HW1 - Due 02/13/2008
 ODE - spring 2008

1) Find the trajectory in the $\left(x, x^{\prime}\right)$ plan of the following equations
1. $x^{\prime \prime}-x=0$
2. $x^{\prime \prime}+\sin (x)=0$
2) Solve the following equations
1. $2 t^{2} x x^{\prime}+x^{2}=2$
2. $2 t x^{\prime}+t^{2}+t x-x=0$
3) What is the domain of existence of the following equations
1. $x^{\prime}=\sin (x) \quad x(0)=0$
2. $x^{\prime}=\sin (x) \quad x(0)=1 / 2$
3. $x^{\prime}=1 /(2 x) \quad x(1)=1$
4) If $g: \mathbb{R} \rightarrow \mathbb{R}$ is Lipchitz and $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. Show that the system

$$
\left\{\begin{array}{l}
x^{\prime}=g(x) \tag{1}\\
y^{\prime}=f(x) y
\end{array}\right.
$$

has at most one solution on any interval, for a given initial value.

