Figure 5) we must evaluate

the integrals that appear in equations (24) and (31). These are

L eris lbg (1N ()]

— Y &, (36a)
ML et o (L)
o
and
1 o P(Gi)
EFE'JC_im —-—T—-eUy do . (37a)
o (;)
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if we let v =1/6 in (33) and (35) and substitute into

and {37a) these integrals become, respectively,

g, + Ny(o~o
R B S il A I T
ni T G{o-04)
and
(P - 2
1 v b 7Y do
— e e 3
i ' o(o-uy)
where g, = —'(a + PO/¢0) and gy = — 1/b + g, are

(36a)

(36b)

(37b)

both

negative and T is the eclosed path in the complex plane

illustrated in Figure 6.

C+im

complex o
plane

B
—ao CI>() ne

r

C=iw

Figure 6. This figure shows the closed path T din the complex
plane that is used to evaluate the integrals (36b) and (37b).
r encloses twe simple poles at g =0 and © = 04,
residues at these poles are indicated in Table 1.

The
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Note that (in each integral) T encloses singularities at
g =0 and o0 =0d,. The integrals are evaluated as the sum of

the residues at these simple poles (see Table 1).

RESIDUES
Pole O = Oy o=10
O, OLY o
+ Uw +
Egn. 36b 6:9 NO o
OxY
Fan. 37b Po- e 2
g Py Boy) Bo,
Table 1

The cross—bridge detachment probability function and force

function in terms of y are therefore

- B ¢0 G4 Oy -1

g(Y) = EE'[NO + g: (e - l)] ’ (38a)
- _ E —, a _a 9%y

Bly) = o 2(y) [bT* +(py g;;] e ] . (38b)

Since =x 1is related to y by x = IZ dy“/g(y”) we have

g o g
€ + %Y
x(y) = P2 [(Ng - Dy +—=<(e ™ - D] . (38¢)
¢O Ty U2
*
Equations (38) wmay be thought of as defining g{x) and p{(x)
because choosing a particular value of v, say, Y1, determines a
value of 'g, p, and x. Namely, gy = g(y(), p; = p{yy), and
X = x(yl). Therefore g(xl) =g and p(xl) = p;- For
example, suppose it is desired to know the detachment probability

gy and force pg in the initial configuration x = 0. 1In this

case y = 0 and substitution inte (38) yields
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¢ Py
= i Py = — (39)

50 e(Ny) ’ PRy
The distance a cross-bridge moves from its initial configuration
to 1its equilibrium configuration is determined by first finding
¥g such that p(yz) = 0 and then calculating = = x(yy ). The

result is

1 a
Yg < T fn (E":—gag;ﬁ s
g Oy, Tu¥p
X = X(Yg)’%%[(No_ﬂYz +;—?: e _1}] .
*

Let us try to estimate these values for a typical muscle. For

this purpose we choose

Pg = 3 kgmwt/em® (2,94 x 10° dynes/en?) ,

2 - 0,25,
Py
Viax = 1.3 muscle lengths/sec. , (41)
b = ﬁ% « V.. = 0.325 muscle lengths/sec. ,
¢p= ab = 0.24 kgm wt muscle lengths/sec. - cm?
(A.V. Hill (1938)].(This is about 27 ergs/sec.

for Z-sarcomere when it is 1l.1n long and 1 cm?®

in cress section.)

Using these values we obtain

-1 -1
[muscle 1engths] , and o, = -19.95 (muscle lengthSJ.

sec sec

o, = -16.25

(42)

We assume that every time a cross-bridge cycles, 1 ATP molecule
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is hydrolyzed yielding & = 7 x 10_13ergs (10 Ecal/mole). The
nunber of cross-bridges in the overlap zone of l/2-sarcomere,

1.1l u in length and 1 cm? in cross—section, has been
estimated to be 6 x 1012 (H.E, Huxley, 1960). The fractioh of
these which are available for attachment under conditions of
steady-tetanic contraction is unknown. If we assume, for
example, that this fraction is 50Z and that 90% of these are
attached wunder isometric conditions then p = 3 x 1012 and

NO = ,90. For this case* .

8y = lh_sec—l,
Pg = 1070 dynes. ,
x, = 4B A

£ = 125 sect .

The cross-bridge cycling rate during isometric contraction is
%9
£(1-Np) = — = 12,5 per sec . (44)
. pE -

The functiens g(x) and p{x) for this example are plotted in
Figures 7(A) and 7(B). The detachment function g(x) 1is
sigmoidal with low detachment rates for configurations which
generate shortening forces (x < x;) and high detachment rates for
configurations which oppose shortening (x > x). As mentioned in
Section 6 this allows a muscle to achiéve high shortening speeds
without compromising its ability to 1ift large loads. That is,
v is high because g 1is large when x > % and Py is

max
large because g 1is small,

*Instead, if we assume that p = 6 x 1012 then = 100R ,
gy = 5 sec” *, £ =45 sec”!  and the overall cyeling rate ‘is
about 4.5 per sec. '
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Smaller values of N, increase the asymptotic valués of g

and p as x *+ ®,

b 1 a
g = 21 a3 (45)
[+
b 6*) o 4b{ Ny =
(No"—g; PI bl Ny Ta

It is dimportant to note that even though g and p are
finite for x = @, cross-bridges are unlikely to be found at large
values of % since the probability density function u decays
approximately like e—g”x/v as X increases past the
equilibrium configuration. Note that g T @ as

Ny * 04foy = N, and this occurs at a finite value of =x = %,

where

pEN

5 C, (using ¢~ ab, Hill (1938)) . (46)
0

CROSS-BRIGGE DETACHMENT CURVE

CRBSS~BR10GE FBRCE YS DISTRANCE
21

160

160~

140~
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110-7 DYNES)

100
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DETACHHENT RATE [SEL-1)

TEMSIOH

B

o I T T T e DISTRHCE {ANGSTRENS)
DISTANCE IANGSTABHSY
Figure 7. The cross-bridge force and detachment rate curves in
these figures are obtained by solving the inverse problem uS}ng
the steady—-state results of A.V. Hill {1938}, The Hill
force~velocity and energy flux functions are the input functions
in the flow—chart of Figure 5. The cross-bridge functioms in this
figure are output.
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g 1s no longer physical {g(x) <0 for [finite xj when
NO <o fa, = Nc‘ This means that f must be greater than
¢O/pe(i—NC) if the model is to satisfy the Hill steady—sgate

relationships exactly for all v » 0, If we use parameter values

previcusly given then

N, = .81, %, = 58&, and f > 70 sec ! .

It can be shown that if Hill”s results (33) and (34} were
assumed to apply for v < 0 (lengthening) then (38) would also
deseribe g and p for =x <0, Experimentally there are
significant deviations from the Hill curves when P exceeds Py
and therefore a different relatioﬁship thar (35) should be
substituted to recover g and p for =z < 0.

At  this point we could substitute the functions p and g
determined by the inverse method into (l4) and (16) to determine
P(v) and

pefvy
=pef(l-N) = 2~ |, 47
$(v) =per(1-n) = L2V (47)
If the method works then P{v) and ¢ (v) should, in fact, yield
the Hill curves (33) and (34). Instead, we take a slightly
different approach that mnot only tests the inverse method but

also the wvalidity of the model. -

9. TRANSIENTS. Once g, p, and f are specified, our model is
coﬁpletely determined and transient as well as steady—-state
behavior canm be predicted. 1In this section we simulate transient
behavior to the following experiment: miuscle length is followed
in time after a sudden drop in tension from steady isometric to a
new constant iewvel.

There 1s no reason to expect that a model with cross-bridge

functions derived from steady-state data alone should correctly
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predict the results of this experiment unless, of course, the
model correctly embodies the essential physical mechanism that
produces the transients. Therefore, strong support for the model
is obtained if it can account for the qualitative features of the
transients using cross—bridge functions derived from the only
approximately correct steady-state curves of Hill (1938).

The transients are solved. anumerically by following the
position of cross-bridges that attach at earlier times. Let Xg
be the position at the nEE timg step of those cross-bridges
which attached to the thin filament at the jEE. time step
(3 « n) and let US-‘ be the number of these bridges which are
still attached at the nEE. time step. These numbers are updated
and new cross—bridges are added during the next time step (n+l}
in the following order:

(1) Detachment

n+l n s n+l .
2 = Ut - - . =1,... 48
o ug Ath (XD 05T, j=l,...,n , (48)
{2) Attachment
1 ¢ 1
n+l _ _ n+
utt = £(1 Z_ ug ]Atn+l .
= (49)
Xn+1 -0
n+1
(3) Movement AL
n+l
yotl _ognopoar §=1,2e.,n+l , (50)
where AL is chosen to satisfy the experimental constraint of
n+ : -
constant force production, P, given by
n+l
p= § Ut opx®+an ). (51)
i=1 J J n+1
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AL " is found by solving (51) using Newton“s method, where
n
AL = ] ax
okl
n+l k-1 -
+1 +
) U? P(X? Vel A %)
i=l i=1
A% = TaFt Kl : (52)
- it n+l
I w0+ ] ax) @
j=1 i=1

The initial conditions are:

. (53)
Xl is chosen such that U%p(xi) =P .

That is, the method starts immediately after the jump in tension

from Py to P.

TSBTENTC TENSIBN TRANSIENTS
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Figure 8. This figure shows the predicted tramsient response to
step changes in load when the cross-—bridge functions derived from
steady~state data are used (see Figure 7). At t =0 the force
is suddenly dropped from steady isometric to some constant force.
The forces are 0.95P,, 0.85P;, 0.75P,, 0.6Py, 0.5Pg, 0.4P0,
O.3PO, 0.275, O.1Pg, 0.ClPy. The ordinate is the change in
length from the initial isometric state.
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Simulated transients for a series of tension steps are
illustrated din Figure 8. The functions g(x) and p(x) were
chosen by the inverse method described above [see Figures 7(A)
and 7(B)J. Three phases characterize the results: (1) a step
change in length (x%) colncident with the step change in tension;
(2) a phase 1in which the velocity of shortening is much less
than steady—state and may even reverse (v < 0); and (3) a phase
in which the steady—state wvelocity 1is épproached with damped
oscillations. These phases also characterize the experimental
findings of Huxley and Simmons (1973). The experimental
transient curves are smoother than those predicted by the model.
The transitions between the phases described above are less
abrupt in the experimental record and oscillations are also less
pronounced in comparison te the predicted transients. Thgse
discrepancies may be related to the highly idealized assumption
of single point attachment or perhaps to the approximate nature
of the steady-state thermal data (A.V. Hill, 1938)}.

Figures 9 and 10 show the wvelocity and energy flux
{¢ = f(l—N)pe} at the end of each curve in Figure 8, These are
plotted along with A.V. Hill"s curves. The nearly identical
results confirm the inverse method for deriving the cross-bridge
functions p and g from steady data. These results also
validate the numerical method used to solve the transients.

Figure 11 shows the steady cross-bridge densities for three
different loads, the densities being obtained from the end of the

correspending transients in Figure 8.
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STERDY P-¥ CURVE
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Figure 9. The solid line represents the Hill force—velocity curve
(Eq. (33). a/Pn = 0.25, b = 0.325 muscle lengths/sec)}. The
squares represent model behavior. Each square is obtained from
the end of a transient curve illustrated in Figure 8,

ENERGETICS

ENERGY FLUX{P/PO-LENGTHS/SEC)

REL. FORCE(F/PDI

Figure 10. The solid curves represent Hill"s (1938) energetic
results., The squares represent model behavior. The straight
line is the total energy flux (Eq. (35)). The lower curve is
power + maintenance heat . (Pv + ¢O). Each point representing
model behavior is obtained from the end of a transient
illustrated ir Figure 8.
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Figure 1l1. This figure shows the steady cross—-bridge densities
for three different loads: (a) P/PO = 0,85 (v = 0,05 muscle
lengths/sec.), (b) P/Py 0.5 (v = 0.22 muscle lengths/sec.),
and (c) P/Po = 0,2 (v = 0.57 muscle lengths/sec.). These
densities were obtained from the end of the corresponding
transients in Figure 8, The area under the steady-state
cross—bridge density curve decreases with increasing wveloecity.
The area in (c) is approximately 70%Z of the area in (a) and
therefore there is a decrease in the fraction of attached
bridges, N.

10, CONCLUSION. Te this paper we introduce a new approach for
determining crogss~bridge functions. Instead of guessing at the
form of the cross—bridge force and detachment rate functions, a

systematic mathematical method is introduced which derives these
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functions from the steady tension and energy turnover rate of
muscle contracting at constant velocity.

The method 1is applied to a class of models similar to the
one originally proposed by A.F. Huxley (1957). The prin%ipal

differences between the two schemes are that we assume:

{1) sites on the thin filament for cross-bridge attachment
are closely spaced;

{(2) initially, cross-bridges generate force in a unique
configuration.

We do mnot assume that thermal wvibrations frem an unattached
equilibrium configuration are responsible for force generation.
In our model, cross-bridge coanfigurations are defined only for
attached bridges. Our scheme is consistent with more detailed
biochemical models in which force is generated by the release of
chemical potential energy made avallable through ATP hydrolysis.
Such detailed biochemical models are probably needed to explain
the fast transients that occur du;ing the first one or two
milliseconds following sudden step changes in temsion or length,
We believe that the model described in this paper can only
explain the slow and intermediate time-scale behavior of muscle.

The method for determining g and p -is tested by using
the approximate steady-velocity results of Hill (1938). 1In this
case it 1s possible to solve the inverse problem exactly and
determine ‘p and g analytically.

We have used these derived cross-bridge functions in
numerical simulation of model behavior to step changes in muscle
load. Not only does the model satisfy the steady force—velocity
and energetic curves of Hill (1938), proving that our systematic
method for determining g and p is correct, but the model also
predicts qualitatively the correct experimental transient

behavior. Considering the accuracy of the steady-state Hill
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curves, the qualitative agreement with traunsient behavior is very
encouraging suppoft for the model.

Our method for determining p and g can, in principle, be
applied to more accurate steady~state energetic data (Hill, 1964)
and force—-velocity data (Edman, Mulieri, and Scubon-Mulieri,
1976) although the inversion integrals may require numerical

rather than analytic methods.
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