This HW will count as $1 / 3$ of the final grade.

1) Solve $x^{\prime \prime}+\frac{1}{4 t^{2}} x=0$ with $x(1)=1$ and $x^{\prime}(1)=0$.
2) Consider the system

$$
x^{\prime}=A x+f(t, x)+\mu g(t)
$$

where A is a constant matrix, f and g are continuous and T-periodic in t, f_{x} exists and is continuous. Assume that $y^{\prime}=A y$ has no nontrivial solution of period T and that $f_{x}(t, 0)=0$ and $f(t, 0)=0$. Prove that for small μ, there exists a unique solution $\phi(t, \mu)$ of period T which is continuous in (t, μ) for small μ.
3) Prove that if $\int_{0}^{\infty}|A(t)| d t<\infty$ where A is n by n matrix, then any nontrivial solution of $x^{\prime}=A(t) x$ where $x \in \mathbb{R}^{n}$ has a limit different from zero when t goes to infinity. Prove that this defines a bijection between the initial data at $t=0$ and this limit.
4) Consider $y^{\prime}=A y, y \in \mathbb{R}^{n}$ and A is n by n matrix, and assume that $\left|e^{t A}\right| \leq M_{0}$ for $t \geq 0$. let $f(t, x)$ be such that $|f(t, x)| \leq g(t)|x|$ for $t \geq 0$ and $\int_{0}^{\infty} g(t)<\infty$.
a/ Show that there exists a constant M such that any solution ϕ of $x^{\prime}=A x+f(t, x)$ satisfies $|\phi(t)| \leq M|\phi(0)|$
b/ If p is the number of eigenvalues of A with zero real part. Prove that there exists a p dimensional space P in \mathbb{R}^{n} such that for each solution ϕ of $x^{\prime}=A x+f(t, x)$, there exists a unique $q \in P$ such that $\phi(t)-e^{t A} q \rightarrow 0$ when t goes to infinity.
[Hint: Recall that $e^{t A}$ can be writen as $e^{t A}=U_{1}(t)+U_{2}(t)$ where $\left|U_{2}(t)\right| \leq K e^{-\sigma t}$ for $0 \leq t<\infty$ and $\sigma>0$ and $\left.\left|U_{1}(t)\right| \leq K\right]$

PS: Please check for up dated versions if there are any corrections.

