Name:

HW1 - Due 02/20/2008
 ODE - spring 2008

1) For the following two dimensional system in \mathbb{R}^{2}

$$
\left\{\begin{array}{l}
x^{\prime}=y\left(1+x-y^{2}\right) \tag{1}\\
y^{\prime}=x\left(1+y-x^{2}\right)
\end{array}\right.
$$

determine the critical points and characterise the linearised flow in a neighbourhood of the these points.
2) What is the attraction property of the solution $(0,0)$ of

$$
\left\{\begin{array}{l}
x^{\prime}=x^{3}+y \tag{2}\\
y^{\prime}=\left(x^{2}+y^{2}-2\right) y
\end{array}\right.
$$

3) Consider the equation $x^{\prime \prime}-\lambda x^{\prime}-(\lambda-1)(\lambda-2) x=0$ with λ a parameter. Find the critical points and characterise them. Sketch the flow in the phase-plane for $\lambda=-1,0,1$ and 3 .
4) Solve the following equation
1. $x^{\prime}=\frac{x^{2}-t^{2}}{x^{2}+t^{2}}$
you can use polar coordinates.
