
The Entropic Uncertainty Principle and the
Fast Fourier Transform

Charles S. Peskin

Courant Institute of Mathematical Sciences, New York University

Modeling and Simulation Group Seminar — March 5, 2020

Abstract

The entropic uncertainty principle for the discrete Fourier transform states that

H(u) + H(Fnu) ≥ log(n), where Fn is the discrete Fourier transform of order

n, and H(u) is the entropy of the discrete probability distribution given by Pj =
(|uj|/‖u‖)2. This is a special case of a known result [1] that requires substantial

mathematical apparatus for its proof. Here, we give an elementary proof for the

special case of the discrete Fourier transform with n = 2p. Our method of proof

is induction on p. By proceeding in this way, we reveal a connection between the

entropic uncertainty principle and the Fast Fourier Transform algorithm.

Introduction

The discrete Fourier transform Fn : C
n → Cn is defined by

(Fnu)k =
1√
n

n−1
∑

j=0

e−i 2π
n
jkuj, (1)

for k = 0, 1, . . . , n− 1. It is easy to check that Fn is unitary:

‖Fnu‖ = ‖u‖, (2)

where ‖ ‖ is the Euclidean norm.

The entropy of a vector u ∈ Cn may be defined as follows:

H(u) = −
n−1
∑

j=0

( |uj|
‖u‖

)2

log

(

( |uj|
‖u‖

)2
)

. (3)
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Note that H(u) is invariant under any permutation of the components of u, and

also that H is homogeneous of degree 0, that is,

H(cu) = H(u) (4)

for any complex number c. If we interpret Pj = (|uj|/‖u‖)2 as the probability

of the event j, for j = 0, 1, . . . , n − 1, then H(u) is the entropy of the discrete

probability distribution (P0, . . . , Pn−1).
It is a known theorem [1] that

H(u) +H(Fnu) ≥ log(n). (5)

This is called the entropic uncertainty principle for the discrete Fourier trans-

form.1 The proof of (5) in [1] is very short and elegant, and in fact it considers

a more general case, as explained below, but it makes use of concepts that seem

more advanced than necessary for the problem at hand, which is concerned only

with finite-dimensional vector spaces. That is one motivation for providing a new

proof here. Another is that the lower bound log(n) of the entropic uncertainty

principle is strongly suggestive of the operation count O(n log(n)) of the Fast

Fourier Transform (FFT) algorithm, and this suggests a method of proof at least

for the special case n = 2p (which is the only case that we shall consider here) in

which each of p steps contributes log(2) to the total entropy. That is indeed how

we shall proceed.

As mentioned above, the theorem proved in [1] is actually more general than

(5). It may be stated (in the finite-dimensional case) as follows. Let U be any

unitary n× n matrix, let M = maxjk |Ujk|, and let x be any vector in Cn. Then

H(x) +H(Ux) ≥ 2 log

(

1

M

)

. (6)

Since each column (or row) of a unitary matrix is a unit vector, the constant M in

this inequality must lie in the interval [ 1√
n
, 1]. We get the strongest result, then,

1We have not been specific about the base of the logarithm because the entropic uncertainty

principle is valid in any base, provided of course that the same base is used in the definition of the

entropy as in the statement of the uncertainty principle. In the proof that follows (in particular in

the Appendix, where derivatives of the logarithm are involved), it is most convenient to use base

e, and that is how we shall proceed. Note, however, that when n = 2p, the result takes its simplest

form if the logarithm used is base 2, since in that case the lower bound of the total entropy is

simply p.

2



when M is at the lower end of this interval, so that the constant on the right-

hand side of (6) is as large as possible, and in fact is equal to log(n). This is

actually the case for the discrete Fourier transform, which therefore is not just

any example, but rather the most extreme example possible, in the sense that its

entropic uncertainty principle is as strong as it could possibly be. This is perhaps a

further motivation for the separate consideration of the discrete Fourier transform.

An entropy inequality for each step of the FFT

We start by deriving the recusion relation that is fundamental to the Fast Fourier

Transform algorithm in the special case n = 2p. In that case, n is even for p > 0,

and we have

(Fnu)k =
1√
n

n
2
−1
∑

j=0

e−i 2π
n
(2j)ku2j +

1√
n

n
2
−1
∑

j=0

e−i 2π
n
(2j+1)ku2j+1

=
1√
2

1
√

n/2

n
2
−1
∑

j=0

e
−i 2π

n/2
jku2j +

1√
2

e−i 2π
n
k

√

n/2

n
2
−1
∑

j=0

e
−i 2π

n/2
jku2j+1. (7)

Note that (Fnu)k+n/2 is exactly the same as (Fnu)k, except that

e−i 2π
n (k+

n
2
) = e−i 2π

n
ke−iπ = −e−i 2π

n
k. (8)

Thus, if we restrict k to {0, 1, . . . , n
2
− 1} and define

v0k = (Fnu)k, (9)

v1k = (Fnu)k+n/2, (10)

then we may write (7) more succinctly as

v0 =
1√
2

(

Fn/2u
even +DFn/2u

odd
)

, (11)

v1 =
1√
2

(

Fn/2u
even −DFn/2u

odd
)

. (12)

In this pair of equations,

ueven
j = u2j , (13)

uodd
j = u2j+1, (14)
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for j = 0, 1, . . . , n
2
−1, and D is an n

2
× n

2
matrix with off-diagonal elements equal

to zero and with diagonal elements given by

Dkk = e−i 2π
n
k, (15)

for k = 0, 1, . . . , n
2
− 1. Note that D is unitary.

Let

w0 = Fn/2u
even, (16)

w1 = Fn/2u
odd. (17)

Then (11-12) become

v0 =
1√
2

(

w0 +Dw1
)

, (18)

v1 =
1√
2

(

w0 −Dw1
)

, (19)

or, in components

v0k =
1√
2

(

w0
k +Dkkw

1
k

)

, (20)

v1k =
1√
2

(

w0
k −Dkkw

1
k

)

, (21)

for k = 0, 1, . . . , n
2
− 1. Note that there is no coupling in equations (20-21)

between different values of k.

Since the entropy of a vector as defined above only involves the absolute val-

ues of the components, we evaluate

|v0k|2 =
1

2

(

|w0
k|2 + |w1

k|2 + qk
)

, (22)

|v1k|2 =
1

2

(

|w0
k|2 + |w1

k|2 − qk
)

, (23)

where

qk = w0
kDkkw1

k + w0
kDkkw

1
k. (24)

Note that qk is real, and also that

|v0k|2 + |v1k|2 = |w0
k|2 + |w1

k|2. (25)
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Let v and w be vectors in Cn defined by

vk = v0k, vk+n/2 = v1k, (26)

wk = w0
k, wk+n/2 = w1

k, (27)

for k = 0, 1, . . . , n
2
− 1. Note that

‖v‖ = ‖w‖. (28)

The goal of this section is to derive a lower bound on H(v) +H(w). We have

H(w) = −
n
2
−1
∑

k=0

[

( |w0
k|

‖w‖

)2

log

(

( |w0
k|

‖w‖

)2
)

+

( |w1
k|

‖w‖

)2

log

(

( |w1
k|

‖w‖

)2
)]

,

(29)

and it is straightforward to check (see Appendix 2) that this expression for H(w)
can be rewritten in the following equivalent way

H(w) = H0(w) +

n
2
−1
∑

k=0

|w0
k|2 + |w1

k|2
‖w‖2 H

((

w0
k, w

1
k

))

, (30)

where

H0(w) = −
n
2
−1
∑

k=0

|w0
k|2 + |w1

k|2
‖w‖2 log

( |w0
k|2 + |w1

k|2
‖w‖2

)

, (31)

and where H ((w0
k, w

1
k)) denotes the entropy of the 2-vector with components w0

k

and w1
k, which is

H
((

w0
k, w

1
k

))

=− |w0
k|2

|w0
k|2 + |w1

k|2
log

( |w0
k|2

|w0
k|2 + |w1

k|2
)

− |w1
k|2

|w0
k|2 + |w1

k|2
log

( |w1
k|2

|w0
k|2 + |w1

k|2
)

. (32)

Similarly,

H(v) = H0(v) +

n
2
−1
∑

k=0

|v0k|2 + |v1k|2
‖v‖2 H

((

v0k, v
1
k

))

. (33)

Because of (25-28), we can rewrite much of the expression for H(v) in terms of

w. In fact,

H(v) = H0(w) +

n
2
−1
∑

k=0

|w0
k|2 + |w1

k|2
‖w‖2 H

((

v0k, v
1
k

))

. (34)
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Now adding equations (30) & (34), we get

H(v) +H(w) = 2H0(w) +

n
2
−1
∑

k=0

|w0
k|2 + |w1

k|2
‖w‖2

[

H
((

v0k, v
1
k

))

+H
((

w0
k, w

1
k

))]

.

(35)

We shall prove in Appendix 1 that

H
((

v0k, v
1
k

))

+H
((

w0
k, w

1
k

))

≥ log(2). (36)

It then follows from this and (35) that

H(v) +H(w) ≥ log(2) + 2H0(w). (37)

We shall see in the next section how this lower bound can be used in an inductive

proof of the entropic uncertainty principle.

Induction proof of the entropic uncertainty principle

We are now ready to prove (5) in the special case that n is a power of 2. First, we

note that (5) is trivially true for n = 1, since H(u) and H(F1u) are both equal to

zero in that case. Next, we make the induction hypothesis that

H(x) +H(Fn/2x) ≥ log
(n

2

)

, (38)

for all x ∈ C
n/2. Setting x = ueven and then x = uodd, we get

H(ueven) +H(w0) ≥ log
(n

2

)

, (39)

H(uodd) +H(w1) ≥ log
(n

2

)

, (40)

since w0 = Fn/2u
even and w1 = Fn/2u

odd.

Now recall (see equations (13-14) and (27)) that the components of u ∈ Cn

are those of ueven and those of uodd, with ‖u‖2 = ‖ueven‖2+‖uodd‖2, and similarly,

that the components of w ∈ Cn are those of w0 and those of w1, with ‖w‖2 =
‖w0‖2 + ‖w1‖2. It is then straightforward to check that

H(u) =
‖ueven‖2
‖u‖2 H(ueven) +

‖uodd‖2
‖u‖2 H(uodd) +H

((

‖ueven‖, ‖uodd‖
))

, (41)

H(w) =
‖w0‖2
‖w‖2 H(w0) +

‖w1‖2
‖w‖2 H(w1) +H

((

‖w0‖, ‖w1‖
))

. (42)
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Now recall that Fn/2 is unitary, and that w0 = Fn/2u
even and w1 = Fn/2u

odd.

Thus, ‖ueven‖ = ‖w0‖, ‖uodd‖ = ‖w1‖, and ‖u‖ = ‖w‖. Therefore, if we add

equations (41) & (42), the result can be written as

H(u) +H(w) =
‖w0‖2
‖w‖2

(

H(ueven) +H(w0)
)

+
‖w1‖2
‖w‖2

(

H(uodd) +H(w1)
)

+ 2H
((

‖w0‖, ‖w1‖
))

. (43)

Applying the inequalities (39-40) to the above equation gives

H(u) +H(w) ≥ log
(n

2

)

+ 2H
((

‖w0‖, ‖w1‖
))

. (44)

Now if we add the inequalities (37) & (44), we get

H(u) +H(v) + 2H(w) ≥ log
(n

2

)

+ log(2) + 2H0(w) + 2H
((

‖w0‖, ‖w1‖
))

.

(45)

Of course, log
(

n
2

)

+ log(2) = log(n), which is the lower bound on the entropic

entropy that we are trying to prove. Also, with the help of (42) we can rewrite

(45) in the following way:

H(u) +H(v) ≥ log(n) + 2Q(w), (46)

where

Q(w) = H0(w)−
‖w0‖2
‖w‖2 H(w0)− ‖w1‖2

‖w‖2 H(w1) (47)

To complete the proof, we need only show that Q(w) ≥ 0. Let

P 0
k =

|w0
k|2

‖w0‖2 , P 1
k =

|w1
k|2

‖w1‖2 , (48)

Pk =
‖w0‖2
‖w‖2 P

0
k +

‖w1‖2
‖w‖2 P

1
k =

|w0
k|2 + |w1

k|2
‖w‖2 . (49)

Further, let

α0 =
‖w0‖2
‖w‖2 ≥ 0, α1 =

‖w1‖2
‖w‖2 ≥ 0, (50)

and note that α0 + α1 = 1.

7



It is then easy to check that

H(w0) = H(P 0), (51)

H(w1) = H(P 1), (52)

H0(w) = H(α0P
0 + α1P

1), (53)

where H(P ) is the entropy of the discrete probability distribution P . Therefore,

Q(w) = H(α0P
0 + α1P

1)− α0H(P 0)− α1H(P 1), (54)

which is clearly non-negative because of the well-known convexity of −H. Thus,

(46) implies that

H(u) +H(v) ≥ log(n). (55)

Since v = Fnu, this completes the induction step, and hence the proof.
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Appendix 1

Let v0, v1, w0, w1 be complex numbers related by

v0 =
1√
2
(w0 +Dw1) , (56)

v1 =
1√
2
(w0 −Dw1) , (57)

where D is a complex number with |D| = 1. Let v = (v0, v1), w = (w0, w1). We

claim that

H(v) +H(w) ≥ log(2). (58)

Here,

H(w) =− |w0|2
|w0|2 + |w1|2

log

( |w0|2
|w0|2 + |w1|2

)

− |w1|2
|w0|2 + |w1|2

log

( |w1|2
|w0|2 + |w1|2

)

, (59)
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and similarly for H(v).
In the following, we shall think of H(v) +H(w) as a function of w, since v is

determined by w through (56-57). From (56-57), we have

|v0|2 =
1

2

(

|w0|2 + |w1|2 + q
)

, (60)

|v1|2 =
1

2

(

|w0|2 + |w1|2 − q
)

, (61)

where

q = w0Dw1 + w0Dw1. (62)

Note that q is real, and also that

|v0|2 + |v1|2 = |w0|2 + |w1|2. (63)

Because of the homogeneity of H we can, without loss of generality, assume that

|w0|2 + |w1|2 = 1. (64)

It follows, of course, that |v0|2 + |v1|2 = 1, so

H(v) +H(w) =− |v0|2 log
(

|v0|2
)

− |v1|2 log
(

|v1|2
)

− |w0|2 log
(

|w0|2
)

− |w1|2 log
(

|w1|2
)

. (65)

Also, (60-61) become

|v0|2 =
1

2
(1 + q), (66)

|v1|2 =
1

2
(1− q), (67)

so

H(v) +H(w) = f(q)− |w0|2 log
(

|w0|2
)

− |w1|2 log
(

|w1|2
)

, (68)

where

f(q) = −
(

1 + q

2

)

log

(

1 + q

2

)

−
(

1− q

2

)

log

(

1− q

2

)

. (69)

The function f(q) plays an important role in the following, so we note some

of its properties. First f(q) is defined on the interval [−1, 1]. Its values at the end-

points of this interval, which are defined by taking limits from inside the interval,

are

f(±1) = 0. (70)
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The function f is even:

f(q) = f(−q), (71)

and its first and second derivatives are given by

f ′(q) =
1

2
log

(

1− q

1 + q

)

, (72)

f ′′(q) = − 1

1 − q2
< 0. (73)

Since f ′′(q) < 0, f has a unique maximum which occurs where f ′(q) = 0, namely

at q = 0. The maximum value of f is given by

f(0) = log(2). (74)

Also, since f ′(q) < 0 for q > 0, and since f is an even function, we may conclude

that f is a decreasing function of |q|.
Our task now is to minimize H(v) + H(w), and to show that the minimum

value of H(v) +H(w) is log(2). 2 The minimization will be done by a two-step

procedure. In the first step, we fix |w0| and |w1|, and minimize with respect to

q. Then, with q set equal to its optimal value as a function of |w0| and |w1|, we

minimize with respect to |w0| and |w1|, subject, of course, to the constraint that

|w0|2 + |w1|2 = 1.

With |w0| and |w1| fixed, H(w) is fixed, so our task is simply to minimize

H(v) = f(q). This is done by making |q| as large as possible. From (62), we have

|q| ≤ 2|w0||w1|, (75)

with equality if

D
w1

|w1|
= ± w0

|w0|
, (76)

which can certainly be achieved with |w0| and |w1| fixed merely by adjusting the

angles of w0 and w1 in the complex plane (recall that |D| = 1). Thus the optimal

value of q is given by

|q| = ±2|w0||w1|, (77)

and the sign does not matter, since f is an even function. With this optimal choice

of q, our task is reduced to minimizing

H(v) +H(w) = f(2|w0||w1|)− |w0|2 log
(

|w0|2
)

− |w1|2 log
(

|w1|2
)

, (78)

2Note that this is the maximum value of f , a fact that does not seem helpful at this point, since

we are seeking the minimum value of H(v) +H(w) = f(q) +H(w).
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subject to the constraint |w0|2 + |w1|2 = 1. We can build in this constraint by

setting

|w0| = cos θ, (79)

|w1| = sin θ, (80)

so that

2|w0||w1| = sin(2θ), (81)

|w0|2 = cos2 θ =
1

2
(1 + cos(2θ)), (82)

|w1|2 = sin2 θ =
1

2
(1− cos(2θ)). (83)

With these substitutions, we find the beautiful result that

H(v) +H(w) = f(sin(2θ)) + f(cos(2θ)). (84)

Let

g(θ) = f(sin(2θ)) + f(cos(2θ)). (85)

Our task is to minimize g(θ). Since f is even, g is even. Also since f is even, it is

easily checked that g(θ+π/4) = g(θ). Thus, we may restrict consideration to the

interval [0, π/8]. We claim that g is an increasing function on this interval. This

may be shown by noting that

g′(θ) = sin(2θ) cos(2θ) (A(cos(2θ))−A(sin(2θ))) , (86)

where

A(x) =
1

x
log

(

1 + x

1− x

)

(87)

is an increasing function for x ∈ (0, 1), see below. On the interval [0, π/8], we

have

0 ≤ sin(2θ) ≤ 1√
2
≤ cos(2θ), (88)

and therefore, since A is increasing, g′(θ) ≥ 0. Thus, the minimum of g occurs at

θ = 0, where we have

g(0) = f(0) + f(1) = log(2) + 0 = log(2). (89)

It follows, as claimed, that H(v) +H(w) ≥ log(2).
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For completeness, we give a proof that A(x) is increasing for x ∈ (0, 1). We

have

A′(x) =
1

x2
(K(x)− L(x)) , (90)

where

K(x) =
2x

1− x2
, (91)

L(x) = log

(

1 + x

1− x

)

. (92)

Note that K(0) = L(0) = 0. Also,

K ′(x) =
2 (1 + x2)

(1− x2)2
, (93)

L′(x) =
2

1− x2
=

2 (1− x2)

(1− x2)2
, (94)

so K ′(x) > L′(x) for x ∈ (0, 1). It follows, since K(0) = L(0), that K(x) >
L(x) for x ∈ (0, 1), and hence that A′(x) > 0 on this interval.
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Appendix 2

In this appendix we consider the behavior of entropy under the aggregation of

outcomes into disjoint sets of outcomes. Several of the algebraic manipulations

of entropy in the main text of this paper are special cases of the following.

Let pi be a discrete probability distribution, and let the possible outcomes i be

partitioned into disjoint sets Cm, so that every i belongs to exactly one of the sets

Cm. Let

Pm =
∑

i∈Cm

pi, (95)

so that Pm is the probability of an outcome in Cm. Then

H(p) = −
∑

i

pi log pi,

= −
∑

m

∑

i∈Cm

pi log pi,

= −
∑

m

Pm

∑

i∈Cm

pi
Pm

(

log
pi
Pm

+ logPm

)

,

= −
∑

m

Pm

∑

i∈Cm

pi
Pm

log
pi
Pm

−
∑

m

Pm logPm,

=
∑

m

PmHm + H0. (96)

In the last line of the above equation, Hm = −
∑

i∈Cm

pi
Pm

log
pi
Pm

is the condi-

tional entropy of the collection of outcomes Cm, given that the outcome is in that

collection, and H0 = H(P ) = −∑m Pm logPm is the entropy of the aggregated

probability distribution P .

The above result is used in two different ways in this paper. In one version we

aggregate n outcomes into n/2 collections each of which has two members, and in

the other case into two collections of outcomes each of which has n/2 members.
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