1) By using polar coordinates, prove that the system

$$
\left\{\begin{array}{l}
y^{\prime}=y+x-y\left(x^{2}+y^{2}\right) \tag{1}\\
x^{\prime}=x-y-x\left(x^{2}+y^{2}\right)
\end{array}\right.
$$

has a unique periodic solution.
2) Consider the following system in \mathbb{R}^{2} written in polar coordinates

$$
\left\{\begin{array}{l}
r^{\prime}=r(1-r) \tag{2}\\
\theta^{\prime}=\sin ^{2}(\theta / 2)
\end{array}\right.
$$

determine the attraction properties of $(0,0)$ and $(1,0)$.
3) Find all periodic solutions of

$$
s^{(4)}+2 s^{\prime \prime}+s=0
$$

