HW8 - Due 04/02/2008
 ODE - spring 2008

1)What are the stability properties of the $(0,0)$ solution of

$$
\left\{\begin{array}{l}
x^{\prime}=\alpha x+y^{n} \tag{1}\\
y^{\prime}=\alpha y-x^{n}
\end{array}\right.
$$

depending on the parameters $\alpha \in \mathbb{R}$ and $n \in \mathbb{N}$.
2)Show by an example that is f is C^{1} and $f(0)=0$, it is possible that $\lim x(t)=0$ when t goes to $+\infty$ for all solutions to $x^{\prime}=f(x)$ without the eigenvalues of $D f(0)$ having negative real parts.
3) Consider

$$
\left\{\begin{array}{l}
x^{\prime}=1+y-x^{2}-y^{2} \tag{2}\\
y^{\prime}=1-x-x^{2}-y^{2}
\end{array}\right.
$$

a/ Determine the critial points and characterise them
b/ Show that the system has a periodic solution
c/ Linearize the system near this periodic solution and determine the characteristic exponents.

