1)If $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ is a fundamental set for the homogeneous equation

$$
\begin{equation*}
L(x)=x^{(n)}+a_{1} x^{(n-1)}+\ldots+a_{n} x=0 \tag{1}
\end{equation*}
$$

where $a_{1}, a_{2}, \ldots, a_{n} \in C(I)$ are continuous functions of t, then find the solution of $L \psi=b(t)$ where $b \in C(I)$ and $\psi(\tau)=\psi^{\prime}(\tau)=\psi^{(n-1)}(\tau)=0, \tau \in I$.
2) Determine the stability property of the solution $(\sin (t), \cos (t))$ of the system

$$
\left\{\begin{array}{l}
x^{\prime}=+y\left(x^{2}+y^{2}\right)^{-1 / 2} \tag{2}\\
y^{\prime}=-x\left(x^{2}+y^{2}\right)^{-1 / 2}
\end{array}\right.
$$

3) Prove that the equation

$$
\begin{equation*}
x^{\prime \prime}+2 \mu x^{\prime}+\omega_{0}^{2} x=\sin (\omega t) \tag{3}
\end{equation*}
$$

where $0<\mu<\omega_{0}$ and $\omega>0$ has a periodic solution and study its stability.
4) Consider the second order equation

$$
\begin{equation*}
x^{\prime \prime}+x^{2}+b x+c=0 \tag{4}
\end{equation*}
$$

where b and c are two parameters.
a/ Determine the critical points and their stability.
b/ Give a condition for periodic solutions to exist. Are these solution Lyapunov-stable or orbitally stable or asymptotically stable?

