V. Muscle Mechanics

¥
The Steady State Properties of Muscle:

Skeletal muscle, but not heart muscle, can be put into
a steady contractile state by rapid repetitive electrical
stimulation or by repetitive firing of its motor nerve. This
state is called a "tetanus." 1In a typical experiment the muscle
pulls on a lever. The other end

>0 of the lever is either held fixed
A T (isometric contraction) or attached

A
©

to a weight which supplies a
constant load (isotonlc contraction).
The inequality in length of the
lever arms reduces the effects

of acceleration of the load for

the following reason:

The force felt by the muscle (usually called P) is given

by
P =_%' m'(g + a') = %' m'(g + %’a)

where

m' = mass of the load

g = acceleration of free fall under gravity

a' = acceleration of the load

a = acceleration of the end of the muscle.

2',% = lengths of the lever arms

¥
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Now let m = 2 f‘ and take the limit as &' - 0, m' » o,

m = constant. Then P -+ mg independent of a. The effects
of accelerating the load can therefore be made small by
shortening the lever arm on the side of the load.

In an isometric tetnaus, the steady tension achleved

depends on the length of the muscle in the followlng way

Skeletal Muscle
Actlive Tension

Passive Tension

Developed Tension

Length
Skeletal Muscle Resting Length
(Heart Muscle Resting Length)

Experiments wlth skeletal muscle are usually conducted
at lengths where the tension 1s hear maximal. This makes 1t
possible to eliminate (approximatel&) the length dependence
of muscle tension. No such simplification is reasonable for
cardlac muscle.

In the region where isometric tension 1s independent of
length, isotonlc experiments lead to constant velocities of

shortening. The velocity depends on the load as follows:
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V = velocity of shortening

Po = isometric
V. tension
max

V. = veloclty of

max shortening
at zero
load

P P = load

The experimental points fit very closely to an equation

of the form

(P + a)v b(Po - P)

or

(P + a)(v + b) = b(P_ + a)

A.V. Hill (ref. cited above) who proposed this equatilon,
also noted an interesting connection between this force velocity
relation and his experimental data on the thermodynamics of
muscle contraction. Tetanized muscle held at constant length
(and hence at isometric tension) liberates heat at a constant
rate. When the muscle is allowed to shorten, however, extra
heat is liberated, the "heat of shortening".

This heat appeared to depend linearly on the amount of
shortening. That is q = ax or 4 = av. The constant a which
appears here agrees very well with the constant a of the force-
velocity relation. Since Pv is the rate of doing work, (P+a)v

can be interpreted as the rate of extra energy liberation during
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shortening (extra because even when v = O there 1s still heat
liberated during the maintenance of isometric tension). Hill's
force-velocity relation then implies that the rate of extra
energy liberated varies linearly with the load. That 1s,

it is glven by b(PO - P), and this result was also confirmed
experimentally by Hill.

If the relations q = av and € = b(_Po - P) are regarded
as given, then the force-velocity curve is a thermodynamic
consequence since W = Pv and conservation of energy is
€=q+w~>b(P, -P) =(P+a)v. On the other hand, the latter
equation rests on much stronger empirical ground than the
thermal measurements from which it is allegedly derived.

The thermal data are also important because they exclude
an interpretation of the force velocity curve which would
otherwise be very natural. Suppose that activation of a
muscle consists of a change in the length-tension curve of an
elastic element, and that a force-velocity curve results
because the elastic element is coupled to a viscous element
as shown. Such a model with an appropriate non-linear viscous

| element could account for the observed

force-velocity relation. As pointed

' 1d 9‘4 i -
P(%) %% E:Zilpl(v) out by Aidley (cited above), however,

i s

the total energy released on shortening

would be independent of the load in

Incorrect
Model

such a model, being equal to the decrease
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in the stored energy of the spring. In fact, the total energy
released is (P + a)x. More recent work, which shows that the
"oonstant" a increases with the load only makes this conclusion
stronger.

The description of muscle in terms of the force veloclty
relation alone is incomplete even when the muscle is tetanized.
First, the force-veloeity relation by itself implies an instan-
taneous Jump in tension from 0 -» PO when an isometric muscle

is tetanized. In fact however the tenslon rises smoothly.

Tension

Time

Also, if a muscle in isometric tetanus is suddenly
released to a constant load < Po’ it shortens very rapidly
to a new length before proceéding at a constant velocity
appropriate to the load. This experiment suggests that there
is an elastic component of the muscle which shortens instanta-

neously when the tension is released.
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Shortening

Time

Tension

- i m— — - —— —

Time

Sudden Release: Isometric Contraction »+ Constant Load

To summarize these data, Hill proposed the following model.
Muscle consists of a contractile element characterized by a force-
velocity curve in series with an elastic element characterized
by a force-extension curve (which can be measured from experiments

like the one described above).

!

QCE Contractile
Element

dzCE
l (pta)v = b(p,-p) VS ——e
L
p = p(x) X = 2=
Series
Elastic

Element
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The connection of the two elements in series implies that
the lengths add and the forces are equal.

From the equations for the two elements one can derive
a 1St order equation for p which makes no explicit reference
to %... This should be useful, since KCE is not observable,

CE
while p and £ are.

dp _dp dx _dp fa& , )} - (&t , 4 2o
dt dx dt dx (4t dx (dt pta
- = ite 92
Now since p = p(x) we can write ax as a function of p, say

dp _
> s(p). Then

p_-p
ap . a , Do
at = Sp) [dt *P T

The rise of tension during an isometric can be found from this

equation as follows. During the isometric %% = 0. Therefore

p 1
- 4
f g 57— = bt
Q s(p')_g____

p'ta

Likewise the behavior of the behavior of the muscle during
quick release can be recovered as follows. Suppose that p

~goes monotonically from p * p 4+ Ap during a time interval €.

Then
T+e p_-p
p(T+e) = p(T) = s(p*)[2(T+e)-2(T)] + b I g+a dt
T

where p*¥ lies between p and p + Ap.

Taking the limit as € » O

Ap = s(p¥)as .
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This shows that an instantaneous change 1n load is indeed
accompanied by an instantaneous change in length, and it also

indicates how the series elasticity can be measured.

Problem
Assume that s(p) = fk(p+a) where L  1s a constant with

o
dimensions of length. Then,

(1) Derive the force-extension curve p(x) for the series

elastic element.

(2) Solve for the tension p(t) if an arbitrary length change

L(t) is imposed. In particular:

(3) Find p(t) 1if 2(t) 2(0) isometric.

(4) Pind p(t) 1if 2(t) £(0) - vt where v = constant > 0.

Show that the force-velocity relation 1s recovered as

t -> “.
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Solution:

P X
dpP _ _ Pta dp' _ dx!
(l) d—i - S(p) = Lo hd [ P|+a = I LO
0 0]
P+a x/L
P / = ¢ "Fo
/
B P = a(eX/Lo - 1)
~
X
(2) Equation for P
ap _ Pta [d2 , ; to=¥
dt Lo dt P+a
or
P , 1 dfyn _ . 1 ag
S AU 2L A S S (2

Note: 1linear equation with non-constant coefficlents.
(l/Lo)[bt—z(t)]

Multiply through by e and integrate from 0 -+ t.
Assume P(Q0) = 0. Then

t

o -(1/L )[b(t=t")=-(2(t)-2(t"))
P(t) =-% I (bP, + a %%,)e © ]dt'
(o]

0

(3) Isometric: 2(t) = 2(t') = 2(0)
t
-(1/L )b(t-t") -(b/L )t
P(t) = %. J bP e ° dt' =P (1 -e o )
o 4 °
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Constant velocity:

Let %% = -v = constant
Then £
1 -(1/Lo)(b+v)(t—t')
Pe) = F | wrg-ave at
o
0 _bHv .
bP -av L
0 1 - e o}
b+v
let
bPO—av
P = 1im P(t) = BF + (P+a)v = b(PO—P)
too

The Anatomy of Contraction

A repeating unit of muscle structure is the "sarcomere",

the anatomy of which has been revealed by the electron microscope.

A schematic representation is given here (1lu

0.2u
-} le

*
Gordon, Huxley, Julilan, J.

10-6 meters) .

The structures shown have the obvious
names thick filaments, thin filaments,
and cross-bridges. The curve of
developed tension vs. sarcomere
length* has straight line segments

with corners at the following

anatomical landmarks:

Physiol. 171 28P (1964).
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Developed
Tension

3.5u No overlap of thick and thin
filaments
2.2u All cross-bridges engaged

2.0p Thin filaments meet in center

1.5y Thick filaments hit end of

¥ } ]

sarcomere
1lu 2u 3u

Sarcomere
Length

Remark: The curve of developed tension vs. muscle length if
measured grossly is a smooth curve. This is because, although
the length of a muscle is the sum of its sarcomere lengths, the
sarcomere lengths are not uniform along the length of the muscle.
Thus during a macroscopic isometric, some sarcomeres shorten
and others are stretched. In the experiment of Gordon, Huxley,
and Julian a small segment of muscle was held at constant length
using a microscope and a feedback control mechanism. In this
way the plecewise linear character of the curve was revealed.

In the interpretation of the developed tension curve
given above it was tacitly assumed that the lengths of the
thick and thin filaments remain constant, and that the filaments
simply slide past each other during the contraction. This is
known as the "sliding filament hypoth=sis" and it stands in
sharp contrast with the older idea that contraction of the
muscle resulted from the coiling of proteins. Direct evidence
that the filaments do not shorten during contraction has been

summarized by Aidley (cited above). Briefly it consists of
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direct electron microscope measurement of filament length in
contracting and in relaxed muscle, and x-ray diffraction studies
which show that the periodic spatial structures of the thick and

thin filaments do not change their spacing durlng contraction.

Cross-Bridge Dynamlcs

Suppose, as the anatomy suggests, that force 1s generated
in the muscle at the cross-bridges which Join the thick and thin
filaments. Then one has to imagine that these bridges are contin-
ually breaking and re-forming to allow shortening to occur. It
was proposed by A.F. Huxley* that the kinetics of this process
might explaln the mechanical behavior of muscle, e.g., the force-
veloeity curve of A.V. Hill. Huxley hypothesized that an attached
cross-bridge could be characterized by the longitudinal distance
X between the points of the thick and thin filaments Joined by the
cross bridges in question. The force transmitted by the cross-

bridge 1s some function of x, so that the cross-

‘ bridge (once formed) acts like a (possibly

}4_ non-linear) spring. As the muscle shortens

I x
the distance x obeys %% = %% where L 1s the

4

length of a half-sarcomere.

A.F. Huxley "Muscle Structures and Theories of Contraction",
Progress in Biophysiecs 7 255 (1957).

A.F Huxley and R.M. Simmons "Mechanical Transients and the
Origin of Muscle Force" in Cold Spring Harbor Synposium on
Quantitative Biology 1973, pp.669-680. (See also articles
by Podolsky and Nolan, and by Julian, Solins and Solins in
this symposium.)
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At any instant x 1is different for different cross-bridges
so that we have a population of cross-bridges to describe. We
shall assume here that there are essentially a contlnuum of
sites for attachment on the thin filament and hence that x
has no meaning for an un-attached cross-bridge. Define N and

n{x) as follows:

b N = fraction of cross-bridges which are attached

fn(x)dx = fraction of cross-bridges which are attached and which
a have x in the rage (a,b)

Therefore

N = f n(x)dx < 1
Define f, F, g as follows:

Given a cross-bridge which is not attached, let F be the
probability per unit timeb(rate constant) for the formatlon

of an attachment and let [ f(x)dx = rate constant for formation

a
of an attached cross-bridge with x in the range (a,b). Then

<]

F = J f(x)dx. In particular if we want to assume that attach-
ment always occurs at x = A, we write f(x) = F&§(x-A).

Given a cross-bridge which is attached with length x,
let g(x) be the rate constant for breakage of the cross-bridge.

These definitions lead to the following equation for

n(x,t)
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£(x)(1-N) - g(x)n

a5
+
<

jw

|5
H

where

n(x,t)dx

=
U
b

-
L(t) = length of half-sarcomere

The force P(t) is then gilven by

P(t) = I n(x,t)p(x)dx A
-0
where p(x) is the aggregate force extension curve of all the

cross-bridges in a half-sarcomere.

Remark: In Huxley's original model the sites of possible attachment
on the thin filament were regarded as discrete and sufficliently

far apart that x had meaning for an unattached cross-bridge;

i.e., the distance to the nearest site of attachment. In that

case one gets a similar but different theory with n(x) = fraction
of cross-bridges with length x which are attached, so that n

is dimensionless and takes on the values 0 < n < 1. The

equation for n 1is then

- an on _
3% t v sy £(x)(1-n) - g(x)n .

Note that N = I ndx no longer appears and that f has a slightly

different meaning here. (See also pp. 183-186.)
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Solution of the Cross-Bridge Population Equation

This solution was motivated by the observation of
Frank Hoppensteadt that if v = 1 and £ = F8(x) then we have
precisely the type of equation used to describe a population
of individuals with x = age and t = time. All individuals are
born at age zero, but the birth rate is some integral functional
over the whole population. Here, however, we have the slightly
more general case in which v 1s a given function of time,
controlled by what we do at the ends of the muscle. We have for

n(x,t) the equation

WP = 2@ - [ nlxt)ax) - glon

-0

where

v(t) = %-t-L(t) , L(t) glven .

Let

N(t) = f n(x,t)dx .

0

Temporarily regard N(t) as a known function of time. Later we
shall find an integral equation for N(t). Define a new variable

X, = x - L(t), x = Xy + L(t) so that the lines X, = constant

1
follow a given attached cross-bridge in the (x,t) plane

L.

N

xl = constant
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Now define

nl(xl,t) = n(x1 + L(t),t)
so that
Bnl ., , n
PR3 39X & ot
There fore
oan

ggl = £(x; + L(t)Q

N(t)) - g(x; + L(t))n,

In this equation X, appears as a parameter only. That is, if N(t)
is known (which is our temporary point of view) then the different

values of x, are uncoupled. One can verify by differentiating

1
with respect to t that a solution of this equation is

t
-f g(x, +L(t"))dt"

t '
n,(x,,t) = f [1-N(£')If(x;+L(E"))e t at!
0

This 1s the solution which satisfies nl(xl,o) = 0,
Next, we find an expression for n(x,t) using
n(x,t) = nl(x-L(t),t), so that

t
-j g(x-L(t)+L(t™))dt"

t ’ 1
n(x,t) = f [1-N(t")If(x-L(t)+L(t"))e € dt!
0

Now introduce the functilons

t
-f g (x-L(£)+L(t"))ds"

h(x,t,t') = £(x - L(t) + L(t"))e ©
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H(t,t') = f dx h(x,t,t")
t
Ho(t) = J dt'H(t,t")
0
Then £
n(x,t) = I [1-N(t")]h(x,t,t")dt"
0.
© t
N(t) = f dx n(x,t)= f [1-N(t'")JH(t,t')at"
-0 0
or

t
N(s) + [ atTNCEHCE, 1) = H CE)
0

This integral equation for N(t) could be solved by various
numerical methods to complete the solution.

With n(x,t) known, we can evaluate the force that will
be felt at the ends of the muscle as follows

P(t) = | dx p(x)n(x,t)

Ot——ct %"——ﬁa

at [1-N(t')] f dx p(x)h(x,t,t")

where p(x) is the cross-bridge force extension curve.

Special Case

Suppose g = constant. Then

h(x,t,t') = f(x—L(t)+L(tv))e-8(t-t')
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0

H(t,t') = e‘g(t‘t'>-f dx £(x-LCt)+L(E"))

. OO

Letting
g =x - L(t) + L(t') » dg = dx
we get

®
H(t,t') = e 8(6-8") J dEL(E)

)
independent of L(t). It follows that when g = constant N(t)
is independent of L(t). In other words, when g = constant,
the total number of attached cross-bridges obeys 1ts own
dynamics, independent of how the muscle is pulled.

We now seek an equation for P(t) in the specilal case

g = constant. We have
t 0

P(t) = ! at' (1-N(t'1))e BLt-t") f dx p(x)f(x-L(t)+L(t"))

-0l

As before, let £& = x - L(t) + L(t'). Then

o«

t
P(t) =_[ att (1-N(£1))e BLE-") f dE p(E+L(t)-L(t'))£(E)
Q

-0

Differentiate with respect to t:

dap
i = [1-N(t)]

ag p(g)f(g) - gP(t)

- g8

+
=

t ©
[ atrra-ncen)e®EE") [ agdBresncs)-L(s1)) £(e)
0 =00
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We now specialize further to the case where

5
p = p(e®*-1) » sE = al(p+p,)

Then -
%% = [1-N(t)] f dg p(E)£(E)-gP(t)
¥ %%'(GP(t) + ap j dt'[l—N(tv)]e'g(t-t') f 4E £(E)

0 —_c0

Let .

gP (%) = [1-N(t)] f p(E)F(E)dE
t
a(t) ='p0 I dtv[l_N(t')]e'g(t—t')
Then "0
St = opra) &+ g(Py-P)

As defined above a and Po are functions of time. However, as

t >, N+ N, so that

R — f p(E)F(E)dE

C1-N T
a > —5— P, J £(g)4g

Now, let b =~% and s(P) = a(P+a) and we get
b(PO—P)]

dp _ N
= S(P)(dt * TP

at
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which is precisely the differential equation of the Hill two-
component model. Here, however, the physical interpretation
is different. For example, the rise in tension during an
isometric following a quick release is due to redistribution
of the cross-bridges, not to internal shortening. It can be

shown (see problem below) that

N = F > 1-N°° = 1
» F+g g Ftg °

Therefore the asymptotic values of Po’ a, and b are given by

ro
o)
"
i
s
0

[ p(E)E(E)dE

a = gz Po f £(E)dE

o
"
em

The maximum velocity of shortening is given by
w

’ [ p(E)F(E)AE
bP
vy =0 _E& =
max a o

Po T £(£)dE

As a further specialization, conslder

f(x) = F §(x-4)
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Then

PO = F+g p(A)
_ F
a = Frg Po
h = 5.
o
, - &p)
max o po

It is interesting that Vmax is independent of F and that

increasing g lincreases while decreasing Pj. The latter

Vmax
observation suggests that some muscle should be speclalized

for speed while others should be specialized for high load.

Problem
Assume that g = constant and that all cross-bridges attach

at x = A. That is f(x) = F §(x-4).

(1) 1In the region x < A, solve for the steady distribution of

cross-bridges n(x) that results from setting v = constant < 0,

an

andﬁ

= 0.

(2) By integrating the differential equation over the interval
(A-g, A+e) interpret the condition f(x) = F §(x-A) as a
boundary condition at x = A. Use this boundary condition to

complete the solution found in (1).

[+

(3) Does N = [ n(x)dx depend on v? Solve for N.

00
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(4) Write down an expression for the force-velocity curve that

corresponds to arbitrary p(x).

(5) OPTIONAL Regard g, A, F as known constant, and show that
the force-veloclty curve is essentially the Laplace transform
of the cross-bridge force extension curve (!). (To get this
result let s = 1/v be the transform variable.) Hence construct

the cross-brldge force extension curve uniquely from Hill's

b(P_-P)
result -v = ——?%5— . (Note that g = constant plays an essential
role).
Solution:

Given g = constant, f(x) = F&§(x-A) .

(1) If v = constant < Q and & = 0, then for x < A we have

at
B (x-A)
v g§-= -gn + n = n(a)el ¥l

(2) Consider the full equation

4+ v(t) B = F s(x-A) (1-N) - g(x)n(x)

and integrate from (A-e, A+e)

Ate
vInCate) - n(a-e)] = FQN) - | [gnx) + Mlax
A-g
Taking the 1imlit a € » 0, if the integrand on the right is

bounded we have
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- vn(A4) F(1 - N)

F(1 - N)

n(A) = -

where we have used n(x) 0 for x > A and where n(A)= 1im n(A-¢)

€0
But
A A
(x-4)
N = J n(x)dx = Jn(A)eT%T dax
y = o) vl
8
oy - 8N _FQA-N) L o o F
n(A) ]v| |v{ N F+g

Putting these results together, the distribution n(x) is

)n(x) =F%r§rerér(x_m
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(3) If g = constant one can derive an ordlnary differential

for N as follows: Integrate each term of the equation

an

24 v(t) 2= £(x)(1 - N) - gn

from x = -» to x = +» and note that

[?-;.l-dxm(w) ~n(=) =0 .
Then -
dN _
a"t":—F(l—N) —gN

Thus N obeys 1ts own dynamics,kindependent of v provided that

B

constant. In the steady state N = Fgg as found above.

(4) The force velocity curve for arbitrary p(x])

.
. ~A)
- F g T

P =i & J e p(x)dx .

(5) Force-velocity curve as a Laplace transform. Let

s =’TVT y = g(A-x) and define the function pl(y) such that

pl(y){ = p(x) .
y=g(A-x)
Then o

P = Ns [e'sypl(y)dy
where . 0
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From A.V. Hill's experiments we have (for v < 0)

b(PO—P)
vl = s
a
or
_ bPO—a]vl _ bP s-a

b+[v] =~ bstl

Then »
. bP _s=g
- 1
| e, ey = ¢ 55
Q

ctiee
1 o5Y L bP s-a
2ni S bs+l
c—ie
A
= -a t e b(Po+a)

Npl(y) ds

S Np(x) = -a + eB(XAI/P(p 4q)

Now impose the prequirement that p(0) = 0. Then

gx
Np(x) = a[ e b _ ] .

We conclude that if g = constant and f(x) = F§(x-A) then measure-
ment of the steady force-velocity curve uniquely determines the
form of the cross-bridge force-extension curve as given above.
(Actually we have a one-parameter family of curves depending on

the unknown constant g).

Question: Can one obtain results like this when g(x) is not

constant?
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Comment on the Cross-Bridge Equation introduced above:
In the foregoing we have used the cross-bridge equation:

g% + v(t) §§-= £(x)(1 - f n(x)dx) - g(x)n

This form is due to H.M. Lacker (unpublished). The equation
introduced by A.F. Huxley (1957, cited above) was
an v(t) o1 _ T(x)(1-n) - gx)n
2t . X -~ - _8_
(The "~ is my own notation to distinguish the quantities with
different dimensions in the two equations). Lacker's form
differs from Huxley's in two ways:

(1) The attachment terms are r=spectively (1 - f ndx)

and (1 - n).

(11) The dimensions of some of the gquantities are different:
n length-l

ﬁ dimensionless

f leng’ch_l time ™t

time-l

(o 34

The following conslderations show that the two equations are

opposite limiting cases of the same basic process:

We regard the sites on the thin filament as discrete and separated

by a distance Ax
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Thin
k €=== Filament

2 i [l 1 Y | A 1 i ]

—+ Ax &
Thick
T : Filament

The following considerations refer to a single cross-bridge.
Let

chance that the cross-bridge is attached to site

ny (t)

k at time t©.0 < ﬁ < 1

k

T iy (8)

chance that the cross-bridge is attached at all.

k
(Note: exclusive events. One cross-bridge
cannot be attached to two values of k simultaneously).
Then R
.dnk(t) R " . _
3T = f(Xk)(l - 22 nk(t)) “~g(xk)nk(t)

where %,_g are rate constants (Dimensions time'l)

Now assume that the ﬁk(t) are samples of a smooth funection

n(g,t); that is

n, (t) = n(x, (t),t)

Then ~
dﬁ:v&-{-a_ﬁ—
dt X t

and we have

S

= P(x)(1 - ¥__ n(x+pdx,t)) - gn

<
%>
+
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We are now in a position to consider two extreme cases.

(1) Suppose ﬁ(x,t) = 0 when |x| > h and suppose that Ax > 2h.

Then for |x| < h, fi(x + pAx,t) = 0 unless p = 0. Therefore

%% = ,i\‘(x)(l - n(x)) - Sﬁ

<
155
+

which 1s Huxley's equation.

(2) On the contrary, suppose that Ax is very small. Then let

]

PaS
n n Ax

S
it

£ Ax

and we get

L
QL

v —§-+ §E-= f(x)(1 - z%: n(x+pAx) x) - g(x)n .

This equation 1s exact. Now if we take the limit as Ax »+ 0

we get

0

v 3420 - [ ntslaxt) - gGnt)

Q

=00

which is Lacker's equation. Note that if we assume that n,f
have finite limits as Ax = 0 then we are regquired to ‘assume
that ﬁ,% + 0 as Ax » 0. This 1s appropriate, since in the
limit where thin fllament sites are very dense they must be

regarded as competing for the cross-bridge and the chance

that any particular site is occupied must tend to zero.

In summary, Huxley's formulation is appropriate if one
assumes that the thin filament sites are so sparse that at
most one 1s within range of any given cross-bridge at any

~given time. Lacker's formulation is appropriate in the
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opposite extreme when the sites on the thin filament are so
close that the thin filament is essentially a continuum. If
each globule of action has a site for cross-bridge attachment

then Lacker's formulation in which attachment depends on

1 - f ndx would seem to have considerable merit.

Heart Muscle

Classical approach based on A.V. Hill's model:*

The references given here summarize the attempts to
characterize heart muscle in terms of a "contractile element"
and various elastic elements. Such aneffort is more difficult
in heart than in skeletal muscle because of the following
complications in heart muscle:

(1) 1length-dependence of developed tension in the

physiological range of lengths
(2) non-zero passive tension in the physiological range
(3) time dependence of the "active state"

(4) 1inability to study individual sarcomeres as in the

work of Gordon, Julian, Huxley (cited above) .

Blinks & Jewell, "The Meaning and Measurement of Myocardial
Contractility" in Bergel, Cardiovascular Fluid Dynamics
Academic Press 1972 v. 1.

Braunwald, Ross, and Sonnenblick, Mechanisms of Contraction
of the Normal and Failling Heart, Little Brown.
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(5) dependence of the active state on the mechanical
history of the contraction.
Several of the foregoing "compllications" ape important
in the function of heart muscle. Therefore it 1s not desire-

able to leave them out of a mathematical model. For example:

(1) In the physiological range increased length of
heart muscle leads to increased developed tenison. This
means that each side of the heart adapts to whatever load of
blood is presented to it: when the heart is fuller it pumps
harder. Since the two sides are connected in series the
result is a feedback.system maintaining the equality of
output between the two sldes of the heart. Such an equilibrium
would be unstable if increased length (due to increased
filling) led to reduced force of contraction.

(2) The significant passive tension in resting heart
muscle prevents the heart from being filled to the point
where increased length results in a fall in developed tenslon.
As remarked above this situation would be unstable.

(3) The contractions of heart muscle occur as isolated
events. A tetanus which 1s so useful in the study of skeletal
muscle has no place in the function of a pump which must alter-

nately relax and contract to be effective.

A model which accounts for many of the complications
listed above but which still falls within the framework of

A.V. Hill's ideas 1s discussed at length in Braunwald, Ross,
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PE

PE = Parallel Elastic
Element

SE = Series Elastic
Element

CE = Contractile
Element

v
A
vmax °

) Increasing
"\ Length

and Sonnenblick (cited above). Briefly
a parallel elastic element with some
given force-extension curve accounts
completely for the resting tension in
the muscle. The length dependence of
the developed tension is included in the
properties of the contractile element

in the following way: The contractile
element is assumed to have a different
force-velocity curve at each length.
Experimentally these curves seem to inter-

sect at P = 0 in a velocity which

Ymax
is independent of length. though there

is some controversy about this. Theoret-
ical justification for this idea comes
from the hypothesis of A.F. Huxley that
the muscle force is the sum over the
forces of all the crgss-bridges in a
half-sarcomere and that muscle length
determines the number of cross-bridges
which can be active. The velocilty Vinax
is then the sliding velocity in which
the positive and negative cross-brildge
forces just balance. It 1s therefore

independent of the number of cross-bridges

participating.
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Ohe can make the foregoing ideas quantitative by assuming
that the Hill force velocity curve applies in a certain sense
to each cross-bridge participating in the cross-bridge cycle
and that the total force is the force per cross-bridge times
the number of cross-bridges participating. The latter quantity

is a function of muscle length. Thus

S
b(po-p) (%)
VT Tpra
P = S(2)p
2

where_S(z) is proportional to the number of cross-bridges

participating at each sarcomere length 2%. This gives a family
of curves of P vs. v, one for each %, which are scale multiples
of each other along the P axis. This 1s roughly what is found

experimentally, and it certainly has the consequence that
v = —— , independent of %

The "series elasticity" in heart muscle is partly internal
and partly external to the sarcomeres. The internal part resides
in the cross-bridges themselves and has a stiffness proportional
to the number of attached cross-bridge;; it does not therefore
have a fixed force-extension curve as has been tacitly assumed

by many workers in the field. The external part presumably has

A.F. Huxley and R.M. Simmons, ref. cited above).
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a fixed force-extension curve depending on the properties of

the tissue surrounding the sarcomeres and on the attachments

of the muscle to the apparatus. THE EXISTENCE OF SERIES ELASTICITY
WITHIN THE SARCOMERE MEANS THAT SARCOMERE LENGTH IS NOT PROPOR~
TIONAL TO CONTACTILE ELEMENT LENGTH. An appropriate way to

clarify this point might be to draw the following model:

; ere CE Aggregate
Sarcomere
Internal Series Length a &

Elasticity

PE

External Series
Elasticility
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Active State in the Context of A.V. Hill's Model.

If the foregoing picture of cardiac muscle 1s accepted,
then the process of turning on and turning off the muscle has
to be described in terms of time dependence of the constants
of the Hill hyperbola. In this way the force-velocity relation

becomes a function of time since stimulation of the muscle.
b(P_-P)
0

P+a ’
P0 are constants, but such a steady state only occurs in

The Hill hyperbola is v = In the steady state a, b,
skeletal muscle tetanus. In cardiac muscle we are interested
in the time dependence of one of more of these parameters.
Some experiments to measure this time dependence will now be
described:

*
(1) Brady's length clamp

This technique is based on our analysis of the three-

component model which proceeds as follows. Suppose that the
functions F, and Fg which characterize
the parallel and series elastic

T f elements are known. Then the

L
CE = ' -
% 4 equation P FP(LM)+FS(LM LCE)
g Fg (Ly-Lg) Lop 1f P(t), Ly(t) are known.

T It i1s then possible to arrange
P=F, +F

LM FP(L can be solved at each instant for

n’

P S a feedback system which adjusts

P(t) to keep L the length of the contractile element constant.

CE’

*
Brady, "Active State in Cardiac Muscle", Physiological Rev.
48, 570-600. |
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When this is done the force on the contractile element is the
force which corresponds to zero velocity, namely Po(t). Thus
Brady achieved an indirect measure of Po(t) = P(t) - FP(LM),

by adjusting P to hold LCE constant. The results are roughly

as follows.
Tension on the

A  Contractile Element

Length Clamp Isometric
(LCE = constant)

\ Standard Isometric
\ (L = constant)
\

\ r—-
Time

Three criticisms of this approach are:

(1) As discussed above the series elastic element does not
follow a fixed force-extension curve, since the stiffness
depends on the instantaneous number of attached cross-
bridges.

(i1) As discussed above, holding contractile element length
constant is not the same as holding sarcomere length
constant. In fact, in Brady's length clamp the sarco-
meres must be 1engtheningl if the internal series elas-

ticity is significant. This means that the length of the

1 oge. during the time when contractile element tension 1is
rising.
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éverlap region or the number of cross-bridges partlci-
pating in the contraction 1s changing during the exper-
iment. Thus different parts of the curves Po(t) refer
to different sarcomere lengths.
(1ii) The experiment leaves open the question of whether a,
b, the two remaining parameters of the force-velocity
curve also change with time.
Remark: It would probably be more useful to use Brady's
apparatus to hold sarcomere length constant rather than
contractile element length. This could be done if a clear
separation could be achleved between the internal and external
series elasticity. Such a separation is possible in principle,
since the internal series elasticity depends on the number of

attached cross-bridges while the external does not.

*
(2) Isotonic release experiment

This 1s an effort to construct instantaneous force
velocity curves. The muscle length 1Is held constant until a
time % determined by the experimenter; At this moment the
muscle is allowed to 1ift a load Pload which 1s less than the

isometric tension at fime t. The experimental records are

roughly as follows:

Jewell and Wilkie, "Mechanical Properties of Relaxing Muscle",
J. -Physiol., London 143, 515-540,.
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Shortening At the moment of release, the muscle
4 suddenly shortens. This 1s interpreted
as the shortening of the serles elastic
element to a length consistent with

the new load. Following this jump

N

the muscle begins to move at a new

velocity. This is interpreted as the

1 velocity of the contractile element
Tension

at the new load at time t. (Although

the length of the contractile element

is constant during the Jump, the same

S e———————

1 Q08

t

cannot be said for the sarcomeres, for

the reason given above. Therefore

the force-velocity cﬁrve constructed in this manner is not at
constant length.)

Timed isotonlic release experiments have also been used
to show that the muscle cannot be described by a force-velocity
curve whose parameters follow a fixed time-course independent
of the length history of the muscle. In particular, Jewell and
Wilkie have shown that when a muscle shortens agalnst light

loads the duration of the active state 1s reduced.
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In curve a the muscle was

Shortening

allowed to shorten immediately
against a light load, while

in b the muscle was held isometric
until time t, which 1Is a time

at which the muscle in a has

alréady relaxed enough to re-

t L]
Time turn 1ts welght to the table

ot

At time t the muscles in a,b
have the same length (the
initial length), and the force on b is greater than the force

on a; nevertheless, b contracts while a does not.

Active State in the Context of Cross-Bridge Dynamics

This section 1s based on the thesis research of T. Feit*.
Feit has succeeded in avoiding many.of the difficulties of
the classical approach by basing his model on cross-bridge
dynamics as introduced by A.F. Huxley rather than on the
older ideas of A.V. Hill. In particular, Feilt also uses a

three component model to describe the macroscoplc features of

*
Felt, Active State in the Mechanlics of Cardiac Muscle, Albert
Einstein College of Medlcine, (Dept. of Physiology) 1974.
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of the muscle, but his active element is not
the contractile element of Hill, but rather

a lumped representation of the muscle sarcomeres.

Lumped
E% Sarcomere (mnus the elasticity of the cross-bridges are
PE
- SE included within the lumped sarcomere, not in

the seriles elasticity). The relation between

force and length for the lumped sarcomere is
derived from a modification of Huxley's cross-bridge equation
introduced by Feit to take account of the peculiar and interesting
features of heart muscle. Feit's basic equations for the sarcomere

can bhe written:

3+ v &= n(e)r (%) (n, (24)-n) - gx)n
P =K f xn(x)dx

where zs = length of % sarcomere

dzs
V= 3z
P = lumped sarcomere force
h(t) = active state intensity 0 < h(t) <1

(see below)

and where fo(x) g(x) and no(zs) have the form shown:
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fo(x) g(x) no(zs)

TN

x )
X )

i

The features of special importance in cardiac muscle are
the functions no(zs), which is proportional to the number of

cross-bridges which can participate in the cross-~-bridge cycle

at half-sarcomere length.zs, and h(t), which has the interpretation

of heing the fraction of the thin filament which 1s switched on

by catt fon at time t since stimulation.

The main result of Felt's thesis was a method for computing

h(t) from experimental data (without subjJecting the muscle to
violent experlimental interventions such as quick stretches or
quick releases). The essence of this method is as follows.
First, from the experimental records of length and force, it

is possible to use the three component model (p.196) to derive
force. One then seeks to determine a function h(t) which is
consistent with this length-force history for the sarcomere.
This 1s done at each time step as part of a numerical procedure
for computing the cross-bridge distribution n(x,t) for the

experiment. Note that

Lk f x32 ax = x f [-v32 + n(t)f_(x)[n (%;)-nl-g(x)nlx dx
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Thus with %% determined from the experiment, and n(x,t) known

up to time t one can solve for h(t) as follows

ap an
o * K'f,[ysi + g(x)nlx dx
h(t) = =

K I fo(x)[no(zs)-n]dx

with h(t) known, one can go ahead one time step in the computa-
tion of n. For numerical details, see Feit's thesis (cited
above).

The function h(t), which is essentially the rate constant
for cross-bridge attachment is a new definlition of active state
in cardiac muscle. An Interesting result, with respect to the
observation of Jewell and Wilkie that mechanical history of a
contraction influences active state kinetfcs during that
contraction is Felt's observation that when the muscle begins
to shorten h(t) increases suddenly and then decreases more

rapidly than in an isometric.

h(t)

Time
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%
isometric contraction

o
II

b = isotonic with shortening beginning at time t1
¢ = Isotonic with shortening beginning at time ts

Such’results have led Feit to the hypothesis that a
region of the thin filament which has Just lost a cross-bridge
is more susceptible to cross-bridge attachment. Since the
rate of turnover of cross-bridges increases during sliding in
Feit's model, this hypothesis would explain why h(t] appears
to rige when sliding begins. This hypothesis is consistent
with chemical evidence that a "potentiated" state for the thin

* %
filament exists and is produced by cross-bridges themselves.

Intracellular Calcium Kinetics in Heart Muscle
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Summary of the evidence:

(1)

(2)

(3)

With cell membrane premoved or damaged, steady muscle tenslon

is extremely sensitive to Ca++ in the bathing solution

A Tension

>log [Ca++]

Skeletal muscle will continue to contract (if stimulated)
for several hours in the absence of external Ca++. But

its abllity to relax suggests that Ca++ can be removed from
the region of the slidiﬁg filaments and stored somewhere
else in the cell. Membrane-bound vescicles capable of .

sequestering Ca++ have been isolated, the "sarcoplasmic

reticulum".

Heart muscle will not continue to beat in the absence of
+

external Ca *. The strength of contractions at constant

2
rate seems to depend on the ratio of [Ca++]/[Na+] .
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(W)

(5)

+
The decay of tension in Ca . free solution is more rapid

when the muscle is stimulated.

The dependence of heart muscle on external Ca++ has led

+ which activates the

to the suggestion that the Ca+
sliding fillaments comes through the cell membrane. However
it has been estimated that not enough Ca++ comes from this
source per beat. It has been suggested (Nayler) that
extracellularly derived Ca++ triggers the release of Ca++

from intracellular stores. Mechanism = ?

The strength of contraction of heart muscle at constant
external [Ca++] has extremely interesting behavior when

the interval between beats is changed in various ways:

Steady rate of stimulation:

F A
F_

[ <}

Ventricle

Atrium

¥ > log T

T 1l sec
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Constant Interval Between Beats.

3 .
i

i£s|
i

Peak Isometric Force

G|
i

F(T)
T=c

Transient Changes:

(1) Shortening the interval

Regardless of whether the muscle is in a region where
increasing rate Increases or decreases the strength of
contraction, when the interval is abruptly shortened the
first beat 1is always weaker than previously. Then there 1is

an exponential looking approach to the new equilibrium.

Example:

C

(ii) Lengthening the interval

Reverse of the foregoing. The first beat 1s stronger;

the new equilibrium may be stronger or weaker.

(iii) Effect of a rest

If a regular sequence of beats with Interval T is inter-

rupted by a rest one gets this kind of result
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TR T .

or perhaps

WL B .~

(undershoot)

(iv) Potentiatlon by electric currents

If the cell membrane is depolarized for an extended period
of time by an imposed current the tension becomes a steady
"contracture". The next beat is greatly potentiated and
the subsequent decay of the potentiated state 1s beat

dependent, not time dependent.

Model for intracellular Ca++ transport:

The main ideas on which this model is based are aiready
in the references cited pp. 199-201. In particular, the model
presented here is very close to the hypotheses of Wood, Heppner,
and Weidmann. Nevertheless some interesting points emerge from
the present formulation. Among these are

(1) A natural mechanism by which a small flux of Ca.++

from outside the cell controls a larger flux from

intracellular stores invthe steady state.

(2) A complete separation between transient effects and

steady effects.
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The assumptions here are as follows: A beat 1s regarded as an
event occuring at a single instant of time. At such an instant
an amount D + K of Ca++ ion is made avallable to the sliding
filaments. D 1s the total amount stored in an intracellular
compartment just prior to release, while K is the amount which
comes in from outside the cell. (We temporarily regard K as

an independent variable). The calcium is then (instantaneously,
in this picture) pumped away from the contractile mechanism.

A fraction o is pumped out of the cell while the fraction (l-a)
is pumped into an intracellular compartment (different from the
compartment for release). Between beaté all that happens 1is

an intracellular first-order transport of Ca++ from the uptake

compartment to the release compartment.

1.

D
2 A g Sliding
1 I Filaments

I (1-a0) (D+K)

o (D+K)

Steady-State:
D= a(D+K) » D = I%E K

(This result is independent of the details of the transport

from (1)>(2)).
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This implies taht in the steady state the transmembrane flux

K controls the intracellular discharge D. If o > % there is
amplification and if a ¥ 1 the gain is very large. In this
model, then, the steady strength of contraction depends solely

on the transmembrane flux per beat, K.

Transients:

Assume that between beats
T 7ﬁ7-= -cl and ¢y + c2 = constant

Then

cq (%) _cl(O)e't/To

Also if c2(0) = 0 then

e () - e7¥ 7o)

e, (t]

In particular

-T/To)

cﬂT) cl@)u - e

Let v = volume of (1) = volume of (2) and suppose that D =_vc2(T).
Then we can solve for cl(O) when the interval T is constant as

follows:

vcl(Oi _vclﬁT) + o(D+K)
.VchT) + a(vca(Tl + K)

c (@) = ¢, (T) + ale,(T) + K)

where Kb = K/v
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Solving for cl(O), 02(T) we obtain

ak
1
¢, (0) = —2 =
1 1-0 14 T/1o &
oK
- 0
cx(T) = 75

Note that the amount ready for release from compartment (2) is
independent of T (if Ko is independent of T) but the amount
stored in compartment (1) - «» as T - 0. Now suppose that the
regular train of beats with interval T is suddenly interrupted
and the next beat follows the train by an interval t which may

be greater or less than T. Then

. oK ; —t/To
¢y (T,8) = 105 l—e-fr/—r
l-e 0
cz(T,t)
aKO
l-0
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Note that the maximum strength of contraction which can be obtain-
ed in this way depends very strongly on the interval T between

beats in the preceding regular train. In fact lim cg(T,w) = oo,
T+0

Difference equations for the strengths of successlve beats:
On each beat we have c2(0) = 0, and cl(O) given from the
previous history.
Let
X = initial values

Y = final values

y{k) - xﬁk)(l-w(k))

es 1) /g

L}
o
i

S OED

x{kHL)L Yfk) + a(Yék) + K)

|1}

1wt gx (0 4 a0 4 k)

Rewriting the foregoing recursion relation in terms of Y we
have
(k+1)

(k) (k+1)
m Y2 + aKoW

Y§k+l) = [1 - (1-«0w(k)] W
W

If W is independent of (k) even if a steady state has not yet

been established

Y§k+1) =[1 - (1—a)WJY§k) + oK W
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or

(k+1) (k) _ (k)
Y2 - Y2 = w[aKo - (l—a)Y2 ]
Note the following properties of this equation (which holds
whenever the interval has been constant for at least two beats).
(1) The steady value 1s independent of W.

(2) The solutions are exponentials asymptotic to the steady
value. Recall that W = 1-e'T/TO. For T >> 1, W ~ 1 and

the approach to equilibrium is beat dependent rather than time

dependent, as has been observed by Wood, Heppner, and Weldmann.
On the other hand, if T << T, then W % T/Tb and our difference

equation becomes

(et1) S | (x)
=T [aK‘O - (l-(!)Y2 . ]

or approximately, for small T

A

[aKO - (1-a)Y]

Thus for small enough T the decay becomes time-dependent.

Rate dependence of the strength of contraction:
In the foregoing model any dependence of contraction
strength upon rate in the steady state can come about only

+
because of a change in K, the transmembrane flux of Ca * per

beat, as a function of the interval between beats. (As discussed
above the transient changes can be explained without invoking

any changes in K).
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There is experimental evidence that Ca++ exchange per
beat increases with rate, which would explain qualitatively the
rise in tension with rate seen in ventricular muscle. Langer

has proposed a mechanism for this based on the following ideas:

2
(1) In nerve, [Na+] inside the nerve controls the lnward

flux of Ca++ ion.

(2) 1In heart, the strength of contraction is known to depend

2
on external [Ca++]/[Na+] .

(3) A fixed amount of Na® enters the cell each beat and is
pumped out between beats. If we postulate that the
outward flux due to the pump is k[Na+]i and note that the
inward flux will be fo/T, where fo is the amount of Na+
which comes in per beat, then we should have, in the

steady state

r
+
[Na"1, = g

where T = steady interval between beats.

(4) Suppose we postulate (Langer) that ca’t enters the cell
by carrier diffusion, and that the carrier molecule can
bind either 2Na+ or Ca++ and cannot cross the membrane
unless it has bound one or the other. Then if we assume
that the internal Ca++ concentration is very low and that

Na+ reactions are in sufficiently rapid equilibrium to
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External control the ration [X=]e/[X=]i

then we have

K, Kq
= XCa + 2
XNa .~ X~ » = _
2 I K2[X ]e[Na ]e = [XNaZJe
XNa. <= X- = [XNay 1y
° K, = x.[X"].[Nat 7%
2 gtha Jg
Ca++ or
[x"1,[Na*12 = [X73,[Na"35
Internal

Suppose further that [Na+]2 >> [Na+]§ and that most of the

carrier is in the state X . Then we have approximately
[x7] (=723 [x]
X = X
+
e [Na 32 o]

where [X]O = total amount of carrier. It follows that the

inward flux of Ca++ will be given by

++ +.2
ko[Ca ]e[Na ]i -
+]2 o)
e

[Na

But in the steady state we expect [Naf"].l = ;% with.fo, k
constant and T the interval between beats. This gives as
inward Ca++ flux proportional to

[Ca++] £

e O
Na'12  (xT)°

this expression increases rapidly with decreasing T and accounts
qualitatively for the observed steady effect of rate on strength

of contraction in ventricular but not in atrial muscle,
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