HW12 - Due 04/30/2008
ODE - spring 2008

This HW will count as 1/3 of the final grade.

1) Study the stability of the critical points of \(x' = 1 - 2\mu x + x^2 \) where \(\mu \) is a parameter.

2) Consider \(x'' + \sin(x) = 0 \) with \(x(0) = a \) and \(x'(0) = 0 \) and \(0 < a < \pi \).
 a/ Prove that the solution is periodic in time with period \(T(a) \).
 b/ Find an expansion of \(T(a) \) when \(a \) goes to 0 (just compute the first two terms).
 c/ What is the behaviour of \(T(a) \) when \(a \) goes to \(\pi \).
 d/ What happens for other values of \(a \in \mathbb{R} \).

3) Consider the following system with one prey and two predators

\[
\begin{align*}
x' &= ax - xy - xz \\
y' &= -by + xy \\
z' &= -cz + xz
\end{align*}
\]

with \(a, b, c > 0 \). Take an initial data \(x(0), y(0), z(0) \geq 0 \).
 a/ Prove that the system has a global solution and that for \(t \geq 0 \), we have \(x(t), y(t), z(t) \geq 0 \).
 b/ What are the equilibrium solutions. Characterise them.
 c/ Are there periodic solutions with \(y(t)z(t) > 0 \)?
 d/ Is it possible that starting from \(y(0), z(0) > 0 \), one of the predators becomes extinct in finite time? or in infinite time?

PS: Please check for updated versions if there are any corrections.