HW8 - Due 04/09/2008
 ODE - spring 2008

1) Consider the system

$$
\left\{\begin{array}{l}
x^{\prime}=-y+f(x, y) \tag{1}\\
y^{\prime}=\sin (x)
\end{array}\right.
$$

where the function f is smooth.
Give some sufficient condition on f so that $(0,0)$ is a stable equilibrium
2) Consider

$$
\begin{equation*}
x^{\prime \prime}+\phi(t) x=0 \tag{2}
\end{equation*}
$$

with $\phi(t) \in C^{1}(\mathbb{R})$ monotonic and such that $\lim _{t \rightarrow \infty} \phi(t)=c>0$.
Prove that $(0,0)$ is stable.

3) Consider again the system :

$$
\left\{\begin{array}{l}
x^{\prime}=1+y-x^{2}-y^{2} \tag{3}\\
y^{\prime}=1-x-x^{2}-y^{2}
\end{array}\right.
$$

Only answer question d/:
a/ Determine the critial points and characterise them
b/ Show that the system has a periodic solution
c/ Linearize the system near this periodic solution and determine the characteristic exponents.
d/ determine the stability of the periodic solution constructed in c
4) The equation

$$
\begin{equation*}
x^{\prime \prime}-\left(1-x^{2}-\left(x^{\prime}\right)^{2}\right) x^{\prime}+x=0 \tag{4}
\end{equation*}
$$

has a critical point and a limit cycle
Determine them and characterise them

