A) (due 02 February, 2 pages max) Discuss the solution to the first-order PDE for the problem GL 2-1 #5 (p 24). By discussion, I mean use the solution of this problem to illustrate the ideas presented in the lectures. Use Matlab to plot characteristics on an \(x, t \)-diagram. How might one plot the solution \(u \)?

Use the \texttt{subplot} command to put several plots on a page. All plots MUST be annotated (handwritten is fine) by way of explanation for each plot: highlight salient features, give parameters, etc.

B) (aim for 3 pages) Consider the PDE problem for \(u(x, t) \) for forward time \((t \geq X) \)

\[
 u_t + cu_x = 0 \quad ; \quad u(-vX, X) = \sin X \quad \text{for} \quad -\infty < X < +\infty
\]

where \(c, v \) are constants. Set up the characteristic ODEs, and be very careful about their initialization (IV) at \(T = 0 \) — this should now allow convenient expressions of the solution as \(U(X, T) \) and \(u(x, t) \). Discuss the \(x, t \)-diagram — are there different cases depending on the sizes and signs of \(c, v \)?

Take \(c, v \) both positive. Describe the solution at a fixed value of \(x \). Likewise, for fixed \(t \). Do the observed periodicities make sense? What is so special about the line \(x + vt = 0 \) in the \(x, t \)-diagram, and why is this sometimes called a moving source problem?

C) (3 pages max) The classic nonlinear, first-order PDE is the IVP

\[
 u_t + uu_x = 0 \quad ; \quad u(X, 0) = f(X)
\]

which is also CP 6.4.2 (p 97). Discuss the formulas and produce illustrative Matlab plots of the characteristics that correspond to 2 choices of IVs: \(f(X) = \pm \tanh X \).

For instance, given any \((x, t) \) what are the corresponding values of \((X, T) \)? Computationally estimate at what time the solution ceases to be meaningful (Challenge question: this time can also be directly calculated from the formulas!).